summaryrefslogtreecommitdiff
path: root/indra/llcommon/lltimer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llcommon/lltimer.cpp')
-rw-r--r--indra/llcommon/lltimer.cpp1216
1 files changed, 608 insertions, 608 deletions
diff --git a/indra/llcommon/lltimer.cpp b/indra/llcommon/lltimer.cpp
index 8a8451b927..a3e871661c 100644
--- a/indra/llcommon/lltimer.cpp
+++ b/indra/llcommon/lltimer.cpp
@@ -1,608 +1,608 @@
-/**
- * @file lltimer.cpp
- * @brief Cross-platform objects for doing timing
- *
- * $LicenseInfo:firstyear=2000&license=viewerlgpl$
- * Second Life Viewer Source Code
- * Copyright (C) 2010, Linden Research, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation;
- * version 2.1 of the License only.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
- * $/LicenseInfo$
- */
-
-#include "linden_common.h"
-
-#include "lltimer.h"
-
-#include "u64.h"
-
-#include <chrono>
-#include <thread>
-
-#if LL_WINDOWS
-# include "llwin32headerslean.h"
-#elif LL_LINUX || LL_DARWIN
-# include <errno.h>
-# include <sys/time.h>
-#else
-# error "architecture not supported"
-#endif
-
-//
-// Locally used constants
-//
-const U64 SEC_TO_MICROSEC_U64 = 1000000;
-
-//---------------------------------------------------------------------------
-// Globals and statics
-//---------------------------------------------------------------------------
-
-S32 gUTCOffset = 0; // viewer's offset from server UTC, in seconds
-LLTimer* LLTimer::sTimer = NULL;
-
-
-//
-// Forward declarations
-//
-
-
-//---------------------------------------------------------------------------
-// Implementation
-//---------------------------------------------------------------------------
-
-#if LL_WINDOWS
-
-
-#if 0
-void ms_sleep(U32 ms)
-{
- LL_PROFILE_ZONE_SCOPED;
- using TimePoint = std::chrono::steady_clock::time_point;
- auto resume_time = TimePoint::clock::now() + std::chrono::milliseconds(ms);
- while (TimePoint::clock::now() < resume_time)
- {
- std::this_thread::yield(); //note: don't use LLThread::yield here to avoid yielding for too long
- }
-}
-
-U32 micro_sleep(U64 us, U32 max_yields)
-{
- // max_yields is unused; just fiddle with it to avoid warnings.
- max_yields = 0;
- ms_sleep((U32)(us / 1000));
- return 0;
-}
-
-#else
-
-U32 micro_sleep(U64 us, U32 max_yields)
-{
- LL_PROFILE_ZONE_SCOPED
-#if 0
- LARGE_INTEGER ft;
- ft.QuadPart = -static_cast<S64>(us * 10); // '-' using relative time
-
- HANDLE timer = CreateWaitableTimer(NULL, true, NULL);
- SetWaitableTimer(timer, &ft, 0, NULL, NULL, 0);
- WaitForSingleObject(timer, INFINITE);
- CloseHandle(timer);
-#else
- Sleep(us / 1000);
-#endif
-
- return 0;
-}
-
-void ms_sleep(U32 ms)
-{
- LL_PROFILE_ZONE_SCOPED
- micro_sleep(ms * 1000, 0);
-}
-
-#endif
-
-#elif LL_LINUX || LL_DARWIN
-static void _sleep_loop(struct timespec& thiswait)
-{
- struct timespec nextwait;
- bool sleep_more = false;
-
- do {
- int result = nanosleep(&thiswait, &nextwait);
-
- // check if sleep was interrupted by a signal; unslept
- // remainder was written back into 't' and we just nanosleep
- // again.
- sleep_more = (result == -1 && EINTR == errno);
-
- if (sleep_more)
- {
- if ( nextwait.tv_sec > thiswait.tv_sec ||
- (nextwait.tv_sec == thiswait.tv_sec &&
- nextwait.tv_nsec >= thiswait.tv_nsec) )
- {
- // if the remaining time isn't actually going
- // down then we're being shafted by low clock
- // resolution - manually massage the sleep time
- // downward.
- if (nextwait.tv_nsec > 1000000) {
- // lose 1ms
- nextwait.tv_nsec -= 1000000;
- } else {
- if (nextwait.tv_sec == 0) {
- // already so close to finished
- sleep_more = false;
- } else {
- // lose up to 1ms
- nextwait.tv_nsec = 0;
- }
- }
- }
- thiswait = nextwait;
- }
- } while (sleep_more);
-}
-
-U32 micro_sleep(U64 us, U32 max_yields)
-{
- U64 start = get_clock_count();
- // This is kernel dependent. Currently, our kernel generates software clock
- // interrupts at 250 Hz (every 4,000 microseconds).
- const S64 KERNEL_SLEEP_INTERVAL_US = 4000;
-
- // Use signed arithmetic to discover whether a sleep is even necessary. If
- // either 'us' or KERNEL_SLEEP_INTERVAL_US is unsigned, the compiler
- // promotes the difference to unsigned. If 'us' is less than half
- // KERNEL_SLEEP_INTERVAL_US, the unsigned difference will be hugely
- // positive, resulting in a crazy long wait.
- auto num_sleep_intervals = (S64(us) - (KERNEL_SLEEP_INTERVAL_US >> 1)) / KERNEL_SLEEP_INTERVAL_US;
- if (num_sleep_intervals > 0)
- {
- U64 sleep_time = (num_sleep_intervals * KERNEL_SLEEP_INTERVAL_US) - (KERNEL_SLEEP_INTERVAL_US >> 1);
- struct timespec thiswait;
- thiswait.tv_sec = sleep_time / 1000000;
- thiswait.tv_nsec = (sleep_time % 1000000) * 1000l;
- _sleep_loop(thiswait);
- }
-
- U64 current_clock = get_clock_count();
- U32 yields = 0;
- while ( (yields < max_yields)
- && (current_clock - start < us) )
- {
- sched_yield();
- ++yields;
- current_clock = get_clock_count();
- }
- return yields;
-}
-
-void ms_sleep(U32 ms)
-{
- long mslong = ms; // tv_nsec is a long
- struct timespec thiswait;
- thiswait.tv_sec = ms / 1000;
- thiswait.tv_nsec = (mslong % 1000) * 1000000l;
- _sleep_loop(thiswait);
-}
-#else
-# error "architecture not supported"
-#endif
-
-//
-// CPU clock/other clock frequency and count functions
-//
-
-#if LL_WINDOWS
-U64 get_clock_count()
-{
- static bool firstTime = true;
- static U64 offset;
- // ensures that callers to this function never have to deal with wrap
-
- // QueryPerformanceCounter implementation
- LARGE_INTEGER clock_count;
- QueryPerformanceCounter(&clock_count);
- if (firstTime) {
- offset = clock_count.QuadPart;
- firstTime = false;
- }
- return clock_count.QuadPart - offset;
-}
-
-F64 calc_clock_frequency()
-{
- __int64 freq;
- QueryPerformanceFrequency((LARGE_INTEGER *) &freq);
- return (F64)freq;
-}
-#endif // LL_WINDOWS
-
-
-#if LL_LINUX || LL_DARWIN
-// Both Linux and Mac use gettimeofday for accurate time
-F64 calc_clock_frequency()
-{
- return 1000000.0; // microseconds, so 1 MHz.
-}
-
-U64 get_clock_count()
-{
- // Linux clocks are in microseconds
- struct timeval tv;
- gettimeofday(&tv, NULL);
- return tv.tv_sec*SEC_TO_MICROSEC_U64 + tv.tv_usec;
-}
-#endif
-
-
-TimerInfo::TimerInfo()
-: mClockFrequency(0.0),
- mTotalTimeClockCount(0),
- mLastTotalTimeClockCount(0)
-{}
-
-void TimerInfo::update()
-{
- mClockFrequency = calc_clock_frequency();
- mClockFrequencyInv = 1.0/mClockFrequency;
- mClocksToMicroseconds = mClockFrequencyInv;
-}
-
-TimerInfo& get_timer_info()
-{
- static TimerInfo sTimerInfo;
- return sTimerInfo;
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-// returns a U64 number that represents the number of
-// microseconds since the Unix epoch - Jan 1, 1970
-U64MicrosecondsImplicit totalTime()
-{
- U64 current_clock_count = get_clock_count();
- if (!get_timer_info().mTotalTimeClockCount || get_timer_info().mClocksToMicroseconds.value() == 0)
- {
- get_timer_info().update();
- get_timer_info().mTotalTimeClockCount = current_clock_count;
-
-#if LL_WINDOWS
- // Sync us up with local time (even though we PROBABLY don't need to, this is how it was implemented)
- // Unix platforms use gettimeofday so they are synced, although this probably isn't a good assumption to
- // make in the future.
-
- get_timer_info().mTotalTimeClockCount = (U64)(time(NULL) * get_timer_info().mClockFrequency);
-#endif
-
- // Update the last clock count
- get_timer_info().mLastTotalTimeClockCount = current_clock_count;
- }
- else
- {
- if (current_clock_count >= get_timer_info().mLastTotalTimeClockCount)
- {
- // No wrapping, we're all okay.
- get_timer_info().mTotalTimeClockCount += current_clock_count - get_timer_info().mLastTotalTimeClockCount;
- }
- else
- {
- // We've wrapped. Compensate correctly
- get_timer_info().mTotalTimeClockCount += (0xFFFFFFFFFFFFFFFFULL - get_timer_info().mLastTotalTimeClockCount) + current_clock_count;
- }
-
- // Update the last clock count
- get_timer_info().mLastTotalTimeClockCount = current_clock_count;
- }
-
- // Return the total clock tick count in microseconds.
- U64Microseconds time(get_timer_info().mTotalTimeClockCount*get_timer_info().mClocksToMicroseconds);
- return time;
-}
-
-
-///////////////////////////////////////////////////////////////////////////////
-
-LLTimer::LLTimer()
-{
- if (!get_timer_info().mClockFrequency)
- {
- get_timer_info().update();
- }
-
- mStarted = true;
- reset();
-}
-
-LLTimer::~LLTimer()
-{}
-
-// static
-void LLTimer::initClass()
-{
- if (!sTimer) sTimer = new LLTimer;
-}
-
-// static
-void LLTimer::cleanupClass()
-{
- delete sTimer; sTimer = NULL;
-}
-
-// static
-U64MicrosecondsImplicit LLTimer::getTotalTime()
-{
- // simply call into the implementation function.
- U64MicrosecondsImplicit total_time = totalTime();
- return total_time;
-}
-
-// static
-F64SecondsImplicit LLTimer::getTotalSeconds()
-{
- return F64Microseconds(U64_to_F64(getTotalTime()));
-}
-
-void LLTimer::reset()
-{
- mLastClockCount = get_clock_count();
- mExpirationTicks = 0;
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-U64 LLTimer::getCurrentClockCount()
-{
- return get_clock_count();
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-void LLTimer::setLastClockCount(U64 current_count)
-{
- mLastClockCount = current_count;
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-static
-U64 getElapsedTimeAndUpdate(U64& lastClockCount)
-{
- U64 current_clock_count = get_clock_count();
- U64 result;
-
- if (current_clock_count >= lastClockCount)
- {
- result = current_clock_count - lastClockCount;
- }
- else
- {
- // time has gone backward
- result = 0;
- }
-
- lastClockCount = current_clock_count;
-
- return result;
-}
-
-
-F64SecondsImplicit LLTimer::getElapsedTimeF64() const
-{
- U64 last = mLastClockCount;
- return (F64)getElapsedTimeAndUpdate(last) * get_timer_info().mClockFrequencyInv;
-}
-
-F32SecondsImplicit LLTimer::getElapsedTimeF32() const
-{
- return (F32)getElapsedTimeF64();
-}
-
-F64SecondsImplicit LLTimer::getElapsedTimeAndResetF64()
-{
- return (F64)getElapsedTimeAndUpdate(mLastClockCount) * get_timer_info().mClockFrequencyInv;
-}
-
-F32SecondsImplicit LLTimer::getElapsedTimeAndResetF32()
-{
- return (F32)getElapsedTimeAndResetF64();
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-void LLTimer::setTimerExpirySec(F32SecondsImplicit expiration)
-{
- mExpirationTicks = get_clock_count()
- + (U64)((F32)(expiration * get_timer_info().mClockFrequency.value()));
-}
-
-F32SecondsImplicit LLTimer::getRemainingTimeF32() const
-{
- U64 cur_ticks = get_clock_count();
- if (cur_ticks > mExpirationTicks)
- {
- return 0.0f;
- }
- return F32((mExpirationTicks - cur_ticks) * get_timer_info().mClockFrequencyInv);
-}
-
-
-bool LLTimer::checkExpirationAndReset(F32 expiration)
-{
- U64 cur_ticks = get_clock_count();
- if (cur_ticks < mExpirationTicks)
- {
- return false;
- }
-
- mExpirationTicks = cur_ticks
- + (U64)((F32)(expiration * get_timer_info().mClockFrequency));
- return true;
-}
-
-
-bool LLTimer::hasExpired() const
-{
- return get_clock_count() >= mExpirationTicks;
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-bool LLTimer::knownBadTimer()
-{
- bool failed = false;
-
-#if LL_WINDOWS
- WCHAR bad_pci_list[][10] = {L"1039:0530",
- L"1039:0620",
- L"10B9:0533",
- L"10B9:1533",
- L"1106:0596",
- L"1106:0686",
- L"1166:004F",
- L"1166:0050",
- L"8086:7110",
- L"\0"
- };
-
- HKEY hKey = NULL;
- LONG nResult = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,L"SYSTEM\\CurrentControlSet\\Enum\\PCI", 0,
- KEY_EXECUTE | KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS, &hKey);
-
- WCHAR name[1024];
- DWORD name_len = 1024;
- FILETIME scrap;
-
- S32 key_num = 0;
- WCHAR pci_id[10];
-
- wcscpy(pci_id, L"0000:0000"); /*Flawfinder: ignore*/
-
- while (nResult == ERROR_SUCCESS)
- {
- nResult = ::RegEnumKeyEx(hKey, key_num++, name, &name_len, NULL, NULL, NULL, &scrap);
-
- if (nResult == ERROR_SUCCESS)
- {
- memcpy(&pci_id[0],&name[4],4); /* Flawfinder: ignore */
- memcpy(&pci_id[5],&name[13],4); /* Flawfinder: ignore */
-
- for (S32 check = 0; bad_pci_list[check][0]; check++)
- {
- if (!wcscmp(pci_id, bad_pci_list[check]))
- {
-// LL_WARNS() << "unreliable PCI chipset found!! " << pci_id << endl;
- failed = true;
- break;
- }
- }
-// llinfo << "PCI chipset found: " << pci_id << endl;
- name_len = 1024;
- }
- }
-#endif
- return(failed);
-}
-
-///////////////////////////////////////////////////////////////////////////////
-//
-// NON-MEMBER FUNCTIONS
-//
-///////////////////////////////////////////////////////////////////////////////
-
-time_t time_corrected()
-{
- return time(NULL) + gUTCOffset;
-}
-
-
-// Is the current computer (in its current time zone)
-// observing daylight savings time?
-bool is_daylight_savings()
-{
- time_t now = time(NULL);
-
- // Internal buffer to local server time
- struct tm* internal_time = localtime(&now);
-
- // tm_isdst > 0 => daylight savings
- // tm_isdst = 0 => not daylight savings
- // tm_isdst < 0 => can't tell
- return (internal_time->tm_isdst > 0);
-}
-
-
-struct tm* utc_to_pacific_time(time_t utc_time, bool pacific_daylight_time)
-{
- S32Hours pacific_offset_hours;
- if (pacific_daylight_time)
- {
- pacific_offset_hours = S32Hours(7);
- }
- else
- {
- pacific_offset_hours = S32Hours(8);
- }
-
- // We subtract off the PST/PDT offset _before_ getting
- // "UTC" time, because this will handle wrapping around
- // for 5 AM UTC -> 10 PM PDT of the previous day.
- utc_time -= S32SecondsImplicit(pacific_offset_hours);
-
- // Internal buffer to PST/PDT (see above)
- struct tm* internal_time = gmtime(&utc_time);
-
- /*
- // Don't do this, this won't correctly tell you if daylight savings is active in CA or not.
- if (pacific_daylight_time)
- {
- internal_time->tm_isdst = 1;
- }
- */
-
- return internal_time;
-}
-
-
-void microsecondsToTimecodeString(U64MicrosecondsImplicit current_time, std::string& tcstring)
-{
- U64 hours;
- U64 minutes;
- U64 seconds;
- U64 frames;
- U64 subframes;
-
- hours = current_time / (U64)3600000000ul;
- minutes = current_time / (U64)60000000;
- minutes %= 60;
- seconds = current_time / (U64)1000000;
- seconds %= 60;
- frames = current_time / (U64)41667;
- frames %= 24;
- subframes = current_time / (U64)42;
- subframes %= 100;
-
- tcstring = llformat("%3.3d:%2.2d:%2.2d:%2.2d.%2.2d",(int)hours,(int)minutes,(int)seconds,(int)frames,(int)subframes);
-}
-
-
-void secondsToTimecodeString(F32SecondsImplicit current_time, std::string& tcstring)
-{
- microsecondsToTimecodeString(current_time, tcstring);
-}
-
-
+/**
+ * @file lltimer.cpp
+ * @brief Cross-platform objects for doing timing
+ *
+ * $LicenseInfo:firstyear=2000&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2010, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#include "linden_common.h"
+
+#include "lltimer.h"
+
+#include "u64.h"
+
+#include <chrono>
+#include <thread>
+
+#if LL_WINDOWS
+# include "llwin32headerslean.h"
+#elif LL_LINUX || LL_DARWIN
+# include <errno.h>
+# include <sys/time.h>
+#else
+# error "architecture not supported"
+#endif
+
+//
+// Locally used constants
+//
+const U64 SEC_TO_MICROSEC_U64 = 1000000;
+
+//---------------------------------------------------------------------------
+// Globals and statics
+//---------------------------------------------------------------------------
+
+S32 gUTCOffset = 0; // viewer's offset from server UTC, in seconds
+LLTimer* LLTimer::sTimer = NULL;
+
+
+//
+// Forward declarations
+//
+
+
+//---------------------------------------------------------------------------
+// Implementation
+//---------------------------------------------------------------------------
+
+#if LL_WINDOWS
+
+
+#if 0
+void ms_sleep(U32 ms)
+{
+ LL_PROFILE_ZONE_SCOPED;
+ using TimePoint = std::chrono::steady_clock::time_point;
+ auto resume_time = TimePoint::clock::now() + std::chrono::milliseconds(ms);
+ while (TimePoint::clock::now() < resume_time)
+ {
+ std::this_thread::yield(); //note: don't use LLThread::yield here to avoid yielding for too long
+ }
+}
+
+U32 micro_sleep(U64 us, U32 max_yields)
+{
+ // max_yields is unused; just fiddle with it to avoid warnings.
+ max_yields = 0;
+ ms_sleep((U32)(us / 1000));
+ return 0;
+}
+
+#else
+
+U32 micro_sleep(U64 us, U32 max_yields)
+{
+ LL_PROFILE_ZONE_SCOPED
+#if 0
+ LARGE_INTEGER ft;
+ ft.QuadPart = -static_cast<S64>(us * 10); // '-' using relative time
+
+ HANDLE timer = CreateWaitableTimer(NULL, true, NULL);
+ SetWaitableTimer(timer, &ft, 0, NULL, NULL, 0);
+ WaitForSingleObject(timer, INFINITE);
+ CloseHandle(timer);
+#else
+ Sleep(us / 1000);
+#endif
+
+ return 0;
+}
+
+void ms_sleep(U32 ms)
+{
+ LL_PROFILE_ZONE_SCOPED
+ micro_sleep(ms * 1000, 0);
+}
+
+#endif
+
+#elif LL_LINUX || LL_DARWIN
+static void _sleep_loop(struct timespec& thiswait)
+{
+ struct timespec nextwait;
+ bool sleep_more = false;
+
+ do {
+ int result = nanosleep(&thiswait, &nextwait);
+
+ // check if sleep was interrupted by a signal; unslept
+ // remainder was written back into 't' and we just nanosleep
+ // again.
+ sleep_more = (result == -1 && EINTR == errno);
+
+ if (sleep_more)
+ {
+ if ( nextwait.tv_sec > thiswait.tv_sec ||
+ (nextwait.tv_sec == thiswait.tv_sec &&
+ nextwait.tv_nsec >= thiswait.tv_nsec) )
+ {
+ // if the remaining time isn't actually going
+ // down then we're being shafted by low clock
+ // resolution - manually massage the sleep time
+ // downward.
+ if (nextwait.tv_nsec > 1000000) {
+ // lose 1ms
+ nextwait.tv_nsec -= 1000000;
+ } else {
+ if (nextwait.tv_sec == 0) {
+ // already so close to finished
+ sleep_more = false;
+ } else {
+ // lose up to 1ms
+ nextwait.tv_nsec = 0;
+ }
+ }
+ }
+ thiswait = nextwait;
+ }
+ } while (sleep_more);
+}
+
+U32 micro_sleep(U64 us, U32 max_yields)
+{
+ U64 start = get_clock_count();
+ // This is kernel dependent. Currently, our kernel generates software clock
+ // interrupts at 250 Hz (every 4,000 microseconds).
+ const S64 KERNEL_SLEEP_INTERVAL_US = 4000;
+
+ // Use signed arithmetic to discover whether a sleep is even necessary. If
+ // either 'us' or KERNEL_SLEEP_INTERVAL_US is unsigned, the compiler
+ // promotes the difference to unsigned. If 'us' is less than half
+ // KERNEL_SLEEP_INTERVAL_US, the unsigned difference will be hugely
+ // positive, resulting in a crazy long wait.
+ auto num_sleep_intervals = (S64(us) - (KERNEL_SLEEP_INTERVAL_US >> 1)) / KERNEL_SLEEP_INTERVAL_US;
+ if (num_sleep_intervals > 0)
+ {
+ U64 sleep_time = (num_sleep_intervals * KERNEL_SLEEP_INTERVAL_US) - (KERNEL_SLEEP_INTERVAL_US >> 1);
+ struct timespec thiswait;
+ thiswait.tv_sec = sleep_time / 1000000;
+ thiswait.tv_nsec = (sleep_time % 1000000) * 1000l;
+ _sleep_loop(thiswait);
+ }
+
+ U64 current_clock = get_clock_count();
+ U32 yields = 0;
+ while ( (yields < max_yields)
+ && (current_clock - start < us) )
+ {
+ sched_yield();
+ ++yields;
+ current_clock = get_clock_count();
+ }
+ return yields;
+}
+
+void ms_sleep(U32 ms)
+{
+ long mslong = ms; // tv_nsec is a long
+ struct timespec thiswait;
+ thiswait.tv_sec = ms / 1000;
+ thiswait.tv_nsec = (mslong % 1000) * 1000000l;
+ _sleep_loop(thiswait);
+}
+#else
+# error "architecture not supported"
+#endif
+
+//
+// CPU clock/other clock frequency and count functions
+//
+
+#if LL_WINDOWS
+U64 get_clock_count()
+{
+ static bool firstTime = true;
+ static U64 offset;
+ // ensures that callers to this function never have to deal with wrap
+
+ // QueryPerformanceCounter implementation
+ LARGE_INTEGER clock_count;
+ QueryPerformanceCounter(&clock_count);
+ if (firstTime) {
+ offset = clock_count.QuadPart;
+ firstTime = false;
+ }
+ return clock_count.QuadPart - offset;
+}
+
+F64 calc_clock_frequency()
+{
+ __int64 freq;
+ QueryPerformanceFrequency((LARGE_INTEGER *) &freq);
+ return (F64)freq;
+}
+#endif // LL_WINDOWS
+
+
+#if LL_LINUX || LL_DARWIN
+// Both Linux and Mac use gettimeofday for accurate time
+F64 calc_clock_frequency()
+{
+ return 1000000.0; // microseconds, so 1 MHz.
+}
+
+U64 get_clock_count()
+{
+ // Linux clocks are in microseconds
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ return tv.tv_sec*SEC_TO_MICROSEC_U64 + tv.tv_usec;
+}
+#endif
+
+
+TimerInfo::TimerInfo()
+: mClockFrequency(0.0),
+ mTotalTimeClockCount(0),
+ mLastTotalTimeClockCount(0)
+{}
+
+void TimerInfo::update()
+{
+ mClockFrequency = calc_clock_frequency();
+ mClockFrequencyInv = 1.0/mClockFrequency;
+ mClocksToMicroseconds = mClockFrequencyInv;
+}
+
+TimerInfo& get_timer_info()
+{
+ static TimerInfo sTimerInfo;
+ return sTimerInfo;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+// returns a U64 number that represents the number of
+// microseconds since the Unix epoch - Jan 1, 1970
+U64MicrosecondsImplicit totalTime()
+{
+ U64 current_clock_count = get_clock_count();
+ if (!get_timer_info().mTotalTimeClockCount || get_timer_info().mClocksToMicroseconds.value() == 0)
+ {
+ get_timer_info().update();
+ get_timer_info().mTotalTimeClockCount = current_clock_count;
+
+#if LL_WINDOWS
+ // Sync us up with local time (even though we PROBABLY don't need to, this is how it was implemented)
+ // Unix platforms use gettimeofday so they are synced, although this probably isn't a good assumption to
+ // make in the future.
+
+ get_timer_info().mTotalTimeClockCount = (U64)(time(NULL) * get_timer_info().mClockFrequency);
+#endif
+
+ // Update the last clock count
+ get_timer_info().mLastTotalTimeClockCount = current_clock_count;
+ }
+ else
+ {
+ if (current_clock_count >= get_timer_info().mLastTotalTimeClockCount)
+ {
+ // No wrapping, we're all okay.
+ get_timer_info().mTotalTimeClockCount += current_clock_count - get_timer_info().mLastTotalTimeClockCount;
+ }
+ else
+ {
+ // We've wrapped. Compensate correctly
+ get_timer_info().mTotalTimeClockCount += (0xFFFFFFFFFFFFFFFFULL - get_timer_info().mLastTotalTimeClockCount) + current_clock_count;
+ }
+
+ // Update the last clock count
+ get_timer_info().mLastTotalTimeClockCount = current_clock_count;
+ }
+
+ // Return the total clock tick count in microseconds.
+ U64Microseconds time(get_timer_info().mTotalTimeClockCount*get_timer_info().mClocksToMicroseconds);
+ return time;
+}
+
+
+///////////////////////////////////////////////////////////////////////////////
+
+LLTimer::LLTimer()
+{
+ if (!get_timer_info().mClockFrequency)
+ {
+ get_timer_info().update();
+ }
+
+ mStarted = true;
+ reset();
+}
+
+LLTimer::~LLTimer()
+{}
+
+// static
+void LLTimer::initClass()
+{
+ if (!sTimer) sTimer = new LLTimer;
+}
+
+// static
+void LLTimer::cleanupClass()
+{
+ delete sTimer; sTimer = NULL;
+}
+
+// static
+U64MicrosecondsImplicit LLTimer::getTotalTime()
+{
+ // simply call into the implementation function.
+ U64MicrosecondsImplicit total_time = totalTime();
+ return total_time;
+}
+
+// static
+F64SecondsImplicit LLTimer::getTotalSeconds()
+{
+ return F64Microseconds(U64_to_F64(getTotalTime()));
+}
+
+void LLTimer::reset()
+{
+ mLastClockCount = get_clock_count();
+ mExpirationTicks = 0;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+U64 LLTimer::getCurrentClockCount()
+{
+ return get_clock_count();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void LLTimer::setLastClockCount(U64 current_count)
+{
+ mLastClockCount = current_count;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+static
+U64 getElapsedTimeAndUpdate(U64& lastClockCount)
+{
+ U64 current_clock_count = get_clock_count();
+ U64 result;
+
+ if (current_clock_count >= lastClockCount)
+ {
+ result = current_clock_count - lastClockCount;
+ }
+ else
+ {
+ // time has gone backward
+ result = 0;
+ }
+
+ lastClockCount = current_clock_count;
+
+ return result;
+}
+
+
+F64SecondsImplicit LLTimer::getElapsedTimeF64() const
+{
+ U64 last = mLastClockCount;
+ return (F64)getElapsedTimeAndUpdate(last) * get_timer_info().mClockFrequencyInv;
+}
+
+F32SecondsImplicit LLTimer::getElapsedTimeF32() const
+{
+ return (F32)getElapsedTimeF64();
+}
+
+F64SecondsImplicit LLTimer::getElapsedTimeAndResetF64()
+{
+ return (F64)getElapsedTimeAndUpdate(mLastClockCount) * get_timer_info().mClockFrequencyInv;
+}
+
+F32SecondsImplicit LLTimer::getElapsedTimeAndResetF32()
+{
+ return (F32)getElapsedTimeAndResetF64();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void LLTimer::setTimerExpirySec(F32SecondsImplicit expiration)
+{
+ mExpirationTicks = get_clock_count()
+ + (U64)((F32)(expiration * get_timer_info().mClockFrequency.value()));
+}
+
+F32SecondsImplicit LLTimer::getRemainingTimeF32() const
+{
+ U64 cur_ticks = get_clock_count();
+ if (cur_ticks > mExpirationTicks)
+ {
+ return 0.0f;
+ }
+ return F32((mExpirationTicks - cur_ticks) * get_timer_info().mClockFrequencyInv);
+}
+
+
+bool LLTimer::checkExpirationAndReset(F32 expiration)
+{
+ U64 cur_ticks = get_clock_count();
+ if (cur_ticks < mExpirationTicks)
+ {
+ return false;
+ }
+
+ mExpirationTicks = cur_ticks
+ + (U64)((F32)(expiration * get_timer_info().mClockFrequency));
+ return true;
+}
+
+
+bool LLTimer::hasExpired() const
+{
+ return get_clock_count() >= mExpirationTicks;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+bool LLTimer::knownBadTimer()
+{
+ bool failed = false;
+
+#if LL_WINDOWS
+ WCHAR bad_pci_list[][10] = {L"1039:0530",
+ L"1039:0620",
+ L"10B9:0533",
+ L"10B9:1533",
+ L"1106:0596",
+ L"1106:0686",
+ L"1166:004F",
+ L"1166:0050",
+ L"8086:7110",
+ L"\0"
+ };
+
+ HKEY hKey = NULL;
+ LONG nResult = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,L"SYSTEM\\CurrentControlSet\\Enum\\PCI", 0,
+ KEY_EXECUTE | KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS, &hKey);
+
+ WCHAR name[1024];
+ DWORD name_len = 1024;
+ FILETIME scrap;
+
+ S32 key_num = 0;
+ WCHAR pci_id[10];
+
+ wcscpy(pci_id, L"0000:0000"); /*Flawfinder: ignore*/
+
+ while (nResult == ERROR_SUCCESS)
+ {
+ nResult = ::RegEnumKeyEx(hKey, key_num++, name, &name_len, NULL, NULL, NULL, &scrap);
+
+ if (nResult == ERROR_SUCCESS)
+ {
+ memcpy(&pci_id[0],&name[4],4); /* Flawfinder: ignore */
+ memcpy(&pci_id[5],&name[13],4); /* Flawfinder: ignore */
+
+ for (S32 check = 0; bad_pci_list[check][0]; check++)
+ {
+ if (!wcscmp(pci_id, bad_pci_list[check]))
+ {
+// LL_WARNS() << "unreliable PCI chipset found!! " << pci_id << endl;
+ failed = true;
+ break;
+ }
+ }
+// llinfo << "PCI chipset found: " << pci_id << endl;
+ name_len = 1024;
+ }
+ }
+#endif
+ return(failed);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//
+// NON-MEMBER FUNCTIONS
+//
+///////////////////////////////////////////////////////////////////////////////
+
+time_t time_corrected()
+{
+ return time(NULL) + gUTCOffset;
+}
+
+
+// Is the current computer (in its current time zone)
+// observing daylight savings time?
+bool is_daylight_savings()
+{
+ time_t now = time(NULL);
+
+ // Internal buffer to local server time
+ struct tm* internal_time = localtime(&now);
+
+ // tm_isdst > 0 => daylight savings
+ // tm_isdst = 0 => not daylight savings
+ // tm_isdst < 0 => can't tell
+ return (internal_time->tm_isdst > 0);
+}
+
+
+struct tm* utc_to_pacific_time(time_t utc_time, bool pacific_daylight_time)
+{
+ S32Hours pacific_offset_hours;
+ if (pacific_daylight_time)
+ {
+ pacific_offset_hours = S32Hours(7);
+ }
+ else
+ {
+ pacific_offset_hours = S32Hours(8);
+ }
+
+ // We subtract off the PST/PDT offset _before_ getting
+ // "UTC" time, because this will handle wrapping around
+ // for 5 AM UTC -> 10 PM PDT of the previous day.
+ utc_time -= S32SecondsImplicit(pacific_offset_hours);
+
+ // Internal buffer to PST/PDT (see above)
+ struct tm* internal_time = gmtime(&utc_time);
+
+ /*
+ // Don't do this, this won't correctly tell you if daylight savings is active in CA or not.
+ if (pacific_daylight_time)
+ {
+ internal_time->tm_isdst = 1;
+ }
+ */
+
+ return internal_time;
+}
+
+
+void microsecondsToTimecodeString(U64MicrosecondsImplicit current_time, std::string& tcstring)
+{
+ U64 hours;
+ U64 minutes;
+ U64 seconds;
+ U64 frames;
+ U64 subframes;
+
+ hours = current_time / (U64)3600000000ul;
+ minutes = current_time / (U64)60000000;
+ minutes %= 60;
+ seconds = current_time / (U64)1000000;
+ seconds %= 60;
+ frames = current_time / (U64)41667;
+ frames %= 24;
+ subframes = current_time / (U64)42;
+ subframes %= 100;
+
+ tcstring = llformat("%3.3d:%2.2d:%2.2d:%2.2d.%2.2d",(int)hours,(int)minutes,(int)seconds,(int)frames,(int)subframes);
+}
+
+
+void secondsToTimecodeString(F32SecondsImplicit current_time, std::string& tcstring)
+{
+ microsecondsToTimecodeString(current_time, tcstring);
+}
+
+