summaryrefslogtreecommitdiff
path: root/indra/llcommon/llthreadsafequeue.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llcommon/llthreadsafequeue.h')
-rw-r--r--indra/llcommon/llthreadsafequeue.h554
1 files changed, 414 insertions, 140 deletions
diff --git a/indra/llcommon/llthreadsafequeue.h b/indra/llcommon/llthreadsafequeue.h
index 26e0d71d31..68d79cdd12 100644
--- a/indra/llcommon/llthreadsafequeue.h
+++ b/indra/llcommon/llthreadsafequeue.h
@@ -1,6 +1,6 @@
/**
* @file llthreadsafequeue.h
- * @brief Base classes for thread, mutex and condition handling.
+ * @brief Queue protected with mutexes for cross-thread use
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
@@ -27,16 +27,19 @@
#ifndef LL_LLTHREADSAFEQUEUE_H
#define LL_LLTHREADSAFEQUEUE_H
-#include "llexception.h"
-#include <deque>
-#include <string>
-#include <chrono>
-#include "mutex.h"
#include "llcoros.h"
#include LLCOROS_MUTEX_HEADER
#include <boost/fiber/timed_mutex.hpp>
#include LLCOROS_CONDVAR_HEADER
+#include "llexception.h"
+#include "mutex.h"
+#include <chrono>
+#include <queue>
+#include <string>
+/*****************************************************************************
+* LLThreadSafeQueue
+*****************************************************************************/
//
// A general queue exception.
//
@@ -66,70 +69,116 @@ public:
}
};
-//
-// Implements a thread safe FIFO.
-//
-template<typename ElementT>
+/**
+ * Implements a thread safe FIFO.
+ */
+// Let the default std::queue default to underlying std::deque. Override if
+// desired.
+template<typename ElementT, typename QueueT=std::queue<ElementT>>
class LLThreadSafeQueue
{
public:
typedef ElementT value_type;
-
- // If the pool is set to NULL one will be allocated and managed by this
- // queue.
+
+ // Limiting the number of pending items prevents unbounded growth of the
+ // underlying queue.
LLThreadSafeQueue(U32 capacity = 1024);
-
- // Add an element to the front of queue (will block if the queue has
- // reached capacity).
+ virtual ~LLThreadSafeQueue() {}
+
+ // Add an element to the queue (will block if the queue has reached
+ // capacity).
//
// This call will raise an interrupt error if the queue is closed while
// the caller is blocked.
- void pushFront(ElementT const & element);
-
- // Try to add an element to the front of queue without blocking. Returns
+ template <typename T>
+ void push(T&& element);
+ // legacy name
+ void pushFront(ElementT const & element) { return push(element); }
+
+ // Add an element to the queue (will block if the queue has reached
+ // capacity). Return false if the queue is closed before push is possible.
+ template <typename T>
+ bool pushIfOpen(T&& element);
+
+ // Try to add an element to the queue without blocking. Returns
// true only if the element was actually added.
- bool tryPushFront(ElementT const & element);
+ template <typename T>
+ bool tryPush(T&& element);
+ // legacy name
+ bool tryPushFront(ElementT const & element) { return tryPush(element); }
- // Try to add an element to the front of queue, blocking if full but with
- // timeout. Returns true if the element was added.
+ // Try to add an element to the queue, blocking if full but with timeout
+ // after specified duration. Returns true if the element was added.
// There are potentially two different timeouts involved: how long to try
// to lock the mutex, versus how long to wait for the queue to stop being
// full. Careful settings for each timeout might be orders of magnitude
// apart. However, this method conflates them.
+ template <typename Rep, typename Period, typename T>
+ bool tryPushFor(const std::chrono::duration<Rep, Period>& timeout,
+ T&& element);
+ // legacy name
template <typename Rep, typename Period>
bool tryPushFrontFor(const std::chrono::duration<Rep, Period>& timeout,
- ElementT const & element);
+ ElementT const & element) { return tryPushFor(timeout, element); }
+
+ // Try to add an element to the queue, blocking if full but with
+ // timeout at specified time_point. Returns true if the element was added.
+ template <typename Clock, typename Duration, typename T>
+ bool tryPushUntil(const std::chrono::time_point<Clock, Duration>& until,
+ T&& element);
+ // no legacy name because this is a newer method
- // Pop the element at the end of the queue (will block if the queue is
+ // Pop the element at the head of the queue (will block if the queue is
// empty).
//
// This call will raise an interrupt error if the queue is closed while
// the caller is blocked.
- ElementT popBack(void);
-
- // Pop an element from the end of the queue if there is one available.
+ ElementT pop(void);
+ // legacy name
+ ElementT popBack(void) { return pop(); }
+
+ // Pop an element from the head of the queue if there is one available.
// Returns true only if an element was popped.
- bool tryPopBack(ElementT & element);
-
+ bool tryPop(ElementT & element);
+ // legacy name
+ bool tryPopBack(ElementT & element) { return tryPop(element); }
+
+ // Pop the element at the head of the queue, blocking if empty, with
+ // timeout after specified duration. Returns true if an element was popped.
+ template <typename Rep, typename Period>
+ bool tryPopFor(const std::chrono::duration<Rep, Period>& timeout, ElementT& element);
+ // no legacy name because this is a newer method
+
+ // Pop the element at the head of the queue, blocking if empty, with
+ // timeout at specified time_point. Returns true if an element was popped.
+ template <typename Clock, typename Duration>
+ bool tryPopUntil(const std::chrono::time_point<Clock, Duration>& until,
+ ElementT& element);
+ // no legacy name because this is a newer method
+
// Returns the size of the queue.
size_t size();
+ //Returns the capacity of the queue.
+ U32 capacity() { return mCapacity; }
+
// closes the queue:
- // - every subsequent pushFront() call will throw LLThreadSafeQueueInterrupt
- // - every subsequent tryPushFront() call will return false
- // - popBack() calls will return normally until the queue is drained, then
- // every subsequent popBack() will throw LLThreadSafeQueueInterrupt
- // - tryPopBack() calls will return normally until the queue is drained,
- // then every subsequent tryPopBack() call will return false
+ // - every subsequent push() call will throw LLThreadSafeQueueInterrupt
+ // - every subsequent tryPush() call will return false
+ // - pop() calls will return normally until the queue is drained, then
+ // every subsequent pop() will throw LLThreadSafeQueueInterrupt
+ // - tryPop() calls will return normally until the queue is drained,
+ // then every subsequent tryPop() call will return false
void close();
- // detect closed state
+ // producer end: are we prevented from pushing any additional items?
bool isClosed();
- // inverse of isClosed()
- explicit operator bool();
+ // consumer end: are we done, is the queue entirely drained?
+ bool done();
-private:
- std::deque< ElementT > mStorage;
+protected:
+ typedef QueueT queue_type;
+ QueueT mStorage;
U32 mCapacity;
bool mClosed;
@@ -137,37 +186,154 @@ private:
typedef std::unique_lock<decltype(mLock)> lock_t;
boost::fibers::condition_variable_any mCapacityCond;
boost::fibers::condition_variable_any mEmptyCond;
-};
-// LLThreadSafeQueue
-//-----------------------------------------------------------------------------
+ enum pop_result { EMPTY, DONE, WAITING, POPPED };
+ // implementation logic, suitable for passing to tryLockUntil()
+ template <typename Clock, typename Duration>
+ pop_result tryPopUntil_(lock_t& lock,
+ const std::chrono::time_point<Clock, Duration>& until,
+ ElementT& element);
+ // if we're able to lock immediately, do so and run the passed callable,
+ // which must accept lock_t& and return bool
+ template <typename CALLABLE>
+ bool tryLock(CALLABLE&& callable);
+ // if we're able to lock before the passed time_point, do so and run the
+ // passed callable, which must accept lock_t& and return bool
+ template <typename Clock, typename Duration, typename CALLABLE>
+ bool tryLockUntil(const std::chrono::time_point<Clock, Duration>& until,
+ CALLABLE&& callable);
+ // while lock is locked, really push the passed element, if we can
+ template <typename T>
+ bool push_(lock_t& lock, T&& element);
+ // while lock is locked, really pop the head element, if we can
+ pop_result pop_(lock_t& lock, ElementT& element);
+ // Is the current head element ready to pop? We say yes; subclass can
+ // override as needed.
+ virtual bool canPop(const ElementT& head) const { return true; }
+};
-template<typename ElementT>
-LLThreadSafeQueue<ElementT>::LLThreadSafeQueue(U32 capacity) :
+/*****************************************************************************
+* PriorityQueueAdapter
+*****************************************************************************/
+namespace LL
+{
+ /**
+ * std::priority_queue's API is almost like std::queue, intentionally of
+ * course, but you must access the element about to pop() as top() rather
+ * than as front(). Make an adapter for use with LLThreadSafeQueue.
+ */
+ template <typename T, typename Container=std::vector<T>,
+ typename Compare=std::less<typename Container::value_type>>
+ class PriorityQueueAdapter
+ {
+ public:
+ // publish all the same types
+ typedef std::priority_queue<T, Container, Compare> queue_type;
+ typedef typename queue_type::container_type container_type;
+ typedef typename queue_type::value_compare value_compare;
+ typedef typename queue_type::value_type value_type;
+ typedef typename queue_type::size_type size_type;
+ typedef typename queue_type::reference reference;
+ typedef typename queue_type::const_reference const_reference;
+
+ // Although std::queue defines both const and non-const front()
+ // methods, std::priority_queue defines only const top().
+ const_reference front() const { return mQ.top(); }
+ // std::priority_queue has no equivalent to back(), so it's good that
+ // LLThreadSafeQueue doesn't use it.
+
+ // All the rest of these merely forward to the corresponding
+ // queue_type methods.
+ bool empty() const { return mQ.empty(); }
+ size_type size() const { return mQ.size(); }
+ void push(const value_type& value) { mQ.push(value); }
+ void push(value_type&& value) { mQ.push(std::move(value)); }
+ template <typename... Args>
+ void emplace(Args&&... args) { mQ.emplace(std::forward<Args>(args)...); }
+ void pop() { mQ.pop(); }
+
+ private:
+ queue_type mQ;
+ };
+} // namespace LL
+
+
+/*****************************************************************************
+* LLThreadSafeQueue implementation
+*****************************************************************************/
+template<typename ElementT, typename QueueT>
+LLThreadSafeQueue<ElementT, QueueT>::LLThreadSafeQueue(U32 capacity) :
mCapacity(capacity),
mClosed(false)
{
}
-template<typename ElementT>
-void LLThreadSafeQueue<ElementT>::pushFront(ElementT const & element)
+// if we're able to lock immediately, do so and run the passed callable, which
+// must accept lock_t& and return bool
+template <typename ElementT, typename QueueT>
+template <typename CALLABLE>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryLock(CALLABLE&& callable)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ lock_t lock1(mLock, std::defer_lock);
+ if (!lock1.try_lock())
+ return false;
+
+ return std::forward<CALLABLE>(callable)(lock1);
+}
+
+
+// if we're able to lock before the passed time_point, do so and run the
+// passed callable, which must accept lock_t& and return bool
+template <typename ElementT, typename QueueT>
+template <typename Clock, typename Duration, typename CALLABLE>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryLockUntil(
+ const std::chrono::time_point<Clock, Duration>& until,
+ CALLABLE&& callable)
{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ lock_t lock1(mLock, std::defer_lock);
+ if (!lock1.try_lock_until(until))
+ return false;
+
+ return std::forward<CALLABLE>(callable)(lock1);
+}
+
+
+// while lock is locked, really push the passed element, if we can
+template <typename ElementT, typename QueueT>
+template <typename T>
+bool LLThreadSafeQueue<ElementT, QueueT>::push_(lock_t& lock, T&& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ if (mStorage.size() >= mCapacity)
+ return false;
+
+ mStorage.push(std::forward<T>(element));
+ lock.unlock();
+ // now that we've pushed, if somebody's been waiting to pop, signal them
+ mEmptyCond.notify_one();
+ return true;
+}
+
+
+template <typename ElementT, typename QueueT>
+template <typename T>
+bool LLThreadSafeQueue<ElementT, QueueT>::pushIfOpen(T&& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
lock_t lock1(mLock);
while (true)
{
+ // On the producer side, it doesn't matter whether the queue has been
+ // drained or not: the moment either end calls close(), further push()
+ // operations will fail.
if (mClosed)
- {
- LLTHROW(LLThreadSafeQueueInterrupt());
- }
+ return false;
- if (mStorage.size() < mCapacity)
- {
- mStorage.push_front(element);
- lock1.unlock();
- mEmptyCond.notify_one();
- return;
- }
+ if (push_(lock1, std::forward<T>(element)))
+ return true;
// Storage Full. Wait for signal.
mCapacityCond.wait(lock1);
@@ -175,142 +341,250 @@ void LLThreadSafeQueue<ElementT>::pushFront(ElementT const & element)
}
-template <typename ElementT>
-template <typename Rep, typename Period>
-bool LLThreadSafeQueue<ElementT>::tryPushFrontFor(const std::chrono::duration<Rep, Period>& timeout,
- ElementT const & element)
+template <typename ElementT, typename QueueT>
+template<typename T>
+void LLThreadSafeQueue<ElementT, QueueT>::push(T&& element)
{
- // Convert duration to time_point: passing the same timeout duration to
- // each of multiple calls is wrong.
- auto endpoint = std::chrono::steady_clock::now() + timeout;
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ if (! pushIfOpen(std::forward<T>(element)))
+ {
+ LLTHROW(LLThreadSafeQueueInterrupt());
+ }
+}
- lock_t lock1(mLock, std::defer_lock);
- if (!lock1.try_lock_until(endpoint))
- return false;
- while (true)
- {
- if (mClosed)
+template<typename ElementT, typename QueueT>
+template<typename T>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryPush(T&& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ return tryLock(
+ [this, element=std::move(element)](lock_t& lock)
{
- return false;
- }
+ if (mClosed)
+ return false;
+ return push_(lock, std::move(element));
+ });
+}
- if (mStorage.size() < mCapacity)
- {
- mStorage.push_front(element);
- lock1.unlock();
- mEmptyCond.notify_one();
- return true;
- }
- // Storage Full. Wait for signal.
- if (LLCoros::cv_status::timeout == mCapacityCond.wait_until(lock1, endpoint))
- {
- // timed out -- formally we might recheck both conditions above
- return false;
- }
- // If we didn't time out, we were notified for some reason. Loop back
- // to check.
- }
+template <typename ElementT, typename QueueT>
+template <typename Rep, typename Period, typename T>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryPushFor(
+ const std::chrono::duration<Rep, Period>& timeout,
+ T&& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ // Convert duration to time_point: passing the same timeout duration to
+ // each of multiple calls is wrong.
+ return tryPushUntil(std::chrono::steady_clock::now() + timeout,
+ std::forward<T>(element));
}
-template<typename ElementT>
-bool LLThreadSafeQueue<ElementT>::tryPushFront(ElementT const & element)
+template <typename ElementT, typename QueueT>
+template <typename Clock, typename Duration, typename T>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryPushUntil(
+ const std::chrono::time_point<Clock, Duration>& until,
+ T&& element)
{
- lock_t lock1(mLock, std::defer_lock);
- if (!lock1.try_lock())
- return false;
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ return tryLockUntil(
+ until,
+ [this, until, element=std::move(element)](lock_t& lock)
+ {
+ while (true)
+ {
+ if (mClosed)
+ {
+ return false;
+ }
+
+ if (push_(lock, std::move(element)))
+ return true;
+
+ // Storage Full. Wait for signal.
+ if (LLCoros::cv_status::timeout == mCapacityCond.wait_until(lock, until))
+ {
+ // timed out -- formally we might recheck both conditions above
+ return false;
+ }
+ // If we didn't time out, we were notified for some reason. Loop back
+ // to check.
+ }
+ });
+}
- if (mClosed)
- return false;
- if (mStorage.size() >= mCapacity)
- return false;
+// while lock is locked, really pop the head element, if we can
+template <typename ElementT, typename QueueT>
+typename LLThreadSafeQueue<ElementT, QueueT>::pop_result
+LLThreadSafeQueue<ElementT, QueueT>::pop_(lock_t& lock, ElementT& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ // If mStorage is empty, there's no head element.
+ if (mStorage.empty())
+ return mClosed? DONE : EMPTY;
- mStorage.push_front(element);
- lock1.unlock();
- mEmptyCond.notify_one();
- return true;
+ // If there's a head element, pass it to canPop() to see if it's ready to pop.
+ if (! canPop(mStorage.front()))
+ return WAITING;
+
+ // std::queue::front() is the element about to pop()
+ element = mStorage.front();
+ mStorage.pop();
+ lock.unlock();
+ // now that we've popped, if somebody's been waiting to push, signal them
+ mCapacityCond.notify_one();
+ return POPPED;
}
-template<typename ElementT>
-ElementT LLThreadSafeQueue<ElementT>::popBack(void)
+template<typename ElementT, typename QueueT>
+ElementT LLThreadSafeQueue<ElementT, QueueT>::pop(void)
{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
lock_t lock1(mLock);
+ ElementT value;
while (true)
{
- if (!mStorage.empty())
- {
- ElementT value = mStorage.back();
- mStorage.pop_back();
- lock1.unlock();
- mCapacityCond.notify_one();
- return value;
- }
-
- if (mClosed)
+ // On the consumer side, we always try to pop before checking mClosed
+ // so we can finish draining the queue.
+ pop_result popped = pop_(lock1, value);
+ if (popped == POPPED)
+ return std::move(value);
+
+ // Once the queue is DONE, there will never be any more coming.
+ if (popped == DONE)
{
LLTHROW(LLThreadSafeQueueInterrupt());
}
- // Storage empty. Wait for signal.
+ // If we didn't pop because WAITING, i.e. canPop() returned false,
+ // then even if the producer end has been closed, there's still at
+ // least one item to drain: wait for it. Or we might be EMPTY, with
+ // the queue still open. Either way, wait for signal.
mEmptyCond.wait(lock1);
}
}
-template<typename ElementT>
-bool LLThreadSafeQueue<ElementT>::tryPopBack(ElementT & element)
+template<typename ElementT, typename QueueT>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryPop(ElementT & element)
{
- lock_t lock1(mLock, std::defer_lock);
- if (!lock1.try_lock())
- return false;
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ return tryLock(
+ [this, &element](lock_t& lock)
+ {
+ // conflate EMPTY, DONE, WAITING: tryPop() behavior when the queue
+ // is closed is implemented by simple inability to push any new
+ // elements
+ return pop_(lock, element) == POPPED;
+ });
+}
- // no need to check mClosed: tryPopBack() behavior when the queue is
- // closed is implemented by simple inability to push any new elements
- if (mStorage.empty())
- return false;
- element = mStorage.back();
- mStorage.pop_back();
- lock1.unlock();
- mCapacityCond.notify_one();
- return true;
+template <typename ElementT, typename QueueT>
+template <typename Rep, typename Period>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryPopFor(
+ const std::chrono::duration<Rep, Period>& timeout,
+ ElementT& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ // Convert duration to time_point: passing the same timeout duration to
+ // each of multiple calls is wrong.
+ return tryPopUntil(std::chrono::steady_clock::now() + timeout, element);
}
-template<typename ElementT>
-size_t LLThreadSafeQueue<ElementT>::size(void)
+template <typename ElementT, typename QueueT>
+template <typename Clock, typename Duration>
+bool LLThreadSafeQueue<ElementT, QueueT>::tryPopUntil(
+ const std::chrono::time_point<Clock, Duration>& until,
+ ElementT& element)
{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ return tryLockUntil(
+ until,
+ [this, until, &element](lock_t& lock)
+ {
+ // conflate EMPTY, DONE, WAITING
+ return tryPopUntil_(lock, until, element) == POPPED;
+ });
+}
+
+
+// body of tryPopUntil(), called once we have the lock
+template <typename ElementT, typename QueueT>
+template <typename Clock, typename Duration>
+typename LLThreadSafeQueue<ElementT, QueueT>::pop_result
+LLThreadSafeQueue<ElementT, QueueT>::tryPopUntil_(
+ lock_t& lock,
+ const std::chrono::time_point<Clock, Duration>& until,
+ ElementT& element)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ while (true)
+ {
+ pop_result popped = pop_(lock, element);
+ if (popped == POPPED || popped == DONE)
+ {
+ // If we succeeded, great! If we've drained the last item, so be
+ // it. Either way, break the loop and tell caller.
+ return popped;
+ }
+
+ // EMPTY or WAITING: wait for signal.
+ if (LLCoros::cv_status::timeout == mEmptyCond.wait_until(lock, until))
+ {
+ // timed out -- formally we might recheck
+ // as it is, break loop
+ return popped;
+ }
+ // If we didn't time out, we were notified for some reason. Loop back
+ // to check.
+ }
+}
+
+
+template<typename ElementT, typename QueueT>
+size_t LLThreadSafeQueue<ElementT, QueueT>::size(void)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
lock_t lock(mLock);
return mStorage.size();
}
-template<typename ElementT>
-void LLThreadSafeQueue<ElementT>::close()
+
+template<typename ElementT, typename QueueT>
+void LLThreadSafeQueue<ElementT, QueueT>::close()
{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
lock_t lock(mLock);
mClosed = true;
lock.unlock();
- // wake up any blocked popBack() calls
+ // wake up any blocked pop() calls
mEmptyCond.notify_all();
- // wake up any blocked pushFront() calls
+ // wake up any blocked push() calls
mCapacityCond.notify_all();
}
-template<typename ElementT>
-bool LLThreadSafeQueue<ElementT>::isClosed()
+
+template<typename ElementT, typename QueueT>
+bool LLThreadSafeQueue<ElementT, QueueT>::isClosed()
{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
lock_t lock(mLock);
- return mClosed && mStorage.size() == 0;
+ return mClosed;
}
-template<typename ElementT>
-LLThreadSafeQueue<ElementT>::operator bool()
+
+template<typename ElementT, typename QueueT>
+bool LLThreadSafeQueue<ElementT, QueueT>::done()
{
- return ! isClosed();
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD;
+ lock_t lock(mLock);
+ return mClosed && mStorage.empty();
}
#endif