summaryrefslogtreecommitdiff
path: root/indra/llmath/llquaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rw-r--r--indra/llmath/llquaternion.h34
1 files changed, 24 insertions, 10 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h
index 5db9c5be2e..0769f29f23 100644
--- a/indra/llmath/llquaternion.h
+++ b/indra/llmath/llquaternion.h
@@ -469,20 +469,30 @@ inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
return a;
}
+const F32 ONE_PART_IN_A_MILLION = 0.000001f;
+
inline F32 LLQuaternion::normalize()
{
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
if (mag > FP_MAG_THRESHOLD)
{
- F32 oomag = 1.f/mag;
- mQ[VX] *= oomag;
- mQ[VY] *= oomag;
- mQ[VZ] *= oomag;
- mQ[VS] *= oomag;
+ // Floating point error can prevent some quaternions from achieving
+ // exact unity length. When trying to renormalize such quaternions we
+ // can oscillate between multiple quantized states. To prevent such
+ // drifts we only renomalize if the length is far enough from unity.
+ if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
+ {
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
}
else
{
+ // we were given a very bad quaternion so we set it to identity
mQ[VX] = 0.f;
mQ[VY] = 0.f;
mQ[VZ] = 0.f;
@@ -499,11 +509,15 @@ inline F32 LLQuaternion::normQuat()
if (mag > FP_MAG_THRESHOLD)
{
- F32 oomag = 1.f/mag;
- mQ[VX] *= oomag;
- mQ[VY] *= oomag;
- mQ[VZ] *= oomag;
- mQ[VS] *= oomag;
+ if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
+ {
+ // only renormalize if length not close enough to 1.0 already
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
}
else
{