diff options
| author | Dave Parks <davep@lindenlab.com> | 2022-05-19 22:24:41 -0500 | 
|---|---|---|
| committer | Dave Parks <davep@lindenlab.com> | 2022-05-19 22:24:41 -0500 | 
| commit | 3564b24e2a90e0772c37185cc5dcedca29d62ab8 (patch) | |
| tree | 9c0e7fa9d747d7bca7b25352bf8e28c875163e77 /indra/newview/app_settings/shaders/class2 | |
| parent | 02fb1bd6103cad5538fc170e015f4329f3545542 (diff) | |
SL-17286 Reflection probe alpha/fullbright support.
Diffstat (limited to 'indra/newview/app_settings/shaders/class2')
| -rw-r--r-- | indra/newview/app_settings/shaders/class2/deferred/reflectionProbeF.glsl | 476 | ||||
| -rw-r--r-- | indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl | 436 | 
2 files changed, 494 insertions, 418 deletions
| diff --git a/indra/newview/app_settings/shaders/class2/deferred/reflectionProbeF.glsl b/indra/newview/app_settings/shaders/class2/deferred/reflectionProbeF.glsl new file mode 100644 index 0000000000..8c1323ba1a --- /dev/null +++ b/indra/newview/app_settings/shaders/class2/deferred/reflectionProbeF.glsl @@ -0,0 +1,476 @@ +/** + * @file class2/deferred/reflectionProbeF.glsl + * + * $LicenseInfo:firstyear=2022&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2022, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA + * $/LicenseInfo$ + */ + +#extension GL_ARB_shader_texture_lod : enable + +#define FLT_MAX 3.402823466e+38 + +#define REFMAP_COUNT 256 +#define REF_SAMPLE_COUNT 64 //maximum number of samples to consider + +uniform samplerCubeArray   reflectionProbes; + +layout (std140, binding = 1) uniform ReflectionProbes +{ +    // list of OBBs for user override probes +    // box is a set of 3 planes outward facing planes and the depth of the box along that plane +    // for each box refBox[i]... +    /// box[0..2] - plane 0 .. 2 in [A,B,C,D] notation +    //  box[3][0..2] - plane thickness +    mat4 refBox[REFMAP_COUNT]; +    // list of bounding spheres for reflection probes sorted by distance to camera (closest first) +    vec4 refSphere[REFMAP_COUNT]; +    // index  of cube map in reflectionProbes for a corresponding reflection probe +    // e.g. cube map channel of refSphere[2] is stored in refIndex[2] +    // refIndex.x - cubemap channel in reflectionProbes +    // refIndex.y - index in refNeighbor of neighbor list (index is ivec4 index, not int index) +    // refIndex.z - number of neighbors +    // refIndex.w - priority, if negative, this probe has a box influence +    ivec4 refIndex[REFMAP_COUNT]; + +    // neighbor list data (refSphere indices, not cubemap array layer) +    ivec4 refNeighbor[1024]; + +    // number of reflection probes present in refSphere +    int refmapCount; + +    // intensity of ambient light from reflection probes +    float reflectionAmbiance; +}; + +// Inputs +uniform mat3 env_mat; + +// list of probeIndexes shader will actually use after "getRefIndex" is called +// (stores refIndex/refSphere indices, NOT rerflectionProbes layer) +int probeIndex[REF_SAMPLE_COUNT]; + +// number of probes stored in probeIndex +int probeInfluences = 0; + +bool isAbove(vec3 pos, vec4 plane) +{ +    return (dot(plane.xyz, pos) + plane.w) > 0; +} + +// return true if probe at index i influences position pos +bool shouldSampleProbe(int i, vec3 pos) +{ +    if (refIndex[i].w < 0) +    { +        vec4 v = refBox[i] * vec4(pos, 1.0); +        if (abs(v.x) > 1 ||  +            abs(v.y) > 1 || +            abs(v.z) > 1) +        { +            return false; +        } +    } +    else +    { +        vec3 delta = pos.xyz - refSphere[i].xyz; +        float d = dot(delta, delta); +        float r2 = refSphere[i].w; +        r2 *= r2; + +        if (d > r2) +        { //outside bounding sphere +            return false; +        } +    } + +    return true; +} + +// call before sampleRef +// populate "probeIndex" with N probe indices that influence pos where N is REF_SAMPLE_COUNT +// overall algorithm --  +void preProbeSample(vec3 pos) +{ +    // TODO: make some sort of structure that reduces the number of distance checks + +    for (int i = 0; i < refmapCount; ++i) +    { +        // found an influencing probe +        if (shouldSampleProbe(i, pos)) +        { +            probeIndex[probeInfluences] = i; +            ++probeInfluences; + +            int neighborIdx = refIndex[i].y; +            if (neighborIdx != -1) +            { +                int neighborCount = min(refIndex[i].z, REF_SAMPLE_COUNT-1); + +                int count = 0; +                while (count < neighborCount) +                { +                    // check up to REF_SAMPLE_COUNT-1 neighbors (neighborIdx is ivec4 index) + +                    int idx = refNeighbor[neighborIdx].x; +                    if (shouldSampleProbe(idx, pos)) +                    { +                        probeIndex[probeInfluences++] = idx; +                        if (probeInfluences == REF_SAMPLE_COUNT) +                        { +                            return; +                        } +                    } +                    count++; +                    if (count == neighborCount) +                    { +                        return; +                    } + +                    idx = refNeighbor[neighborIdx].y; +                    if (shouldSampleProbe(idx, pos)) +                    { +                        probeIndex[probeInfluences++] = idx; +                        if (probeInfluences == REF_SAMPLE_COUNT) +                        { +                            return; +                        } +                    } +                    count++; +                    if (count == neighborCount) +                    { +                        return; +                    } + +                    idx = refNeighbor[neighborIdx].z; +                    if (shouldSampleProbe(idx, pos)) +                    { +                        probeIndex[probeInfluences++] = idx; +                        if (probeInfluences == REF_SAMPLE_COUNT) +                        { +                            return; +                        } +                    } +                    count++; +                    if (count == neighborCount) +                    { +                        return; +                    } + +                    idx = refNeighbor[neighborIdx].w; +                    if (shouldSampleProbe(idx, pos)) +                    { +                        probeIndex[probeInfluences++] = idx; +                        if (probeInfluences == REF_SAMPLE_COUNT) +                        { +                            return; +                        } +                    } +                    count++; +                    if (count == neighborCount) +                    { +                        return; +                    } + +                    ++neighborIdx; +                } + +                return; +            } +        } +    } +} + +// from https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection + +// original reference implementation: +/* +bool intersect(const Ray &ray) const  +{  +        float t0, t1; // solutions for t if the ray intersects  +#if 0  +        // geometric solution +        Vec3f L = center - orig;  +        float tca = L.dotProduct(dir);  +        // if (tca < 0) return false; +        float d2 = L.dotProduct(L) - tca * tca;  +        if (d2 > radius2) return false;  +        float thc = sqrt(radius2 - d2);  +        t0 = tca - thc;  +        t1 = tca + thc;  +#else  +        // analytic solution +        Vec3f L = orig - center;  +        float a = dir.dotProduct(dir);  +        float b = 2 * dir.dotProduct(L);  +        float c = L.dotProduct(L) - radius2;  +        if (!solveQuadratic(a, b, c, t0, t1)) return false;  +#endif  +        if (t0 > t1) std::swap(t0, t1);  +  +        if (t0 < 0) {  +            t0 = t1; // if t0 is negative, let's use t1 instead  +            if (t0 < 0) return false; // both t0 and t1 are negative  +        }  +  +        t = t0;  +  +        return true;  +} */ + +// adapted -- assume that origin is inside sphere, return distance from origin to edge of sphere +vec3 sphereIntersect(vec3 origin, vec3 dir, vec3 center, float radius2) +{  +        float t0, t1; // solutions for t if the ray intersects  + +        vec3 L = center - origin;  +        float tca = dot(L,dir); + +        float d2 = dot(L,L) - tca * tca;  + +        float thc = sqrt(radius2 - d2);  +        t0 = tca - thc;  +        t1 = tca + thc;  +  +        vec3 v = origin + dir * t1; +        return v;  +}  + +// from https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/ +/* +vec3 DirectionWS = normalize(PositionWS - CameraWS); +vec3 ReflDirectionWS = reflect(DirectionWS, NormalWS); + +// Intersection with OBB convertto unit box space +// Transform in local unit parallax cube space (scaled and rotated) +vec3 RayLS = MulMatrix( float(3x3)WorldToLocal, ReflDirectionWS); +vec3 PositionLS = MulMatrix( WorldToLocal, PositionWS); + +vec3 Unitary = vec3(1.0f, 1.0f, 1.0f); +vec3 FirstPlaneIntersect  = (Unitary - PositionLS) / RayLS; +vec3 SecondPlaneIntersect = (-Unitary - PositionLS) / RayLS; +vec3 FurthestPlane = max(FirstPlaneIntersect, SecondPlaneIntersect); +float Distance = min(FurthestPlane.x, min(FurthestPlane.y, FurthestPlane.z)); + +// Use Distance in WS directly to recover intersection +vec3 IntersectPositionWS = PositionWS + ReflDirectionWS * Distance; +vec3 ReflDirectionWS = IntersectPositionWS - CubemapPositionWS; + +return texCUBE(envMap, ReflDirectionWS); +*/ + +// get point of intersection with given probe's box influence volume +// origin - ray origin in clip space +// dir - ray direction in clip space +// i - probe index in refBox/refSphere +vec3 boxIntersect(vec3 origin, vec3 dir, int i) +{ +    // Intersection with OBB convertto unit box space +    // Transform in local unit parallax cube space (scaled and rotated) +    mat4 clipToLocal = refBox[i]; + +    vec3 RayLS = mat3(clipToLocal) * dir; +    vec3 PositionLS = (clipToLocal * vec4(origin, 1.0)).xyz; + +    vec3 Unitary = vec3(1.0f, 1.0f, 1.0f); +    vec3 FirstPlaneIntersect  = (Unitary - PositionLS) / RayLS; +    vec3 SecondPlaneIntersect = (-Unitary - PositionLS) / RayLS; +    vec3 FurthestPlane = max(FirstPlaneIntersect, SecondPlaneIntersect); +    float Distance = min(FurthestPlane.x, min(FurthestPlane.y, FurthestPlane.z)); + +    // Use Distance in CS directly to recover intersection +    vec3 IntersectPositionCS = origin + dir * Distance; + +    return IntersectPositionCS; +} + + + +// Tap a sphere based reflection probe +// pos - position of pixel +// dir - pixel normal +// lod - which mip to bias towards (lower is higher res, sharper reflections) +// c - center of probe +// r2 - radius of probe squared +// i - index of probe  +// vi - point at which reflection vector struck the influence volume, in clip space +vec3 tapRefMap(vec3 pos, vec3 dir, float lod, vec3 c, float r2, int i) +{ +    //lod = max(lod, 1); +    // parallax adjustment + +    vec3 v; +    if (refIndex[i].w < 0) +    { +        v = boxIntersect(pos, dir, i); +    } +    else +    { +        v = sphereIntersect(pos, dir, c, r2); +    } + +    v -= c; +    v = env_mat * v; +    { +        float min_lod = textureQueryLod(reflectionProbes,v).y; // lower is higher res +        return textureLod(reflectionProbes, vec4(v.xyz, refIndex[i].x), max(min_lod, lod)).rgb; +        //return texture(reflectionProbes, vec4(v.xyz, refIndex[i].x)).rgb; +    } +} + +vec3 sampleProbes(vec3 pos, vec3 dir, float lod) +{ +    float wsum = 0.0; +    vec3 col = vec3(0,0,0); +    float vd2 = dot(pos,pos); // view distance squared + +    for (int idx = 0; idx < probeInfluences; ++idx) +    { +        int i = probeIndex[idx]; +        float r = refSphere[i].w; // radius of sphere volume +        float p = float(abs(refIndex[i].w)); // priority +        float rr = r*r; // radius squred +        float r1 = r * 0.1; // 75% of radius (outer sphere to start interpolating down) +        vec3 delta = pos.xyz-refSphere[i].xyz; +        float d2 = dot(delta,delta); +        float r2 = r1*r1;  +         +        { +            vec3 refcol = tapRefMap(pos, dir, lod, refSphere[i].xyz, rr, i); +             +            float w = 1.0/d2; + +            float atten = 1.0-max(d2-r2, 0.0)/(rr-r2); +            w *= atten; +            w *= p; // boost weight based on priority +            col += refcol*w; +             +            wsum += w; +        } +    } + +    if (probeInfluences <= 1) +    { //edge-of-scene probe or no probe influence, mix in with embiggened version of probes closest to camera  +        for (int idx = 0; idx < 8; ++idx) +        { +            if (refIndex[idx].w < 0) +            { // don't fallback to box probes, they are *very* specific +                continue; +            } +            int i = idx; +            vec3 delta = pos.xyz-refSphere[i].xyz; +            float d2 = dot(delta,delta); +             +            { +                vec3 refcol = tapRefMap(pos, dir, lod, refSphere[i].xyz, d2, i); +                 +                float w = 1.0/d2; +                w *= w; +                col += refcol*w; +                wsum += w; +            } +        } +    } + +    if (wsum > 0.0) +    { +        col *= 1.0/wsum; +    } +     +    return col; +} + +vec3 sampleProbeAmbient(vec3 pos, vec3 dir, float lod) +{ +    vec3 col = sampleProbes(pos, dir, lod); + +    //desaturate +    vec3 hcol = col *0.5; +     +    col *= 2.0; +    col = vec3( +        col.r + hcol.g + hcol.b, +        col.g + hcol.r + hcol.b, +        col.b + hcol.r + hcol.g +    ); +     +    col *= 0.333333; + +    return col*reflectionAmbiance; + +} + +// brighten a color so that at least one component is 1 +vec3 brighten(vec3 c) +{ +    float m = max(max(c.r, c.g), c.b); + +    if (m == 0) +    { +        return vec3(1,1,1); +    } + +    return c * 1.0/m; +} + + +void sampleReflectionProbes(inout vec3 ambenv, inout vec3 glossenv, inout vec3 legacyenv,  +        vec3 pos, vec3 norm, float glossiness, float envIntensity) +{ +    // TODO - don't hard code lods +    float reflection_lods = 8; +    preProbeSample(pos); + +    vec3 refnormpersp = reflect(pos.xyz, norm.xyz); + +    ambenv = sampleProbeAmbient(pos, norm, reflection_lods-1); + +    if (glossiness > 0.0) +    { +        float lod = (1.0-glossiness)*reflection_lods; +        glossenv = sampleProbes(pos, normalize(refnormpersp), lod); +    } + +    if (envIntensity > 0.0) +    { +        legacyenv = sampleProbes(pos, normalize(refnormpersp), 0.0); +    } +} + +void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm) +{ +    glossenv *= 0.35; // fudge darker +    float fresnel = 1.0+dot(normalize(pos.xyz), norm.xyz); +    float minf = spec.a * 0.1; +    fresnel = fresnel * (1.0-minf) + minf; +    glossenv *= spec.rgb*min(fresnel, 1.0); +    color.rgb += glossenv; +} + + void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity) + { +    vec3 reflected_color = legacyenv; //*0.5; //fudge darker +    vec3 lookAt = normalize(pos); +    float fresnel = 1.0+dot(lookAt, norm.xyz); +    fresnel *= fresnel; +    fresnel = min(fresnel+envIntensity, 1.0); +    reflected_color *= (envIntensity*fresnel)*brighten(spec.rgb); +    color = mix(color.rgb, reflected_color, envIntensity); + }
\ No newline at end of file diff --git a/indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl b/indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl index d6b173b89d..d88400dddb 100644 --- a/indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl +++ b/indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl @@ -42,38 +42,8 @@ uniform sampler2DRect specularRect;  uniform sampler2DRect normalMap;  uniform sampler2DRect lightMap;  uniform sampler2DRect depthMap; -uniform samplerCube   environmentMap; -uniform samplerCubeArray   reflectionProbes;  uniform sampler2D     lightFunc; -layout (std140, binding = 1) uniform ReflectionProbes -{ -    // list of OBBs for user override probes -    // box is a set of 3 planes outward facing planes and the depth of the box along that plane -    // for each box refBox[i]... -    /// box[0..2] - plane 0 .. 2 in [A,B,C,D] notation -    //  box[3][0..2] - plane thickness -    mat4 refBox[REFMAP_COUNT]; -    // list of bounding spheres for reflection probes sorted by distance to camera (closest first) -    vec4 refSphere[REFMAP_COUNT]; -    // index  of cube map in reflectionProbes for a corresponding reflection probe -    // e.g. cube map channel of refSphere[2] is stored in refIndex[2] -    // refIndex.x - cubemap channel in reflectionProbes -    // refIndex.y - index in refNeighbor of neighbor list (index is ivec4 index, not int index) -    // refIndex.z - number of neighbors -    // refIndex.w - priority, if negative, this probe has a box influence -    ivec4 refIndex[REFMAP_COUNT]; - -    // neighbor list data (refSphere indices, not cubemap array layer) -    ivec4 refNeighbor[1024]; - -    // number of reflection probes present in refSphere -    int refmapCount; - -    // intensity of ambient light from reflection probes -    float reflectionAmbiance; -}; -  uniform float blur_size;  uniform float blur_fidelity; @@ -98,6 +68,12 @@ vec3  scaleSoftClipFrag(vec3 l);  vec3  fullbrightAtmosTransportFrag(vec3 light, vec3 additive, vec3 atten);  vec3  fullbrightScaleSoftClip(vec3 light); +// reflection probe interface +void sampleReflectionProbes(inout vec3 ambenv, inout vec3 glossenv, inout vec3 legacyEnv,  +        vec3 pos, vec3 norm, float glossiness, float envIntensity); +void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm); +void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity); +  vec3 linear_to_srgb(vec3 c);  vec3 srgb_to_linear(vec3 c); @@ -105,376 +81,8 @@ vec3 srgb_to_linear(vec3 c);  vec4 applyWaterFogView(vec3 pos, vec4 color);  #endif -// list of probeIndexes shader will actually use after "getRefIndex" is called -// (stores refIndex/refSphere indices, NOT rerflectionProbes layer) -int probeIndex[REF_SAMPLE_COUNT]; - -// number of probes stored in probeIndex -int probeInfluences = 0; - -bool isAbove(vec3 pos, vec4 plane) -{ -    return (dot(plane.xyz, pos) + plane.w) > 0; -} - -// return true if probe at index i influences position pos -bool shouldSampleProbe(int i, vec3 pos) -{ -    if (refIndex[i].w < 0) -    { -        vec4 v = refBox[i] * vec4(pos, 1.0); -        if (abs(v.x) > 1 ||  -            abs(v.y) > 1 || -            abs(v.z) > 1) -        { -            return false; -        } -    } -    else -    { -        vec3 delta = pos.xyz - refSphere[i].xyz; -        float d = dot(delta, delta); -        float r2 = refSphere[i].w; -        r2 *= r2; - -        if (d > r2) -        { //outside bounding sphere -            return false; -        } -    } - -    return true; -} - -// populate "probeIndex" with N probe indices that influence pos where N is REF_SAMPLE_COUNT -// overall algorithm --  -void getRefIndex(vec3 pos) -{ -    // TODO: make some sort of structure that reduces the number of distance checks - -    for (int i = 0; i < refmapCount; ++i) -    { -        // found an influencing probe -        if (shouldSampleProbe(i, pos)) -        { -            probeIndex[probeInfluences] = i; -            ++probeInfluences; - -            int neighborIdx = refIndex[i].y; -            if (neighborIdx != -1) -            { -                int neighborCount = min(refIndex[i].z, REF_SAMPLE_COUNT-1); - -                int count = 0; -                while (count < neighborCount) -                { -                    // check up to REF_SAMPLE_COUNT-1 neighbors (neighborIdx is ivec4 index) - -                    int idx = refNeighbor[neighborIdx].x; -                    if (shouldSampleProbe(idx, pos)) -                    { -                        probeIndex[probeInfluences++] = idx; -                        if (probeInfluences == REF_SAMPLE_COUNT) -                        { -                            return; -                        } -                    } -                    count++; -                    if (count == neighborCount) -                    { -                        return; -                    } - -                    idx = refNeighbor[neighborIdx].y; -                    if (shouldSampleProbe(idx, pos)) -                    { -                        probeIndex[probeInfluences++] = idx; -                        if (probeInfluences == REF_SAMPLE_COUNT) -                        { -                            return; -                        } -                    } -                    count++; -                    if (count == neighborCount) -                    { -                        return; -                    } - -                    idx = refNeighbor[neighborIdx].z; -                    if (shouldSampleProbe(idx, pos)) -                    { -                        probeIndex[probeInfluences++] = idx; -                        if (probeInfluences == REF_SAMPLE_COUNT) -                        { -                            return; -                        } -                    } -                    count++; -                    if (count == neighborCount) -                    { -                        return; -                    } - -                    idx = refNeighbor[neighborIdx].w; -                    if (shouldSampleProbe(idx, pos)) -                    { -                        probeIndex[probeInfluences++] = idx; -                        if (probeInfluences == REF_SAMPLE_COUNT) -                        { -                            return; -                        } -                    } -                    count++; -                    if (count == neighborCount) -                    { -                        return; -                    } - -                    ++neighborIdx; -                } - -                return; -            } -        } -    } -} - -// from https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection - -// original reference implementation: -/* -bool intersect(const Ray &ray) const  -{  -        float t0, t1; // solutions for t if the ray intersects  -#if 0  -        // geometric solution -        Vec3f L = center - orig;  -        float tca = L.dotProduct(dir);  -        // if (tca < 0) return false; -        float d2 = L.dotProduct(L) - tca * tca;  -        if (d2 > radius2) return false;  -        float thc = sqrt(radius2 - d2);  -        t0 = tca - thc;  -        t1 = tca + thc;  -#else  -        // analytic solution -        Vec3f L = orig - center;  -        float a = dir.dotProduct(dir);  -        float b = 2 * dir.dotProduct(L);  -        float c = L.dotProduct(L) - radius2;  -        if (!solveQuadratic(a, b, c, t0, t1)) return false;  -#endif  -        if (t0 > t1) std::swap(t0, t1);  -  -        if (t0 < 0) {  -            t0 = t1; // if t0 is negative, let's use t1 instead  -            if (t0 < 0) return false; // both t0 and t1 are negative  -        }  -  -        t = t0;  -  -        return true;  -} */ - -// adapted -- assume that origin is inside sphere, return distance from origin to edge of sphere -vec3 sphereIntersect(vec3 origin, vec3 dir, vec3 center, float radius2) -{  -        float t0, t1; // solutions for t if the ray intersects  - -        vec3 L = center - origin;  -        float tca = dot(L,dir); - -        float d2 = dot(L,L) - tca * tca;  - -        float thc = sqrt(radius2 - d2);  -        t0 = tca - thc;  -        t1 = tca + thc;  -  -        vec3 v = origin + dir * t1; -        return v;  -}  - -// from https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/ -/* -vec3 DirectionWS = normalize(PositionWS - CameraWS); -vec3 ReflDirectionWS = reflect(DirectionWS, NormalWS); - -// Intersection with OBB convertto unit box space -// Transform in local unit parallax cube space (scaled and rotated) -vec3 RayLS = MulMatrix( float(3x3)WorldToLocal, ReflDirectionWS); -vec3 PositionLS = MulMatrix( WorldToLocal, PositionWS); - -vec3 Unitary = vec3(1.0f, 1.0f, 1.0f); -vec3 FirstPlaneIntersect  = (Unitary - PositionLS) / RayLS; -vec3 SecondPlaneIntersect = (-Unitary - PositionLS) / RayLS; -vec3 FurthestPlane = max(FirstPlaneIntersect, SecondPlaneIntersect); -float Distance = min(FurthestPlane.x, min(FurthestPlane.y, FurthestPlane.z)); - -// Use Distance in WS directly to recover intersection -vec3 IntersectPositionWS = PositionWS + ReflDirectionWS * Distance; -vec3 ReflDirectionWS = IntersectPositionWS - CubemapPositionWS; - -return texCUBE(envMap, ReflDirectionWS); -*/ - -// get point of intersection with given probe's box influence volume -// origin - ray origin in clip space -// dir - ray direction in clip space -// i - probe index in refBox/refSphere -vec3 boxIntersect(vec3 origin, vec3 dir, int i) -{ -    // Intersection with OBB convertto unit box space -    // Transform in local unit parallax cube space (scaled and rotated) -    mat4 clipToLocal = refBox[i]; - -    vec3 RayLS = mat3(clipToLocal) * dir; -    vec3 PositionLS = (clipToLocal * vec4(origin, 1.0)).xyz; - -    vec3 Unitary = vec3(1.0f, 1.0f, 1.0f); -    vec3 FirstPlaneIntersect  = (Unitary - PositionLS) / RayLS; -    vec3 SecondPlaneIntersect = (-Unitary - PositionLS) / RayLS; -    vec3 FurthestPlane = max(FirstPlaneIntersect, SecondPlaneIntersect); -    float Distance = min(FurthestPlane.x, min(FurthestPlane.y, FurthestPlane.z)); - -    // Use Distance in CS directly to recover intersection -    vec3 IntersectPositionCS = origin + dir * Distance; - -    return IntersectPositionCS; -} - - - -// Tap a sphere based reflection probe -// pos - position of pixel -// dir - pixel normal -// lod - which mip to bias towards (lower is higher res, sharper reflections) -// c - center of probe -// r2 - radius of probe squared -// i - index of probe  -// vi - point at which reflection vector struck the influence volume, in clip space -vec3 tapRefMap(vec3 pos, vec3 dir, float lod, vec3 c, float r2, int i) -{ -    //lod = max(lod, 1); -    // parallax adjustment - -    vec3 v; -    if (refIndex[i].w < 0) -    { -        v = boxIntersect(pos, dir, i); -    } -    else -    { -        v = sphereIntersect(pos, dir, c, r2); -    } - -    v -= c; -    v = env_mat * v; -    { -        float min_lod = textureQueryLod(reflectionProbes,v).y; // lower is higher res -        return textureLod(reflectionProbes, vec4(v.xyz, refIndex[i].x), max(min_lod, lod)).rgb; -        //return texture(reflectionProbes, vec4(v.xyz, refIndex[i].x)).rgb; -    } -} - -vec3 sampleRefMap(vec3 pos, vec3 dir, float lod) -{ -    float wsum = 0.0; -    vec3 col = vec3(0,0,0); -    float vd2 = dot(pos,pos); // view distance squared - -    for (int idx = 0; idx < probeInfluences; ++idx) -    { -        int i = probeIndex[idx]; -        float r = refSphere[i].w; // radius of sphere volume -        float p = float(abs(refIndex[i].w)); // priority -        float rr = r*r; // radius squred -        float r1 = r * 0.1; // 75% of radius (outer sphere to start interpolating down) -        vec3 delta = pos.xyz-refSphere[i].xyz; -        float d2 = dot(delta,delta); -        float r2 = r1*r1;  -         -        { -            vec3 refcol = tapRefMap(pos, dir, lod, refSphere[i].xyz, rr, i); -             -            float w = 1.0/d2; - -            float atten = 1.0-max(d2-r2, 0.0)/(rr-r2); -            w *= atten; -            w *= p; // boost weight based on priority -            col += refcol*w; -             -            wsum += w; -        } -    } - -    if (probeInfluences <= 1) -    { //edge-of-scene probe or no probe influence, mix in with embiggened version of probes closest to camera  -        for (int idx = 0; idx < 8; ++idx) -        { -            if (refIndex[idx].w < 0) -            { // don't fallback to box probes, they are *very* specific -                continue; -            } -            int i = idx; -            vec3 delta = pos.xyz-refSphere[i].xyz; -            float d2 = dot(delta,delta); -             -            { -                vec3 refcol = tapRefMap(pos, dir, lod, refSphere[i].xyz, d2, i); -                 -                float w = 1.0/d2; -                w *= w; -                col += refcol*w; -                wsum += w; -            } -        } -    } - -    if (wsum > 0.0) -    { -        col *= 1.0/wsum; -    } -     -    return col; -} - -vec3 sampleAmbient(vec3 pos, vec3 dir, float lod) -{ -    vec3 col = sampleRefMap(pos, dir, lod); - -    //desaturate -    vec3 hcol = col *0.5; -     -    col *= 2.0; -    col = vec3( -        col.r + hcol.g + hcol.b, -        col.g + hcol.r + hcol.b, -        col.b + hcol.r + hcol.g -    ); -     -    col *= 0.333333; - -    return col*reflectionAmbiance; - -} - -// brighten a color so that at least one component is 1 -vec3 brighten(vec3 c) -{ -    float m = max(max(c.r, c.g), c.b); - -    if (m == 0) -    { -        return vec3(1,1,1); -    } - -    return c * 1.0/m; -} -  void main()  { -    float reflection_lods = 8; // TODO -- base this on resolution of reflection map instead of hard coding -      vec2  tc           = vary_fragcoord.xy;      float depth        = texture2DRect(depthMap, tc.xy).r;      vec4  pos          = getPositionWithDepth(tc, depth); @@ -504,13 +112,15 @@ void main()      vec3 additive;      vec3 atten; -    getRefIndex(pos.xyz); -      calcAtmosphericVars(pos.xyz, light_dir, ambocc, sunlit, amblit, additive, atten, true);      //vec3 amb_vec = env_mat * norm.xyz; -    vec3 ambenv = sampleAmbient(pos.xyz, norm.xyz, reflection_lods-1); +    vec3 ambenv; +    vec3 glossenv; +    vec3 legacyenv; +    sampleReflectionProbes(ambenv, glossenv, legacyenv, pos.xyz, norm.xyz, spec.a, envIntensity); +      amblit = max(ambenv, amblit);      color.rgb = amblit*ambocc; @@ -527,7 +137,6 @@ void main()      vec3 refnormpersp = reflect(pos.xyz, norm.xyz); -    vec3 env_vec         = env_mat * refnormpersp;      if (spec.a > 0.0)  // specular reflection      {          float sa        = dot(normalize(refnormpersp), light_dir.xyz); @@ -539,27 +148,16 @@ void main()          color.rgb += spec_contrib;          // add reflection map - EXPERIMENTAL WORK IN PROGRESS -         -        float lod = (1.0-spec.a)*reflection_lods; -        vec3 reflected_color = sampleRefMap(pos.xyz, normalize(refnormpersp), lod); -        reflected_color *= 0.35; // fudge darker -        float fresnel = 1.0+dot(normalize(pos.xyz), norm.xyz); -        float minf = spec.a * 0.1; -        fresnel = fresnel * (1.0-minf) + minf; -        reflected_color *= spec.rgb*min(fresnel, 1.0); -        color.rgb += reflected_color; +        applyGlossEnv(color, glossenv, spec, pos.xyz, norm.xyz);      }      color.rgb = mix(color.rgb, diffuse.rgb, diffuse.a);      if (envIntensity > 0.0)      {  // add environmentmap -        vec3 reflected_color = sampleRefMap(pos.xyz, normalize(refnormpersp), 0.0)*0.5; //fudge darker -        float fresnel = 1.0+dot(normalize(pos.xyz), norm.xyz); -        fresnel *= fresnel; -        fresnel = min(fresnel+envIntensity, 1.0); -        reflected_color *= (envIntensity*fresnel)*brighten(spec.rgb); -        color = mix(color.rgb, reflected_color, envIntensity); +        //fudge darker +        legacyenv *= 0.5*diffuse.a+0.5;; +        applyLegacyEnv(color, legacyenv, spec, pos.xyz, norm.xyz, envIntensity);      }      if (norm.w < 0.5) @@ -577,6 +175,8 @@ void main()      // convert to linear as fullscreen lights need to sum in linear colorspace      // and will be gamma (re)corrected downstream...      //color = vec3(ambocc); -    //color = ambenv;     +    //color = ambenv; +    //color.b = diffuse.a;      frag_color.rgb = srgb_to_linear(color.rgb); +    frag_color.a = bloom;  } | 
