diff options
author | Loren Shih <seraph@lindenlab.com> | 2011-02-01 11:28:22 -0500 |
---|---|---|
committer | Loren Shih <seraph@lindenlab.com> | 2011-02-01 11:28:22 -0500 |
commit | fbc6e5d63970e081d7543f884fcc0fb897fce28e (patch) | |
tree | e722e908e0cc1f889be16a4815286172222dac6b /indra/llmath | |
parent | 293b35f000ca4e8a4bcf85dc4782b2a72d1887ea (diff) | |
parent | f0074f1002f36ad680ae04daf3f5e026dca31d54 (diff) |
Automated merge up from viewer-development into mesh-development
Diffstat (limited to 'indra/llmath')
-rw-r--r-- | indra/llmath/llvolume.cpp | 12663 | ||||
-rw-r--r-- | indra/llmath/llvolume.h | 2145 |
2 files changed, 6544 insertions, 8264 deletions
diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp index d6dfb5c7a9..316eed679d 100644 --- a/indra/llmath/llvolume.cpp +++ b/indra/llmath/llvolume.cpp @@ -1,7269 +1,5548 @@ -/** - - * @file llvolume.cpp - * - * $LicenseInfo:firstyear=2002&license=viewerlgpl$ - * Second Life Viewer Source Code - * Copyright (C) 2010, Linden Research, Inc. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; - * version 2.1 of the License only. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * - * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA - * $/LicenseInfo$ - */ - -#include "linden_common.h" -#include "llmemory.h" -#include "llmath.h" - -#include <set> -#if !LL_WINDOWS -#include <stdint.h> -#endif - -#include "llerror.h" -#include "llmemtype.h" - -#include "llvolumemgr.h" -#include "v2math.h" -#include "v3math.h" -#include "v4math.h" -#include "m4math.h" -#include "m3math.h" -#include "llmatrix3a.h" -#include "lloctree.h" -#include "lldarray.h" -#include "llvolume.h" -#include "llvolumeoctree.h" -#include "llstl.h" -#include "llsdserialize.h" -#include "llvector4a.h" -#include "llmatrix4a.h" - -#define DEBUG_SILHOUETTE_BINORMALS 0 -#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette -#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette - -const F32 CUT_MIN = 0.f; -const F32 CUT_MAX = 1.f; -const F32 MIN_CUT_DELTA = 0.02f; - -const F32 HOLLOW_MIN = 0.f; -const F32 HOLLOW_MAX = 0.95f; -const F32 HOLLOW_MAX_SQUARE = 0.7f; - -const F32 TWIST_MIN = -1.f; -const F32 TWIST_MAX = 1.f; - -const F32 RATIO_MIN = 0.f; -const F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper - -const F32 HOLE_X_MIN= 0.05f; -const F32 HOLE_X_MAX= 1.0f; - -const F32 HOLE_Y_MIN= 0.05f; -const F32 HOLE_Y_MAX= 0.5f; - -const F32 SHEAR_MIN = -0.5f; -const F32 SHEAR_MAX = 0.5f; - -const F32 REV_MIN = 1.f; -const F32 REV_MAX = 4.f; - -const F32 TAPER_MIN = -1.f; -const F32 TAPER_MAX = 1.f; - -const F32 SKEW_MIN = -0.95f; -const F32 SKEW_MAX = 0.95f; - -const F32 SCULPT_MIN_AREA = 0.002f; -const S32 SCULPT_MIN_AREA_DETAIL = 1; - -extern BOOL gDebugGL; - -void assert_aligned(void* ptr, uintptr_t alignment) -{ -#if 0 - uintptr_t t = (uintptr_t) ptr; - if (t%alignment != 0) - { - llerrs << "WTF?" << llendl; - } -#endif -} - -BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm) -{ - LLVector3 test = (pt2-pt1)%(pt3-pt2); - - //answer - if(test * norm < 0) - { - return FALSE; - } - else - { - return TRUE; - } -} - -BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size) -{ - return LLLineSegmentBoxIntersect(start.mV, end.mV, center.mV, size.mV); -} - -BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size) -{ - F32 fAWdU[3]; - F32 dir[3]; - F32 diff[3]; - - for (U32 i = 0; i < 3; i++) - { - dir[i] = 0.5f * (end[i] - start[i]); - diff[i] = (0.5f * (end[i] + start[i])) - center[i]; - fAWdU[i] = fabsf(dir[i]); - if(fabsf(diff[i])>size[i] + fAWdU[i]) return false; - } - - float f; - f = dir[1] * diff[2] - dir[2] * diff[1]; if(fabsf(f)>size[1]*fAWdU[2] + size[2]*fAWdU[1]) return false; - f = dir[2] * diff[0] - dir[0] * diff[2]; if(fabsf(f)>size[0]*fAWdU[2] + size[2]*fAWdU[0]) return false; - f = dir[0] * diff[1] - dir[1] * diff[0]; if(fabsf(f)>size[0]*fAWdU[1] + size[1]*fAWdU[0]) return false; - - return true; -} - - - -// intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir. -// returns TRUE if intersecting and returns barycentric coordinates in intersection_a, intersection_b, -// and returns the intersection point along dir in intersection_t. - -// Moller-Trumbore algorithm -BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t) -{ - - /* find vectors for two edges sharing vert0 */ - LLVector4a edge1; - edge1.setSub(vert1, vert0); - - LLVector4a edge2; - edge2.setSub(vert2, vert0); - - /* begin calculating determinant - also used to calculate U parameter */ - LLVector4a pvec; - pvec.setCross3(dir, edge2); - - /* if determinant is near zero, ray lies in plane of triangle */ - LLVector4a det; - det.setAllDot3(edge1, pvec); - - if (det.greaterEqual(LLVector4a::getEpsilon()).getGatheredBits() & 0x7) - { - /* calculate distance from vert0 to ray origin */ - LLVector4a tvec; - tvec.setSub(orig, vert0); - - /* calculate U parameter and test bounds */ - LLVector4a u; - u.setAllDot3(tvec,pvec); - - if ((u.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7) && - (u.lessEqual(det).getGatheredBits() & 0x7)) - { - /* prepare to test V parameter */ - LLVector4a qvec; - qvec.setCross3(tvec, edge1); - - /* calculate V parameter and test bounds */ - LLVector4a v; - v.setAllDot3(dir, qvec); - - - //if (!(v < 0.f || u + v > det)) - - LLVector4a sum_uv; - sum_uv.setAdd(u, v); - - S32 v_gequal = v.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7; - S32 sum_lequal = sum_uv.lessEqual(det).getGatheredBits() & 0x7; - - if (v_gequal && sum_lequal) - { - /* calculate t, scale parameters, ray intersects triangle */ - LLVector4a t; - t.setAllDot3(edge2,qvec); - - t.div(det); - u.div(det); - v.div(det); - - intersection_a = u[0]; - intersection_b = v[0]; - intersection_t = t[0]; - return TRUE; - } - } - } - - return FALSE; -} - -BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t) -{ - F32 u, v, t; - - /* find vectors for two edges sharing vert0 */ - LLVector4a edge1; - edge1.setSub(vert1, vert0); - - - LLVector4a edge2; - edge2.setSub(vert2, vert0); - - /* begin calculating determinant - also used to calculate U parameter */ - LLVector4a pvec; - pvec.setCross3(dir, edge2); - - /* if determinant is near zero, ray lies in plane of triangle */ - F32 det = edge1.dot3(pvec).getF32(); - - - if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO) - { - return FALSE; - } - - F32 inv_det = 1.f / det; - - /* calculate distance from vert0 to ray origin */ - LLVector4a tvec; - tvec.setSub(orig, vert0); - - /* calculate U parameter and test bounds */ - u = (tvec.dot3(pvec).getF32()) * inv_det; - if (u < 0.f || u > 1.f) - { - return FALSE; - } - - /* prepare to test V parameter */ - tvec.sub(edge1); - - /* calculate V parameter and test bounds */ - v = (dir.dot3(tvec).getF32()) * inv_det; - - if (v < 0.f || u + v > 1.f) - { - return FALSE; - } - - /* calculate t, ray intersects triangle */ - t = (edge2.dot3(tvec).getF32()) * inv_det; - - intersection_a = u; - intersection_b = v; - intersection_t = t; - - - return TRUE; -} - -//helper for non-aligned vectors -BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided) -{ - LLVector4a vert0a, vert1a, vert2a, origa, dira; - vert0a.load3(vert0.mV); - vert1a.load3(vert1.mV); - vert2a.load3(vert2.mV); - origa.load3(orig.mV); - dira.load3(dir.mV); - - if (two_sided) - { - return LLTriangleRayIntersectTwoSided(vert0a, vert1a, vert2a, origa, dira, - intersection_a, intersection_b, intersection_t); - } - else - { - return LLTriangleRayIntersect(vert0a, vert1a, vert2a, origa, dira, - intersection_a, intersection_b, intersection_t); - } -} - -class LLVolumeOctreeRebound : public LLOctreeTravelerDepthFirst<LLVolumeTriangle> -{ -public: - const LLVolumeFace* mFace; - - LLVolumeOctreeRebound(const LLVolumeFace* face) - { - mFace = face; - } - - virtual void visit(const LLOctreeNode<LLVolumeTriangle>* branch) - { //this is a depth first traversal, so it's safe to assum all children have complete - //bounding data - - LLVolumeOctreeListener* node = (LLVolumeOctreeListener*) branch->getListener(0); - - LLVector4a& min = node->mExtents[0]; - LLVector4a& max = node->mExtents[1]; - - if (!branch->getData().empty()) - { //node has data, find AABB that binds data set - const LLVolumeTriangle* tri = *(branch->getData().begin()); - - //initialize min/max to first available vertex - min = *(tri->mV[0]); - max = *(tri->mV[0]); - - for (LLOctreeNode<LLVolumeTriangle>::const_element_iter iter = - branch->getData().begin(); iter != branch->getData().end(); ++iter) - { //for each triangle in node - - //stretch by triangles in node - tri = *iter; - - min.setMin(min, *tri->mV[0]); - min.setMin(min, *tri->mV[1]); - min.setMin(min, *tri->mV[2]); - - max.setMax(max, *tri->mV[0]); - max.setMax(max, *tri->mV[1]); - max.setMax(max, *tri->mV[2]); - } - } - else if (!branch->getChildren().empty()) - { //no data, but child nodes exist - LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(0)->getListener(0); - - //initialize min/max to extents of first child - min = child->mExtents[0]; - max = child->mExtents[1]; - } - else - { - llerrs << "WTF? Empty leaf" << llendl; - } - - for (S32 i = 0; i < branch->getChildCount(); ++i) - { //stretch by child extents - LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(i)->getListener(0); - min.setMin(min, child->mExtents[0]); - max.setMax(max, child->mExtents[1]); - } - - node->mBounds[0].setAdd(min, max); - node->mBounds[0].mul(0.5f); - - node->mBounds[1].setSub(max,min); - node->mBounds[1].mul(0.5f); - } -}; - -//------------------------------------------------------------------- -// statics -//------------------------------------------------------------------- - - -//---------------------------------------------------- - -LLProfile::Face* LLProfile::addCap(S16 faceID) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - Face *face = vector_append(mFaces, 1); - - face->mIndex = 0; - face->mCount = mTotal; - face->mScaleU= 1.0f; - face->mCap = TRUE; - face->mFaceID = faceID; - return face; -} - -LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, BOOL flat) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - Face *face = vector_append(mFaces, 1); - - face->mIndex = i; - face->mCount = count; - face->mScaleU= scaleU; - - face->mFlat = flat; - face->mCap = FALSE; - face->mFaceID = faceID; - return face; -} - -// What is the bevel parameter used for? - DJS 04/05/02 -// Bevel parameter is currently unused but presumedly would support -// filleted and chamfered corners -void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - // Generate an n-sided "circular" path. - // 0 is (1,0), and we go counter-clockwise along a circular path from there. - const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f }; - F32 scale = 0.5f; - F32 t, t_step, t_first, t_fraction, ang, ang_step; - LLVector3 pt1,pt2; - - F32 begin = params.getBegin(); - F32 end = params.getEnd(); - - t_step = 1.0f / sides; - ang_step = 2.0f*F_PI*t_step*ang_scale; - - // Scale to have size "match" scale. Compensates to get object to generally fill bounding box. - - S32 total_sides = llround(sides / ang_scale); // Total number of sides all around - - if (total_sides < 8) - { - scale = tableScale[total_sides]; - } - - t_first = floor(begin * sides) / (F32)sides; - - // pt1 is the first point on the fractional face. - // Starting t and ang values for the first face - t = t_first; - ang = 2.0f*F_PI*(t*ang_scale + offset); - pt1.setVec(cos(ang)*scale,sin(ang)*scale, t); - - // Increment to the next point. - // pt2 is the end point on the fractional face - t += t_step; - ang += ang_step; - pt2.setVec(cos(ang)*scale,sin(ang)*scale,t); - - t_fraction = (begin - t_first)*sides; - - // Only use if it's not almost exactly on an edge. - if (t_fraction < 0.9999f) - { - LLVector3 new_pt = lerp(pt1, pt2, t_fraction); - mProfile.push_back(new_pt); - } - - // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02 - while (t < end) - { - // Iterate through all the integer steps of t. - pt1.setVec(cos(ang)*scale,sin(ang)*scale,t); - - if (mProfile.size() > 0) { - LLVector3 p = mProfile[mProfile.size()-1]; - for (S32 i = 0; i < split && mProfile.size() > 0; i++) { - mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1)); - } - } - mProfile.push_back(pt1); - - t += t_step; - ang += ang_step; - } - - t_fraction = (end - (t - t_step))*sides; - - // pt1 is the first point on the fractional face - // pt2 is the end point on the fractional face - pt2.setVec(cos(ang)*scale,sin(ang)*scale,t); - - // Find the fraction that we need to add to the end point. - t_fraction = (end - (t - t_step))*sides; - if (t_fraction > 0.0001f) - { - LLVector3 new_pt = lerp(pt1, pt2, t_fraction); - - if (mProfile.size() > 0) { - LLVector3 p = mProfile[mProfile.size()-1]; - for (S32 i = 0; i < split && mProfile.size() > 0; i++) { - mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1)); - } - } - mProfile.push_back(new_pt); - } - - // If we're sliced, the profile is open. - if ((end - begin)*ang_scale < 0.99f) - { - if ((end - begin)*ang_scale > 0.5f) - { - mConcave = TRUE; - } - else - { - mConcave = FALSE; - } - mOpen = TRUE; - if (params.getHollow() <= 0) - { - // put center point if not hollow. - mProfile.push_back(LLVector3(0,0,0)); - } - } - else - { - // The profile isn't open. - mOpen = FALSE; - mConcave = FALSE; - } - - mTotal = mProfile.size(); -} - -void LLProfile::genNormals(const LLProfileParams& params) -{ - S32 count = mProfile.size(); - - S32 outer_count; - if (mTotalOut) - { - outer_count = mTotalOut; - } - else - { - outer_count = mTotal / 2; - } - - mEdgeNormals.resize(count * 2); - mEdgeCenters.resize(count * 2); - mNormals.resize(count); - - LLVector2 pt0,pt1; - - BOOL hollow = (params.getHollow() > 0); - - S32 i0, i1, i2, i3, i4; - - // Parametrically generate normal - for (i2 = 0; i2 < count; i2++) - { - mNormals[i2].mV[0] = mProfile[i2].mV[0]; - mNormals[i2].mV[1] = mProfile[i2].mV[1]; - if (hollow && (i2 >= outer_count)) - { - mNormals[i2] *= -1.f; - } - if (mNormals[i2].magVec() < 0.001) - { - // Special case for point at center, get adjacent points. - i1 = (i2 - 1) >= 0 ? i2 - 1 : count - 1; - i0 = (i1 - 1) >= 0 ? i1 - 1 : count - 1; - i3 = (i2 + 1) < count ? i2 + 1 : 0; - i4 = (i3 + 1) < count ? i3 + 1 : 0; - - pt0.setVec(mProfile[i1].mV[VX] + mProfile[i1].mV[VX] - mProfile[i0].mV[VX], - mProfile[i1].mV[VY] + mProfile[i1].mV[VY] - mProfile[i0].mV[VY]); - pt1.setVec(mProfile[i3].mV[VX] + mProfile[i3].mV[VX] - mProfile[i4].mV[VX], - mProfile[i3].mV[VY] + mProfile[i3].mV[VY] - mProfile[i4].mV[VY]); - - mNormals[i2] = pt0 + pt1; - mNormals[i2] *= 0.5f; - } - mNormals[i2].normVec(); - } - - S32 num_normal_sets = isConcave() ? 2 : 1; - for (S32 normal_set = 0; normal_set < num_normal_sets; normal_set++) - { - S32 point_num; - for (point_num = 0; point_num < mTotal; point_num++) - { - LLVector3 point_1 = mProfile[point_num]; - point_1.mV[VZ] = 0.f; - - LLVector3 point_2; - - if (isConcave() && normal_set == 0 && point_num == (mTotal - 1) / 2) - { - point_2 = mProfile[mTotal - 1]; - } - else if (isConcave() && normal_set == 1 && point_num == mTotal - 1) - { - point_2 = mProfile[(mTotal - 1) / 2]; - } - else - { - LLVector3 delta_pos; - S32 neighbor_point = (point_num + 1) % mTotal; - while(delta_pos.magVecSquared() < 0.01f * 0.01f) - { - point_2 = mProfile[neighbor_point]; - delta_pos = point_2 - point_1; - neighbor_point = (neighbor_point + 1) % mTotal; - if (neighbor_point == point_num) - { - break; - } - } - } - - point_2.mV[VZ] = 0.f; - LLVector3 face_normal = (point_2 - point_1) % LLVector3::z_axis; - face_normal.normVec(); - mEdgeNormals[normal_set * count + point_num] = face_normal; - mEdgeCenters[normal_set * count + point_num] = lerp(point_1, point_2, 0.5f); - } - } -} - - -// Hollow is percent of the original bounding box, not of this particular -// profile's geometry. Thus, a swept triangle needs lower hollow values than -// a swept square. -LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split) -{ - // Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them. - - // Total add has number of vertices on outside. - mTotalOut = mTotal; - - // Why is the "bevel" parameter -1? DJS 04/05/02 - genNGon(params, llfloor(sides),offset,-1, ang_scale, split); - - Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat); - - std::vector<LLVector3> pt; - pt.resize(mTotal) ; - - for (S32 i=mTotalOut;i<mTotal;i++) - { - pt[i] = mProfile[i] * box_hollow; - } - - S32 j=mTotal-1; - for (S32 i=mTotalOut;i<mTotal;i++) - { - mProfile[i] = pt[j--]; - } - - for (S32 i=0;i<(S32)mFaces.size();i++) - { - if (mFaces[i].mCap) - { - mFaces[i].mCount *= 2; - } - } - - return face; -} - - - -BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if ((!mDirty) && (!is_sculpted)) - { - return FALSE; - } - mDirty = FALSE; - - if (detail < MIN_LOD) - { - llinfos << "Generating profile with LOD < MIN_LOD. CLAMPING" << llendl; - detail = MIN_LOD; - } - - mProfile.clear(); - mFaces.clear(); - - // Generate the face data - S32 i; - F32 begin = params.getBegin(); - F32 end = params.getEnd(); - F32 hollow = params.getHollow(); - - // Quick validation to eliminate some server crashes. - if (begin > end - 0.01f) - { - llwarns << "LLProfile::generate() assertion failed (begin >= end)" << llendl; - return FALSE; - } - - S32 face_num = 0; - - switch (params.getCurveType() & LL_PCODE_PROFILE_MASK) - { - case LL_PCODE_PROFILE_SQUARE: - { - genNGon(params, 4,-0.375, 0, 1, split); - if (path_open) - { - addCap (LL_FACE_PATH_BEGIN); - } - - for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++) - { - addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE); - } - - for (i = 0; i <(S32) mProfile.size(); i++) - { - // Scale by 4 to generate proper tex coords. - mProfile[i].mV[2] *= 4.f; - } - - if (hollow) - { - switch (params.getCurveType() & LL_PCODE_HOLE_MASK) - { - case LL_PCODE_HOLE_TRIANGLE: - // This offset is not correct, but we can't change it now... DK 11/17/04 - addHole(params, TRUE, 3, -0.375f, hollow, 1.f, split); - break; - case LL_PCODE_HOLE_CIRCLE: - // TODO: Compute actual detail levels for cubes - addHole(params, FALSE, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f); - break; - case LL_PCODE_HOLE_SAME: - case LL_PCODE_HOLE_SQUARE: - default: - addHole(params, TRUE, 4, -0.375f, hollow, 1.f, split); - break; - } - } - - if (path_open) { - mFaces[0].mCount = mTotal; - } - } - break; - case LL_PCODE_PROFILE_ISOTRI: - case LL_PCODE_PROFILE_RIGHTTRI: - case LL_PCODE_PROFILE_EQUALTRI: - { - genNGon(params, 3,0, 0, 1, split); - for (i = 0; i <(S32) mProfile.size(); i++) - { - // Scale by 3 to generate proper tex coords. - mProfile[i].mV[2] *= 3.f; - } - - if (path_open) - { - addCap(LL_FACE_PATH_BEGIN); - } - - for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++) - { - addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE); - } - if (hollow) - { - // Swept triangles need smaller hollowness values, - // because the triangle doesn't fill the bounding box. - F32 triangle_hollow = hollow / 2.f; - - switch (params.getCurveType() & LL_PCODE_HOLE_MASK) - { - case LL_PCODE_HOLE_CIRCLE: - // TODO: Actually generate level of detail for triangles - addHole(params, FALSE, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f); - break; - case LL_PCODE_HOLE_SQUARE: - addHole(params, TRUE, 4, 0, triangle_hollow, 1.f, split); - break; - case LL_PCODE_HOLE_SAME: - case LL_PCODE_HOLE_TRIANGLE: - default: - addHole(params, TRUE, 3, 0, triangle_hollow, 1.f, split); - break; - } - } - } - break; - case LL_PCODE_PROFILE_CIRCLE: - { - // If this has a square hollow, we should adjust the - // number of faces a bit so that the geometry lines up. - U8 hole_type=0; - F32 circle_detail = MIN_DETAIL_FACES * detail; - if (hollow) - { - hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK; - if (hole_type == LL_PCODE_HOLE_SQUARE) - { - // Snap to the next multiple of four sides, - // so that corners line up. - circle_detail = llceil(circle_detail / 4.0f) * 4.0f; - } - } - - S32 sides = (S32)circle_detail; - - if (is_sculpted) - sides = sculpt_size; - - genNGon(params, sides); - - if (path_open) - { - addCap (LL_FACE_PATH_BEGIN); - } - - if (mOpen && !hollow) - { - addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - else - { - addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - - if (hollow) - { - switch (hole_type) - { - case LL_PCODE_HOLE_SQUARE: - addHole(params, TRUE, 4, 0, hollow, 1.f, split); - break; - case LL_PCODE_HOLE_TRIANGLE: - addHole(params, TRUE, 3, 0, hollow, 1.f, split); - break; - case LL_PCODE_HOLE_CIRCLE: - case LL_PCODE_HOLE_SAME: - default: - addHole(params, FALSE, circle_detail, 0, hollow, 1.f); - break; - } - } - } - break; - case LL_PCODE_PROFILE_CIRCLE_HALF: - { - // If this has a square hollow, we should adjust the - // number of faces a bit so that the geometry lines up. - U8 hole_type=0; - // Number of faces is cut in half because it's only a half-circle. - F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f; - if (hollow) - { - hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK; - if (hole_type == LL_PCODE_HOLE_SQUARE) - { - // Snap to the next multiple of four sides (div 2), - // so that corners line up. - circle_detail = llceil(circle_detail / 2.0f) * 2.0f; - } - } - genNGon(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f); - if (path_open) - { - addCap(LL_FACE_PATH_BEGIN); - } - if (mOpen && !params.getHollow()) - { - addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - else - { - addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - - if (hollow) - { - switch (hole_type) - { - case LL_PCODE_HOLE_SQUARE: - addHole(params, TRUE, 2, 0.5f, hollow, 0.5f, split); - break; - case LL_PCODE_HOLE_TRIANGLE: - addHole(params, TRUE, 3, 0.5f, hollow, 0.5f, split); - break; - case LL_PCODE_HOLE_CIRCLE: - case LL_PCODE_HOLE_SAME: - default: - addHole(params, FALSE, circle_detail, 0.5f, hollow, 0.5f); - break; - } - } - - // Special case for openness of sphere - if ((params.getEnd() - params.getBegin()) < 1.f) - { - mOpen = TRUE; - } - else if (!hollow) - { - mOpen = FALSE; - mProfile.push_back(mProfile[0]); - mTotal++; - } - } - break; - default: - llerrs << "Unknown profile: getCurveType()=" << params.getCurveType() << llendl; - break; - }; - - if (path_open) - { - addCap(LL_FACE_PATH_END); // bottom - } - - if ( mOpen) // interior edge caps - { - addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, TRUE); - - if (hollow) - { - addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, TRUE); - } - else - { - addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE); - } - } - - //genNormals(params); - - return TRUE; -} - - - -BOOL LLProfileParams::importFile(LLFILE *fp) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - F32 tempF32; - U32 tempU32; - - while (!feof(fp)) - { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("hollow",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setHollow(tempF32); - } - else - { - llwarns << "unknown keyword " << keyword << " in profile import" << llendl; - } - } - - return TRUE; -} - - -BOOL LLProfileParams::exportFile(LLFILE *fp) const -{ - fprintf(fp,"\t\tprofile 0\n"); - fprintf(fp,"\t\t{\n"); - fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType()); - fprintf(fp,"\t\t\tbegin\t%g\n", getBegin()); - fprintf(fp,"\t\t\tend\t%g\n", getEnd()); - fprintf(fp,"\t\t\thollow\t%g\n", getHollow()); - fprintf(fp, "\t\t}\n"); - return TRUE; -} - - -BOOL LLProfileParams::importLegacyStream(std::istream& input_stream) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - F32 tempF32; - U32 tempU32; - - while (input_stream.good()) - { - input_stream.getline(buffer, BUFSIZE); - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, - valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("hollow",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setHollow(tempF32); - } - else - { - llwarns << "unknown keyword " << keyword << " in profile import" << llendl; - } - } - - return TRUE; -} - - -BOOL LLProfileParams::exportLegacyStream(std::ostream& output_stream) const -{ - output_stream <<"\t\tprofile 0\n"; - output_stream <<"\t\t{\n"; - output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n"; - output_stream <<"\t\t\tbegin\t" << getBegin() << "\n"; - output_stream <<"\t\t\tend\t" << getEnd() << "\n"; - output_stream <<"\t\t\thollow\t" << getHollow() << "\n"; - output_stream << "\t\t}\n"; - return TRUE; -} - -LLSD LLProfileParams::asLLSD() const -{ - LLSD sd; - - sd["curve"] = getCurveType(); - sd["begin"] = getBegin(); - sd["end"] = getEnd(); - sd["hollow"] = getHollow(); - return sd; -} - -bool LLProfileParams::fromLLSD(LLSD& sd) -{ - setCurveType(sd["curve"].asInteger()); - setBegin((F32)sd["begin"].asReal()); - setEnd((F32)sd["end"].asReal()); - setHollow((F32)sd["hollow"].asReal()); - return true; -} - -void LLProfileParams::copyParams(const LLProfileParams ¶ms) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - setCurveType(params.getCurveType()); - setBegin(params.getBegin()); - setEnd(params.getEnd()); - setHollow(params.getHollow()); -} - - -LLPath::~LLPath() -{ -} - -void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale) -{ - // Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane. - const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f }; - - F32 revolutions = params.getRevolutions(); - F32 skew = params.getSkew(); - F32 skew_mag = fabs(skew); - F32 hole_x = params.getScaleX() * (1.0f - skew_mag); - F32 hole_y = params.getScaleY(); - - // Calculate taper begin/end for x,y (Negative means taper the beginning) - F32 taper_x_begin = 1.0f; - F32 taper_x_end = 1.0f - params.getTaperX(); - F32 taper_y_begin = 1.0f; - F32 taper_y_end = 1.0f - params.getTaperY(); - - if ( taper_x_end > 1.0f ) - { - // Flip tapering. - taper_x_begin = 2.0f - taper_x_end; - taper_x_end = 1.0f; - } - if ( taper_y_end > 1.0f ) - { - // Flip tapering. - taper_y_begin = 2.0f - taper_y_end; - taper_y_end = 1.0f; - } - - // For spheres, the radius is usually zero. - F32 radius_start = 0.5f; - if (sides < 8) - { - radius_start = tableScale[sides]; - } - - // Scale the radius to take the hole size into account. - radius_start *= 1.0f - hole_y; - - // Now check the radius offset to calculate the start,end radius. (Negative means - // decrease the start radius instead). - F32 radius_end = radius_start; - F32 radius_offset = params.getRadiusOffset(); - if (radius_offset < 0.f) - { - radius_start *= 1.f + radius_offset; - } - else - { - radius_end *= 1.f - radius_offset; - } - - // Is the path NOT a closed loop? - mOpen = ( (params.getEnd()*end_scale - params.getBegin() < 1.0f) || - (skew_mag > 0.001f) || - (fabs(taper_x_end - taper_x_begin) > 0.001f) || - (fabs(taper_y_end - taper_y_begin) > 0.001f) || - (fabs(radius_end - radius_start) > 0.001f) ); - - F32 ang, c, s; - LLQuaternion twist, qang; - PathPt *pt; - LLVector3 path_axis (1.f, 0.f, 0.f); - //LLVector3 twist_axis(0.f, 0.f, 1.f); - F32 twist_begin = params.getTwistBegin() * twist_scale; - F32 twist_end = params.getTwist() * twist_scale; - - // We run through this once before the main loop, to make sure - // the path begins at the correct cut. - F32 step= 1.0f / sides; - F32 t = params.getBegin(); - pt = vector_append(mPath, 1); - ang = 2.0f*F_PI*revolutions * t; - s = sin(ang)*lerp(radius_start, radius_end, t); - c = cos(ang)*lerp(radius_start, radius_end, t); - - - pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s) - + lerp(-skew ,skew, t) * 0.5f, - c + lerp(0,params.getShear().mV[1],s), - s); - pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t); - pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t); - pt->mTexT = t; - - // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 - twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); - // Rotate the point around the circle's center. - qang.setQuat (ang,path_axis); - pt->mRot = twist * qang; - - t+=step; - - // Snap to a quantized parameter, so that cut does not - // affect most sample points. - t = ((S32)(t * sides)) / (F32)sides; - - // Run through the non-cut dependent points. - while (t < params.getEnd()) - { - pt = vector_append(mPath, 1); - - ang = 2.0f*F_PI*revolutions * t; - c = cos(ang)*lerp(radius_start, radius_end, t); - s = sin(ang)*lerp(radius_start, radius_end, t); - - pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s) - + lerp(-skew ,skew, t) * 0.5f, - c + lerp(0,params.getShear().mV[1],s), - s); - - pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t); - pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t); - pt->mTexT = t; - - // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 - twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); - // Rotate the point around the circle's center. - qang.setQuat (ang,path_axis); - pt->mRot = twist * qang; - - t+=step; - } - - // Make one final pass for the end cut. - t = params.getEnd(); - pt = vector_append(mPath, 1); - ang = 2.0f*F_PI*revolutions * t; - c = cos(ang)*lerp(radius_start, radius_end, t); - s = sin(ang)*lerp(radius_start, radius_end, t); - - pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s) - + lerp(-skew ,skew, t) * 0.5f, - c + lerp(0,params.getShear().mV[1],s), - s); - pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t); - pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t); - pt->mTexT = t; - - // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 - twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); - // Rotate the point around the circle's center. - qang.setQuat (ang,path_axis); - pt->mRot = twist * qang; - - mTotal = mPath.size(); -} - -const LLVector2 LLPathParams::getBeginScale() const -{ - LLVector2 begin_scale(1.f, 1.f); - if (getScaleX() > 1) - { - begin_scale.mV[0] = 2-getScaleX(); - } - if (getScaleY() > 1) - { - begin_scale.mV[1] = 2-getScaleY(); - } - return begin_scale; -} - -const LLVector2 LLPathParams::getEndScale() const -{ - LLVector2 end_scale(1.f, 1.f); - if (getScaleX() < 1) - { - end_scale.mV[0] = getScaleX(); - } - if (getScaleY() < 1) - { - end_scale.mV[1] = getScaleY(); - } - return end_scale; -} - -BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if ((!mDirty) && (!is_sculpted)) - { - return FALSE; - } - - if (detail < MIN_LOD) - { - llinfos << "Generating path with LOD < MIN! Clamping to 1" << llendl; - detail = MIN_LOD; - } - - mDirty = FALSE; - S32 np = 2; // hardcode for line - - mPath.clear(); - mOpen = TRUE; - - // Is this 0xf0 mask really necessary? DK 03/02/05 - switch (params.getCurveType() & 0xf0) - { - default: - case LL_PCODE_PATH_LINE: - { - // Take the begin/end twist into account for detail. - np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2; - if (np < split+2) - { - np = split+2; - } - - mStep = 1.0f / (np-1); - - mPath.resize(np); - - LLVector2 start_scale = params.getBeginScale(); - LLVector2 end_scale = params.getEndScale(); - - for (S32 i=0;i<np;i++) - { - F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep); - mPath[i].mPos.setVec(lerp(0,params.getShear().mV[0],t), - lerp(0,params.getShear().mV[1],t), - t - 0.5f); - mPath[i].mRot.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1); - mPath[i].mScale.mV[0] = lerp(start_scale.mV[0],end_scale.mV[0],t); - mPath[i].mScale.mV[1] = lerp(start_scale.mV[1],end_scale.mV[1],t); - mPath[i].mTexT = t; - } - } - break; - - case LL_PCODE_PATH_CIRCLE: - { - // Increase the detail as the revolutions and twist increase. - F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist()); - - S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions()); - - if (is_sculpted) - sides = sculpt_size; - - genNGon(params, sides); - } - break; - - case LL_PCODE_PATH_CIRCLE2: - { - if (params.getEnd() - params.getBegin() >= 0.99f && - params.getScaleX() >= .99f) - { - mOpen = FALSE; - } - - //genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f); - genNGon(params, llfloor(MIN_DETAIL_FACES * detail)); - - F32 t = 0.f; - F32 tStep = 1.0f / mPath.size(); - - F32 toggle = 0.5f; - for (S32 i=0;i<(S32)mPath.size();i++) - { - mPath[i].mPos.mV[0] = toggle; - if (toggle == 0.5f) - toggle = -0.5f; - else - toggle = 0.5f; - t += tStep; - } - } - - break; - - case LL_PCODE_PATH_TEST: - - np = 5; - mStep = 1.0f / (np-1); - - mPath.resize(np); - - for (S32 i=0;i<np;i++) - { - F32 t = (F32)i * mStep; - mPath[i].mPos.setVec(0, - lerp(0, -sin(F_PI*params.getTwist()*t)*0.5f,t), - lerp(-0.5, cos(F_PI*params.getTwist()*t)*0.5f,t)); - mPath[i].mScale.mV[0] = lerp(1,params.getScale().mV[0],t); - mPath[i].mScale.mV[1] = lerp(1,params.getScale().mV[1],t); - mPath[i].mTexT = t; - mPath[i].mRot.setQuat(F_PI * params.getTwist() * t,1,0,0); - } - - break; - }; - - if (params.getTwist() != params.getTwistBegin()) mOpen = TRUE; - - //if ((int(fabsf(params.getTwist() - params.getTwistBegin())*100))%100 != 0) { - // mOpen = TRUE; - //} - - return TRUE; -} - -BOOL LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - mOpen = TRUE; // Draw end caps - if (getPathLength() == 0) - { - // Path hasn't been generated yet. - // Some algorithms later assume at least TWO path points. - resizePath(2); - for (U32 i = 0; i < 2; i++) - { - mPath[i].mPos.setVec(0, 0, 0); - mPath[i].mRot.setQuat(0, 0, 0); - mPath[i].mScale.setVec(1, 1); - mPath[i].mTexT = 0; - } - } - - return TRUE; -} - - -BOOL LLPathParams::importFile(LLFILE *fp) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - - F32 tempF32; - F32 x, y; - U32 tempU32; - - while (!feof(fp)) - { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("scale",keyword)) - { - // Legacy for one dimensional scale per path - sscanf(valuestr,"%g",&tempF32); - setScale(tempF32, tempF32); - } - else if (!strcmp("scale_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setScaleX(x); - } - else if (!strcmp("scale_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setScaleY(y); - } - else if (!strcmp("shear_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setShearX(x); - } - else if (!strcmp("shear_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setShearY(y); - } - else if (!strcmp("twist",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setTwist(tempF32); - } - else if (!strcmp("twist_begin", keyword)) - { - sscanf(valuestr, "%g", &y); - setTwistBegin(y); - } - else if (!strcmp("radius_offset", keyword)) - { - sscanf(valuestr, "%g", &y); - setRadiusOffset(y); - } - else if (!strcmp("taper_x", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperX(y); - } - else if (!strcmp("taper_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperY(y); - } - else if (!strcmp("revolutions", keyword)) - { - sscanf(valuestr, "%g", &y); - setRevolutions(y); - } - else if (!strcmp("skew", keyword)) - { - sscanf(valuestr, "%g", &y); - setSkew(y); - } - else - { - llwarns << "unknown keyword " << " in path import" << llendl; - } - } - return TRUE; -} - - -BOOL LLPathParams::exportFile(LLFILE *fp) const -{ - fprintf(fp, "\t\tpath 0\n"); - fprintf(fp, "\t\t{\n"); - fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType()); - fprintf(fp, "\t\t\tbegin\t%g\n", getBegin()); - fprintf(fp, "\t\t\tend\t%g\n", getEnd()); - fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() ); - fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() ); - fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() ); - fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() ); - fprintf(fp,"\t\t\ttwist\t%g\n", getTwist()); - - fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin()); - fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset()); - fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX()); - fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY()); - fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions()); - fprintf(fp,"\t\t\tskew\t%g\n", getSkew()); - - fprintf(fp, "\t\t}\n"); - return TRUE; -} - - -BOOL LLPathParams::importLegacyStream(std::istream& input_stream) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - - F32 tempF32; - F32 x, y; - U32 tempU32; - - while (input_stream.good()) - { - input_stream.getline(buffer, BUFSIZE); - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("scale",keyword)) - { - // Legacy for one dimensional scale per path - sscanf(valuestr,"%g",&tempF32); - setScale(tempF32, tempF32); - } - else if (!strcmp("scale_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setScaleX(x); - } - else if (!strcmp("scale_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setScaleY(y); - } - else if (!strcmp("shear_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setShearX(x); - } - else if (!strcmp("shear_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setShearY(y); - } - else if (!strcmp("twist",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setTwist(tempF32); - } - else if (!strcmp("twist_begin", keyword)) - { - sscanf(valuestr, "%g", &y); - setTwistBegin(y); - } - else if (!strcmp("radius_offset", keyword)) - { - sscanf(valuestr, "%g", &y); - setRadiusOffset(y); - } - else if (!strcmp("taper_x", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperX(y); - } - else if (!strcmp("taper_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperY(y); - } - else if (!strcmp("revolutions", keyword)) - { - sscanf(valuestr, "%g", &y); - setRevolutions(y); - } - else if (!strcmp("skew", keyword)) - { - sscanf(valuestr, "%g", &y); - setSkew(y); - } - else - { - llwarns << "unknown keyword " << " in path import" << llendl; - } - } - return TRUE; -} - - -BOOL LLPathParams::exportLegacyStream(std::ostream& output_stream) const -{ - output_stream << "\t\tpath 0\n"; - output_stream << "\t\t{\n"; - output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n"; - output_stream << "\t\t\tbegin\t" << getBegin() << "\n"; - output_stream << "\t\t\tend\t" << getEnd() << "\n"; - output_stream << "\t\t\tscale_x\t" << getScaleX() << "\n"; - output_stream << "\t\t\tscale_y\t" << getScaleY() << "\n"; - output_stream << "\t\t\tshear_x\t" << getShearX() << "\n"; - output_stream << "\t\t\tshear_y\t" << getShearY() << "\n"; - output_stream <<"\t\t\ttwist\t" << getTwist() << "\n"; - - output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n"; - output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n"; - output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n"; - output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n"; - output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n"; - output_stream <<"\t\t\tskew\t" << getSkew() << "\n"; - - output_stream << "\t\t}\n"; - return TRUE; -} - -LLSD LLPathParams::asLLSD() const -{ - LLSD sd = LLSD(); - sd["curve"] = getCurveType(); - sd["begin"] = getBegin(); - sd["end"] = getEnd(); - sd["scale_x"] = getScaleX(); - sd["scale_y"] = getScaleY(); - sd["shear_x"] = getShearX(); - sd["shear_y"] = getShearY(); - sd["twist"] = getTwist(); - sd["twist_begin"] = getTwistBegin(); - sd["radius_offset"] = getRadiusOffset(); - sd["taper_x"] = getTaperX(); - sd["taper_y"] = getTaperY(); - sd["revolutions"] = getRevolutions(); - sd["skew"] = getSkew(); - - return sd; -} - -bool LLPathParams::fromLLSD(LLSD& sd) -{ - setCurveType(sd["curve"].asInteger()); - setBegin((F32)sd["begin"].asReal()); - setEnd((F32)sd["end"].asReal()); - setScaleX((F32)sd["scale_x"].asReal()); - setScaleY((F32)sd["scale_y"].asReal()); - setShearX((F32)sd["shear_x"].asReal()); - setShearY((F32)sd["shear_y"].asReal()); - setTwist((F32)sd["twist"].asReal()); - setTwistBegin((F32)sd["twist_begin"].asReal()); - setRadiusOffset((F32)sd["radius_offset"].asReal()); - setTaperX((F32)sd["taper_x"].asReal()); - setTaperY((F32)sd["taper_y"].asReal()); - setRevolutions((F32)sd["revolutions"].asReal()); - setSkew((F32)sd["skew"].asReal()); - return true; -} - -void LLPathParams::copyParams(const LLPathParams ¶ms) -{ - setCurveType(params.getCurveType()); - setBegin(params.getBegin()); - setEnd(params.getEnd()); - setScale(params.getScaleX(), params.getScaleY() ); - setShear(params.getShearX(), params.getShearY() ); - setTwist(params.getTwist()); - setTwistBegin(params.getTwistBegin()); - setRadiusOffset(params.getRadiusOffset()); - setTaper( params.getTaperX(), params.getTaperY() ); - setRevolutions(params.getRevolutions()); - setSkew(params.getSkew()); -} - -S32 profile_delete_lock = 1 ; -LLProfile::~LLProfile() -{ - if(profile_delete_lock) - { - llerrs << "LLProfile should not be deleted here!" << llendl ; - } -} - - -S32 LLVolume::sNumMeshPoints = 0; - -LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face, const BOOL is_unique) - : mParams(params) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - mUnique = is_unique; - mFaceMask = 0x0; - mDetail = detail; - mSculptLevel = -2; - mIsTetrahedron = FALSE; - mLODScaleBias.setVec(1,1,1); - mHullPoints = NULL; - mHullIndices = NULL; - mNumHullPoints = 0; - mNumHullIndices = 0; - - // set defaults - if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE) - { - mPathp = new LLDynamicPath(); - } - else - { - mPathp = new LLPath(); - } - mProfilep = new LLProfile(); - - mGenerateSingleFace = generate_single_face; - - generate(); - - if (mParams.getSculptID().isNull() && mParams.getSculptType() == LL_SCULPT_TYPE_NONE) - { - createVolumeFaces(); - } -} - -void LLVolume::resizePath(S32 length) -{ - mPathp->resizePath(length); - mVolumeFaces.clear(); -} - -void LLVolume::regen() -{ - generate(); - createVolumeFaces(); -} - -void LLVolume::genBinormals(S32 face) -{ - mVolumeFaces[face].createBinormals(); -} - -LLVolume::~LLVolume() -{ - sNumMeshPoints -= mMesh.size(); - delete mPathp; - - profile_delete_lock = 0 ; - delete mProfilep; - profile_delete_lock = 1 ; - - mPathp = NULL; - mProfilep = NULL; - mVolumeFaces.clear(); - - free(mHullPoints); - mHullPoints = NULL; - free(mHullIndices); - mHullIndices = NULL; -} - -BOOL LLVolume::generate() -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - llassert_always(mProfilep); - - //Added 10.03.05 Dave Parks - // Split is a parameter to LLProfile::generate that tesselates edges on the profile - // to prevent lighting and texture interpolation errors on triangles that are - // stretched due to twisting or scaling on the path. - S32 split = (S32) ((mDetail)*0.66f); - - if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_LINE && - (mParams.getPathParams().getScale().mV[0] != 1.0f || - mParams.getPathParams().getScale().mV[1] != 1.0f) && - (mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_SQUARE || - mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_ISOTRI || - mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_EQUALTRI || - mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_RIGHTTRI)) - { - split = 0; - } - - mLODScaleBias.setVec(0.5f, 0.5f, 0.5f); - - F32 profile_detail = mDetail; - F32 path_detail = mDetail; - - U8 path_type = mParams.getPathParams().getCurveType(); - U8 profile_type = mParams.getProfileParams().getCurveType(); - - if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE) - { //cylinders don't care about Z-Axis - mLODScaleBias.setVec(0.6f, 0.6f, 0.0f); - } - else if (path_type == LL_PCODE_PATH_CIRCLE) - { - mLODScaleBias.setVec(0.6f, 0.6f, 0.6f); - } - - //******************************************************************** - //debug info, to be removed - if((U32)(mPathp->mPath.size() * mProfilep->mProfile.size()) > (1u << 20)) - { - llinfos << "sizeS: " << mPathp->mPath.size() << " sizeT: " << mProfilep->mProfile.size() << llendl ; - llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ; - llinfos << mParams << llendl ; - llinfos << "more info to check if mProfilep is deleted or not." << llendl ; - llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ; - - llerrs << "LLVolume corrupted!" << llendl ; - } - //******************************************************************** - - BOOL regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split); - BOOL regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split); - - if (regenPath || regenProf ) - { - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - //******************************************************************** - //debug info, to be removed - if((U32)(sizeS * sizeT) > (1u << 20)) - { - llinfos << "regenPath: " << (S32)regenPath << " regenProf: " << (S32)regenProf << llendl ; - llinfos << "sizeS: " << sizeS << " sizeT: " << sizeT << llendl ; - llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ; - llinfos << mParams << llendl ; - llinfos << "more info to check if mProfilep is deleted or not." << llendl ; - llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ; - - llerrs << "LLVolume corrupted!" << llendl ; - } - //******************************************************************** - - sNumMeshPoints -= mMesh.size(); - mMesh.resize(sizeT * sizeS); - sNumMeshPoints += mMesh.size(); - - //generate vertex positions - - // Run along the path. - for (S32 s = 0; s < sizeS; ++s) - { - LLVector2 scale = mPathp->mPath[s].mScale; - LLQuaternion rot = mPathp->mPath[s].mRot; - - // Run along the profile. - for (S32 t = 0; t < sizeT; ++t) - { - S32 m = s*sizeT + t; - Point& pt = mMesh[m]; - - pt.mPos.mV[0] = mProfilep->mProfile[t].mV[0] * scale.mV[0]; - pt.mPos.mV[1] = mProfilep->mProfile[t].mV[1] * scale.mV[1]; - pt.mPos.mV[2] = 0.0f; - pt.mPos = pt.mPos * rot; - pt.mPos += mPathp->mPath[s].mPos; - } - } - - for (std::vector<LLProfile::Face>::iterator iter = mProfilep->mFaces.begin(); - iter != mProfilep->mFaces.end(); ++iter) - { - LLFaceID id = iter->mFaceID; - mFaceMask |= id; - } - - return TRUE; - } - return FALSE; -} - -void LLVolumeFace::VertexData::init()
+/**
+ * @file llvolume.cpp
+ *
+ * $LicenseInfo:firstyear=2002&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2010, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#include "linden_common.h"
+#include "llmath.h"
+
+#include <set>
+
+#include "llerror.h"
+#include "llmemtype.h"
+
+#include "llvolumemgr.h"
+#include "v2math.h"
+#include "v3math.h"
+#include "v4math.h"
+#include "m4math.h"
+#include "m3math.h"
+#include "lldarray.h"
+#include "llvolume.h"
+#include "llstl.h"
+
+#define DEBUG_SILHOUETTE_BINORMALS 0
+#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette
+#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette
+
+const F32 CUT_MIN = 0.f;
+const F32 CUT_MAX = 1.f;
+const F32 MIN_CUT_DELTA = 0.02f;
+
+const F32 HOLLOW_MIN = 0.f;
+const F32 HOLLOW_MAX = 0.95f;
+const F32 HOLLOW_MAX_SQUARE = 0.7f;
+
+const F32 TWIST_MIN = -1.f;
+const F32 TWIST_MAX = 1.f;
+
+const F32 RATIO_MIN = 0.f;
+const F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper
+
+const F32 HOLE_X_MIN= 0.05f;
+const F32 HOLE_X_MAX= 1.0f;
+
+const F32 HOLE_Y_MIN= 0.05f;
+const F32 HOLE_Y_MAX= 0.5f;
+
+const F32 SHEAR_MIN = -0.5f;
+const F32 SHEAR_MAX = 0.5f;
+
+const F32 REV_MIN = 1.f;
+const F32 REV_MAX = 4.f;
+
+const F32 TAPER_MIN = -1.f;
+const F32 TAPER_MAX = 1.f;
+
+const F32 SKEW_MIN = -0.95f;
+const F32 SKEW_MAX = 0.95f;
+
+const F32 SCULPT_MIN_AREA = 0.002f;
+const S32 SCULPT_MIN_AREA_DETAIL = 1;
+
+#define GEN_TRI_STRIP 0
+
+BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm)
+{
+ LLVector3 test = (pt2-pt1)%(pt3-pt2);
+
+ //answer
+ if(test * norm < 0)
+ {
+ return FALSE;
+ }
+ else
+ {
+ return TRUE;
+ }
+}
+
+BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size)
+{
+ float fAWdU[3];
+ LLVector3 dir;
+ LLVector3 diff;
+
+ for (U32 i = 0; i < 3; i++)
+ {
+ dir.mV[i] = 0.5f * (end.mV[i] - start.mV[i]);
+ diff.mV[i] = (0.5f * (end.mV[i] + start.mV[i])) - center.mV[i];
+ fAWdU[i] = fabsf(dir.mV[i]);
+ if(fabsf(diff.mV[i])>size.mV[i] + fAWdU[i]) return false;
+ }
+
+ float f;
+ f = dir.mV[1] * diff.mV[2] - dir.mV[2] * diff.mV[1]; if(fabsf(f)>size.mV[1]*fAWdU[2] + size.mV[2]*fAWdU[1]) return false;
+ f = dir.mV[2] * diff.mV[0] - dir.mV[0] * diff.mV[2]; if(fabsf(f)>size.mV[0]*fAWdU[2] + size.mV[2]*fAWdU[0]) return false;
+ f = dir.mV[0] * diff.mV[1] - dir.mV[1] * diff.mV[0]; if(fabsf(f)>size.mV[0]*fAWdU[1] + size.mV[1]*fAWdU[0]) return false;
+
+ return true;
+}
+
+
+// intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir.
+// returns TRUE if intersecting and returns barycentric coordinates in intersection_a, intersection_b,
+// and returns the intersection point along dir in intersection_t.
+
+// Moller-Trumbore algorithm
+BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir,
+ F32* intersection_a, F32* intersection_b, F32* intersection_t, BOOL two_sided)
+{
+ F32 u, v, t;
+
+ /* find vectors for two edges sharing vert0 */
+ LLVector3 edge1 = vert1 - vert0;
+
+ LLVector3 edge2 = vert2 - vert0;;
+
+ /* begin calculating determinant - also used to calculate U parameter */
+ LLVector3 pvec = dir % edge2;
+
+ /* if determinant is near zero, ray lies in plane of triangle */
+ F32 det = edge1 * pvec;
+
+ if (!two_sided)
+ {
+ if (det < F_APPROXIMATELY_ZERO)
+ {
+ return FALSE;
+ }
+
+ /* calculate distance from vert0 to ray origin */
+ LLVector3 tvec = orig - vert0;
+
+ /* calculate U parameter and test bounds */
+ u = tvec * pvec;
+
+ if (u < 0.f || u > det)
+ {
+ return FALSE;
+ }
+
+ /* prepare to test V parameter */
+ LLVector3 qvec = tvec % edge1;
+
+ /* calculate V parameter and test bounds */
+ v = dir * qvec;
+ if (v < 0.f || u + v > det)
+ {
+ return FALSE;
+ }
+
+ /* calculate t, scale parameters, ray intersects triangle */
+ t = edge2 * qvec;
+ F32 inv_det = 1.0 / det;
+ t *= inv_det;
+ u *= inv_det;
+ v *= inv_det;
+ }
+
+ else // two sided
+ {
+ if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO)
+ {
+ return FALSE;
+ }
+ F32 inv_det = 1.0 / det;
+
+ /* calculate distance from vert0 to ray origin */
+ LLVector3 tvec = orig - vert0;
+
+ /* calculate U parameter and test bounds */
+ u = (tvec * pvec) * inv_det;
+ if (u < 0.f || u > 1.f)
+ {
+ return FALSE;
+ }
+
+ /* prepare to test V parameter */
+ LLVector3 qvec = tvec - edge1;
+
+ /* calculate V parameter and test bounds */
+ v = (dir * qvec) * inv_det;
+
+ if (v < 0.f || u + v > 1.f)
+ {
+ return FALSE;
+ }
+
+ /* calculate t, ray intersects triangle */
+ t = (edge2 * qvec) * inv_det;
+ }
+
+ if (intersection_a != NULL)
+ *intersection_a = u;
+ if (intersection_b != NULL)
+ *intersection_b = v;
+ if (intersection_t != NULL)
+ *intersection_t = t;
+
+
+ return TRUE;
+}
+
+
+//-------------------------------------------------------------------
+// statics
+//-------------------------------------------------------------------
+
+
+//----------------------------------------------------
+
+LLProfile::Face* LLProfile::addCap(S16 faceID)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ Face *face = vector_append(mFaces, 1);
+
+ face->mIndex = 0;
+ face->mCount = mTotal;
+ face->mScaleU= 1.0f;
+ face->mCap = TRUE;
+ face->mFaceID = faceID;
+ return face;
+}
+
+LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, BOOL flat)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ Face *face = vector_append(mFaces, 1);
+
+ face->mIndex = i;
+ face->mCount = count;
+ face->mScaleU= scaleU;
+
+ face->mFlat = flat;
+ face->mCap = FALSE;
+ face->mFaceID = faceID;
+ return face;
+}
+
+// What is the bevel parameter used for? - DJS 04/05/02
+// Bevel parameter is currently unused but presumedly would support
+// filleted and chamfered corners
+void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ // Generate an n-sided "circular" path.
+ // 0 is (1,0), and we go counter-clockwise along a circular path from there.
+ const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
+ F32 scale = 0.5f;
+ F32 t, t_step, t_first, t_fraction, ang, ang_step;
+ LLVector3 pt1,pt2;
+
+ F32 begin = params.getBegin();
+ F32 end = params.getEnd();
+
+ t_step = 1.0f / sides;
+ ang_step = 2.0f*F_PI*t_step*ang_scale;
+
+ // Scale to have size "match" scale. Compensates to get object to generally fill bounding box.
+
+ S32 total_sides = llround(sides / ang_scale); // Total number of sides all around
+
+ if (total_sides < 8)
+ {
+ scale = tableScale[total_sides];
+ }
+
+ t_first = floor(begin * sides) / (F32)sides;
+
+ // pt1 is the first point on the fractional face.
+ // Starting t and ang values for the first face
+ t = t_first;
+ ang = 2.0f*F_PI*(t*ang_scale + offset);
+ pt1.setVec(cos(ang)*scale,sin(ang)*scale, t);
+
+ // Increment to the next point.
+ // pt2 is the end point on the fractional face
+ t += t_step;
+ ang += ang_step;
+ pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);
+
+ t_fraction = (begin - t_first)*sides;
+
+ // Only use if it's not almost exactly on an edge.
+ if (t_fraction < 0.9999f)
+ {
+ LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
+ mProfile.push_back(new_pt);
+ }
+
+ // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
+ while (t < end)
+ {
+ // Iterate through all the integer steps of t.
+ pt1.setVec(cos(ang)*scale,sin(ang)*scale,t);
+
+ if (mProfile.size() > 0) {
+ LLVector3 p = mProfile[mProfile.size()-1];
+ for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
+ mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1));
+ }
+ }
+ mProfile.push_back(pt1);
+
+ t += t_step;
+ ang += ang_step;
+ }
+
+ t_fraction = (end - (t - t_step))*sides;
+
+ // pt1 is the first point on the fractional face
+ // pt2 is the end point on the fractional face
+ pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);
+
+ // Find the fraction that we need to add to the end point.
+ t_fraction = (end - (t - t_step))*sides;
+ if (t_fraction > 0.0001f)
+ {
+ LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
+
+ if (mProfile.size() > 0) {
+ LLVector3 p = mProfile[mProfile.size()-1];
+ for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
+ mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1));
+ }
+ }
+ mProfile.push_back(new_pt);
+ }
+
+ // If we're sliced, the profile is open.
+ if ((end - begin)*ang_scale < 0.99f)
+ {
+ if ((end - begin)*ang_scale > 0.5f)
+ {
+ mConcave = TRUE;
+ }
+ else
+ {
+ mConcave = FALSE;
+ }
+ mOpen = TRUE;
+ if (params.getHollow() <= 0)
+ {
+ // put center point if not hollow.
+ mProfile.push_back(LLVector3(0,0,0));
+ }
+ }
+ else
+ {
+ // The profile isn't open.
+ mOpen = FALSE;
+ mConcave = FALSE;
+ }
+
+ mTotal = mProfile.size();
+}
+
+void LLProfile::genNormals(const LLProfileParams& params)
+{
+ S32 count = mProfile.size();
+
+ S32 outer_count;
+ if (mTotalOut)
+ {
+ outer_count = mTotalOut;
+ }
+ else
+ {
+ outer_count = mTotal / 2;
+ }
+
+ mEdgeNormals.resize(count * 2);
+ mEdgeCenters.resize(count * 2);
+ mNormals.resize(count);
+
+ LLVector2 pt0,pt1;
+
+ BOOL hollow = (params.getHollow() > 0);
+
+ S32 i0, i1, i2, i3, i4;
+
+ // Parametrically generate normal
+ for (i2 = 0; i2 < count; i2++)
+ {
+ mNormals[i2].mV[0] = mProfile[i2].mV[0];
+ mNormals[i2].mV[1] = mProfile[i2].mV[1];
+ if (hollow && (i2 >= outer_count))
+ {
+ mNormals[i2] *= -1.f;
+ }
+ if (mNormals[i2].magVec() < 0.001)
+ {
+ // Special case for point at center, get adjacent points.
+ i1 = (i2 - 1) >= 0 ? i2 - 1 : count - 1;
+ i0 = (i1 - 1) >= 0 ? i1 - 1 : count - 1;
+ i3 = (i2 + 1) < count ? i2 + 1 : 0;
+ i4 = (i3 + 1) < count ? i3 + 1 : 0;
+
+ pt0.setVec(mProfile[i1].mV[VX] + mProfile[i1].mV[VX] - mProfile[i0].mV[VX],
+ mProfile[i1].mV[VY] + mProfile[i1].mV[VY] - mProfile[i0].mV[VY]);
+ pt1.setVec(mProfile[i3].mV[VX] + mProfile[i3].mV[VX] - mProfile[i4].mV[VX],
+ mProfile[i3].mV[VY] + mProfile[i3].mV[VY] - mProfile[i4].mV[VY]);
+
+ mNormals[i2] = pt0 + pt1;
+ mNormals[i2] *= 0.5f;
+ }
+ mNormals[i2].normVec();
+ }
+
+ S32 num_normal_sets = isConcave() ? 2 : 1;
+ for (S32 normal_set = 0; normal_set < num_normal_sets; normal_set++)
+ {
+ S32 point_num;
+ for (point_num = 0; point_num < mTotal; point_num++)
+ {
+ LLVector3 point_1 = mProfile[point_num];
+ point_1.mV[VZ] = 0.f;
+
+ LLVector3 point_2;
+
+ if (isConcave() && normal_set == 0 && point_num == (mTotal - 1) / 2)
+ {
+ point_2 = mProfile[mTotal - 1];
+ }
+ else if (isConcave() && normal_set == 1 && point_num == mTotal - 1)
+ {
+ point_2 = mProfile[(mTotal - 1) / 2];
+ }
+ else
+ {
+ LLVector3 delta_pos;
+ S32 neighbor_point = (point_num + 1) % mTotal;
+ while(delta_pos.magVecSquared() < 0.01f * 0.01f)
+ {
+ point_2 = mProfile[neighbor_point];
+ delta_pos = point_2 - point_1;
+ neighbor_point = (neighbor_point + 1) % mTotal;
+ if (neighbor_point == point_num)
+ {
+ break;
+ }
+ }
+ }
+
+ point_2.mV[VZ] = 0.f;
+ LLVector3 face_normal = (point_2 - point_1) % LLVector3::z_axis;
+ face_normal.normVec();
+ mEdgeNormals[normal_set * count + point_num] = face_normal;
+ mEdgeCenters[normal_set * count + point_num] = lerp(point_1, point_2, 0.5f);
+ }
+ }
+}
+
+
+// Hollow is percent of the original bounding box, not of this particular
+// profile's geometry. Thus, a swept triangle needs lower hollow values than
+// a swept square.
+LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split)
+{
+ // Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them.
+
+ // Total add has number of vertices on outside.
+ mTotalOut = mTotal;
+
+ // Why is the "bevel" parameter -1? DJS 04/05/02
+ genNGon(params, llfloor(sides),offset,-1, ang_scale, split);
+
+ Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat);
+
+ std::vector<LLVector3> pt;
+ pt.resize(mTotal) ;
+
+ for (S32 i=mTotalOut;i<mTotal;i++)
+ {
+ pt[i] = mProfile[i] * box_hollow;
+ }
+
+ S32 j=mTotal-1;
+ for (S32 i=mTotalOut;i<mTotal;i++)
+ {
+ mProfile[i] = pt[j--];
+ }
+
+ for (S32 i=0;i<(S32)mFaces.size();i++)
+ {
+ if (mFaces[i].mCap)
+ {
+ mFaces[i].mCount *= 2;
+ }
+ }
+
+ return face;
+}
+
+
+
+BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split,
+ BOOL is_sculpted, S32 sculpt_size)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ if ((!mDirty) && (!is_sculpted))
+ {
+ return FALSE;
+ }
+ mDirty = FALSE;
+
+ if (detail < MIN_LOD)
+ {
+ llinfos << "Generating profile with LOD < MIN_LOD. CLAMPING" << llendl;
+ detail = MIN_LOD;
+ }
+
+ mProfile.clear();
+ mFaces.clear();
+
+ // Generate the face data
+ S32 i;
+ F32 begin = params.getBegin();
+ F32 end = params.getEnd();
+ F32 hollow = params.getHollow();
+
+ // Quick validation to eliminate some server crashes.
+ if (begin > end - 0.01f)
+ {
+ llwarns << "LLProfile::generate() assertion failed (begin >= end)" << llendl;
+ return FALSE;
+ }
+
+ S32 face_num = 0;
+
+ switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ genNGon(params, 4,-0.375, 0, 1, split);
+ if (path_open)
+ {
+ addCap (LL_FACE_PATH_BEGIN);
+ }
+
+ for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++)
+ {
+ addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
+ }
+
+ for (i = 0; i <(S32) mProfile.size(); i++)
+ {
+ // Scale by 4 to generate proper tex coords.
+ mProfile[i].mV[2] *= 4.f;
+ }
+
+ if (hollow)
+ {
+ switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
+ {
+ case LL_PCODE_HOLE_TRIANGLE:
+ // This offset is not correct, but we can't change it now... DK 11/17/04
+ addHole(params, TRUE, 3, -0.375f, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ // TODO: Compute actual detail levels for cubes
+ addHole(params, FALSE, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f);
+ break;
+ case LL_PCODE_HOLE_SAME:
+ case LL_PCODE_HOLE_SQUARE:
+ default:
+ addHole(params, TRUE, 4, -0.375f, hollow, 1.f, split);
+ break;
+ }
+ }
+
+ if (path_open) {
+ mFaces[0].mCount = mTotal;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ {
+ genNGon(params, 3,0, 0, 1, split);
+ for (i = 0; i <(S32) mProfile.size(); i++)
+ {
+ // Scale by 3 to generate proper tex coords.
+ mProfile[i].mV[2] *= 3.f;
+ }
+
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_BEGIN);
+ }
+
+ for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++)
+ {
+ addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
+ }
+ if (hollow)
+ {
+ // Swept triangles need smaller hollowness values,
+ // because the triangle doesn't fill the bounding box.
+ F32 triangle_hollow = hollow / 2.f;
+
+ switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
+ {
+ case LL_PCODE_HOLE_CIRCLE:
+ // TODO: Actually generate level of detail for triangles
+ addHole(params, FALSE, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f);
+ break;
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(params, TRUE, 4, 0, triangle_hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_SAME:
+ case LL_PCODE_HOLE_TRIANGLE:
+ default:
+ addHole(params, TRUE, 3, 0, triangle_hollow, 1.f, split);
+ break;
+ }
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ F32 circle_detail = MIN_DETAIL_FACES * detail;
+ if (hollow)
+ {
+ hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides,
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
+ }
+ }
+
+ S32 sides = (S32)circle_detail;
+
+ if (is_sculpted)
+ sides = sculpt_size;
+
+ genNGon(params, sides);
+
+ if (path_open)
+ {
+ addCap (LL_FACE_PATH_BEGIN);
+ }
+
+ if (mOpen && !hollow)
+ {
+ addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+ else
+ {
+ addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+
+ if (hollow)
+ {
+ switch (hole_type)
+ {
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(params, TRUE, 4, 0, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_TRIANGLE:
+ addHole(params, TRUE, 3, 0, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ case LL_PCODE_HOLE_SAME:
+ default:
+ addHole(params, FALSE, circle_detail, 0, hollow, 1.f);
+ break;
+ }
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ // Number of faces is cut in half because it's only a half-circle.
+ F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
+ if (hollow)
+ {
+ hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides (div 2),
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
+ }
+ }
+ genNGon(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_BEGIN);
+ }
+ if (mOpen && !params.getHollow())
+ {
+ addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+ else
+ {
+ addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+
+ if (hollow)
+ {
+ switch (hole_type)
+ {
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(params, TRUE, 2, 0.5f, hollow, 0.5f, split);
+ break;
+ case LL_PCODE_HOLE_TRIANGLE:
+ addHole(params, TRUE, 3, 0.5f, hollow, 0.5f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ case LL_PCODE_HOLE_SAME:
+ default:
+ addHole(params, FALSE, circle_detail, 0.5f, hollow, 0.5f);
+ break;
+ }
+ }
+
+ // Special case for openness of sphere
+ if ((params.getEnd() - params.getBegin()) < 1.f)
+ {
+ mOpen = TRUE;
+ }
+ else if (!hollow)
+ {
+ mOpen = FALSE;
+ mProfile.push_back(mProfile[0]);
+ mTotal++;
+ }
+ }
+ break;
+ default:
+ llerrs << "Unknown profile: getCurveType()=" << params.getCurveType() << llendl;
+ break;
+ };
+
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_END); // bottom
+ }
+
+ if ( mOpen) // interior edge caps
+ {
+ addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, TRUE);
+
+ if (hollow)
+ {
+ addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, TRUE);
+ }
+ else
+ {
+ addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE);
+ }
+ }
+
+ //genNormals(params);
+
+ return TRUE;
+}
+
+
+
+BOOL LLProfileParams::importFile(LLFILE *fp)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+ F32 tempF32;
+ U32 tempU32;
+
+ while (!feof(fp))
+ {
+ if (fgets(buffer, BUFSIZE, fp) == NULL)
+ {
+ buffer[0] = '\0';
+ }
+
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword, valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("hollow",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setHollow(tempF32);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLProfileParams::exportFile(LLFILE *fp) const
+{
+ fprintf(fp,"\t\tprofile 0\n");
+ fprintf(fp,"\t\t{\n");
+ fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType());
+ fprintf(fp,"\t\t\tbegin\t%g\n", getBegin());
+ fprintf(fp,"\t\t\tend\t%g\n", getEnd());
+ fprintf(fp,"\t\t\thollow\t%g\n", getHollow());
+ fprintf(fp, "\t\t}\n");
+ return TRUE;
+}
+
+
+BOOL LLProfileParams::importLegacyStream(std::istream& input_stream)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+ F32 tempF32;
+ U32 tempU32;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword,
+ valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("hollow",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setHollow(tempF32);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLProfileParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream <<"\t\tprofile 0\n";
+ output_stream <<"\t\t{\n";
+ output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n";
+ output_stream <<"\t\t\tbegin\t" << getBegin() << "\n";
+ output_stream <<"\t\t\tend\t" << getEnd() << "\n";
+ output_stream <<"\t\t\thollow\t" << getHollow() << "\n";
+ output_stream << "\t\t}\n";
+ return TRUE;
+}
+
+LLSD LLProfileParams::asLLSD() const
+{
+ LLSD sd;
+
+ sd["curve"] = getCurveType();
+ sd["begin"] = getBegin();
+ sd["end"] = getEnd();
+ sd["hollow"] = getHollow();
+ return sd;
+}
+
+bool LLProfileParams::fromLLSD(LLSD& sd)
+{
+ setCurveType(sd["curve"].asInteger());
+ setBegin((F32)sd["begin"].asReal());
+ setEnd((F32)sd["end"].asReal());
+ setHollow((F32)sd["hollow"].asReal());
+ return true;
+}
+
+void LLProfileParams::copyParams(const LLProfileParams ¶ms)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+ setCurveType(params.getCurveType());
+ setBegin(params.getBegin());
+ setEnd(params.getEnd());
+ setHollow(params.getHollow());
+}
+
+
+LLPath::~LLPath()
+{
+}
+
+void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
+{
+ // Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane.
+ const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
+
+ F32 revolutions = params.getRevolutions();
+ F32 skew = params.getSkew();
+ F32 skew_mag = fabs(skew);
+ F32 hole_x = params.getScaleX() * (1.0f - skew_mag);
+ F32 hole_y = params.getScaleY();
+
+ // Calculate taper begin/end for x,y (Negative means taper the beginning)
+ F32 taper_x_begin = 1.0f;
+ F32 taper_x_end = 1.0f - params.getTaperX();
+ F32 taper_y_begin = 1.0f;
+ F32 taper_y_end = 1.0f - params.getTaperY();
+
+ if ( taper_x_end > 1.0f )
+ {
+ // Flip tapering.
+ taper_x_begin = 2.0f - taper_x_end;
+ taper_x_end = 1.0f;
+ }
+ if ( taper_y_end > 1.0f )
+ {
+ // Flip tapering.
+ taper_y_begin = 2.0f - taper_y_end;
+ taper_y_end = 1.0f;
+ }
+
+ // For spheres, the radius is usually zero.
+ F32 radius_start = 0.5f;
+ if (sides < 8)
+ {
+ radius_start = tableScale[sides];
+ }
+
+ // Scale the radius to take the hole size into account.
+ radius_start *= 1.0f - hole_y;
+
+ // Now check the radius offset to calculate the start,end radius. (Negative means
+ // decrease the start radius instead).
+ F32 radius_end = radius_start;
+ F32 radius_offset = params.getRadiusOffset();
+ if (radius_offset < 0.f)
+ {
+ radius_start *= 1.f + radius_offset;
+ }
+ else
+ {
+ radius_end *= 1.f - radius_offset;
+ }
+
+ // Is the path NOT a closed loop?
+ mOpen = ( (params.getEnd()*end_scale - params.getBegin() < 1.0f) ||
+ (skew_mag > 0.001f) ||
+ (fabs(taper_x_end - taper_x_begin) > 0.001f) ||
+ (fabs(taper_y_end - taper_y_begin) > 0.001f) ||
+ (fabs(radius_end - radius_start) > 0.001f) );
+
+ F32 ang, c, s;
+ LLQuaternion twist, qang;
+ PathPt *pt;
+ LLVector3 path_axis (1.f, 0.f, 0.f);
+ //LLVector3 twist_axis(0.f, 0.f, 1.f);
+ F32 twist_begin = params.getTwistBegin() * twist_scale;
+ F32 twist_end = params.getTwist() * twist_scale;
+
+ // We run through this once before the main loop, to make sure
+ // the path begins at the correct cut.
+ F32 step= 1.0f / sides;
+ F32 t = params.getBegin();
+ pt = vector_append(mPath, 1);
+ ang = 2.0f*F_PI*revolutions * t;
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+
+
+ pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,params.getShear().mV[1],s),
+ s);
+ pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
+ pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ pt->mRot = twist * qang;
+
+ t+=step;
+
+ // Snap to a quantized parameter, so that cut does not
+ // affect most sample points.
+ t = ((S32)(t * sides)) / (F32)sides;
+
+ // Run through the non-cut dependent points.
+ while (t < params.getEnd())
+ {
+ pt = vector_append(mPath, 1);
+
+ ang = 2.0f*F_PI*revolutions * t;
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+
+ pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,params.getShear().mV[1],s),
+ s);
+
+ pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
+ pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ pt->mRot = twist * qang;
+
+ t+=step;
+ }
+
+ // Make one final pass for the end cut.
+ t = params.getEnd();
+ pt = vector_append(mPath, 1);
+ ang = 2.0f*F_PI*revolutions * t;
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+
+ pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,params.getShear().mV[1],s),
+ s);
+ pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
+ pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ pt->mRot = twist * qang;
+
+ mTotal = mPath.size();
+}
+
+const LLVector2 LLPathParams::getBeginScale() const
+{
+ LLVector2 begin_scale(1.f, 1.f);
+ if (getScaleX() > 1)
+ {
+ begin_scale.mV[0] = 2-getScaleX();
+ }
+ if (getScaleY() > 1)
+ {
+ begin_scale.mV[1] = 2-getScaleY();
+ }
+ return begin_scale;
+}
+
+const LLVector2 LLPathParams::getEndScale() const
+{
+ LLVector2 end_scale(1.f, 1.f);
+ if (getScaleX() < 1)
+ {
+ end_scale.mV[0] = getScaleX();
+ }
+ if (getScaleY() < 1)
+ {
+ end_scale.mV[1] = getScaleY();
+ }
+ return end_scale;
+}
+
+BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split,
+ BOOL is_sculpted, S32 sculpt_size)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ if ((!mDirty) && (!is_sculpted))
+ {
+ return FALSE;
+ }
+
+ if (detail < MIN_LOD)
+ {
+ llinfos << "Generating path with LOD < MIN! Clamping to 1" << llendl;
+ detail = MIN_LOD;
+ }
+
+ mDirty = FALSE;
+ S32 np = 2; // hardcode for line
+
+ mPath.clear();
+ mOpen = TRUE;
+
+ // Is this 0xf0 mask really necessary? DK 03/02/05
+ switch (params.getCurveType() & 0xf0)
+ {
+ default:
+ case LL_PCODE_PATH_LINE:
+ {
+ // Take the begin/end twist into account for detail.
+ np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
+ if (np < split+2)
+ {
+ np = split+2;
+ }
+
+ mStep = 1.0f / (np-1);
+
+ mPath.resize(np);
+
+ LLVector2 start_scale = params.getBeginScale();
+ LLVector2 end_scale = params.getEndScale();
+
+ for (S32 i=0;i<np;i++)
+ {
+ F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep);
+ mPath[i].mPos.setVec(lerp(0,params.getShear().mV[0],t),
+ lerp(0,params.getShear().mV[1],t),
+ t - 0.5f);
+ mPath[i].mRot.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1);
+ mPath[i].mScale.mV[0] = lerp(start_scale.mV[0],end_scale.mV[0],t);
+ mPath[i].mScale.mV[1] = lerp(start_scale.mV[1],end_scale.mV[1],t);
+ mPath[i].mTexT = t;
+ }
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE:
+ {
+ // Increase the detail as the revolutions and twist increase.
+ F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());
+
+ S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());
+
+ if (is_sculpted)
+ sides = sculpt_size;
+
+ genNGon(params, sides);
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE2:
+ {
+ if (params.getEnd() - params.getBegin() >= 0.99f &&
+ params.getScaleX() >= .99f)
+ {
+ mOpen = FALSE;
+ }
+
+ //genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
+ genNGon(params, llfloor(MIN_DETAIL_FACES * detail));
+
+ F32 t = 0.f;
+ F32 tStep = 1.0f / mPath.size();
+
+ F32 toggle = 0.5f;
+ for (S32 i=0;i<(S32)mPath.size();i++)
+ {
+ mPath[i].mPos.mV[0] = toggle;
+ if (toggle == 0.5f)
+ toggle = -0.5f;
+ else
+ toggle = 0.5f;
+ t += tStep;
+ }
+ }
+
+ break;
+
+ case LL_PCODE_PATH_TEST:
+
+ np = 5;
+ mStep = 1.0f / (np-1);
+
+ mPath.resize(np);
+
+ for (S32 i=0;i<np;i++)
+ {
+ F32 t = (F32)i * mStep;
+ mPath[i].mPos.setVec(0,
+ lerp(0, -sin(F_PI*params.getTwist()*t)*0.5f,t),
+ lerp(-0.5, cos(F_PI*params.getTwist()*t)*0.5f,t));
+ mPath[i].mScale.mV[0] = lerp(1,params.getScale().mV[0],t);
+ mPath[i].mScale.mV[1] = lerp(1,params.getScale().mV[1],t);
+ mPath[i].mTexT = t;
+ mPath[i].mRot.setQuat(F_PI * params.getTwist() * t,1,0,0);
+ }
+
+ break;
+ };
+
+ if (params.getTwist() != params.getTwistBegin()) mOpen = TRUE;
+
+ //if ((int(fabsf(params.getTwist() - params.getTwistBegin())*100))%100 != 0) {
+ // mOpen = TRUE;
+ //}
+
+ return TRUE;
+}
+
+BOOL LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split,
+ BOOL is_sculpted, S32 sculpt_size)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ mOpen = TRUE; // Draw end caps
+ if (getPathLength() == 0)
+ {
+ // Path hasn't been generated yet.
+ // Some algorithms later assume at least TWO path points.
+ resizePath(2);
+ for (U32 i = 0; i < 2; i++)
+ {
+ mPath[i].mPos.setVec(0, 0, 0);
+ mPath[i].mRot.setQuat(0, 0, 0);
+ mPath[i].mScale.setVec(1, 1);
+ mPath[i].mTexT = 0;
+ }
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLPathParams::importFile(LLFILE *fp)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+
+ F32 tempF32;
+ F32 x, y;
+ U32 tempU32;
+
+ while (!feof(fp))
+ {
+ if (fgets(buffer, BUFSIZE, fp) == NULL)
+ {
+ buffer[0] = '\0';
+ }
+
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword, valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("scale",keyword))
+ {
+ // Legacy for one dimensional scale per path
+ sscanf(valuestr,"%g",&tempF32);
+ setScale(tempF32, tempF32);
+ }
+ else if (!strcmp("scale_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setScaleX(x);
+ }
+ else if (!strcmp("scale_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setScaleY(y);
+ }
+ else if (!strcmp("shear_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setShearX(x);
+ }
+ else if (!strcmp("shear_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setShearY(y);
+ }
+ else if (!strcmp("twist",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setTwist(tempF32);
+ }
+ else if (!strcmp("twist_begin", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTwistBegin(y);
+ }
+ else if (!strcmp("radius_offset", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRadiusOffset(y);
+ }
+ else if (!strcmp("taper_x", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperX(y);
+ }
+ else if (!strcmp("taper_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperY(y);
+ }
+ else if (!strcmp("revolutions", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRevolutions(y);
+ }
+ else if (!strcmp("skew", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setSkew(y);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << " in path import" << llendl;
+ }
+ }
+ return TRUE;
+}
+
+
+BOOL LLPathParams::exportFile(LLFILE *fp) const
+{
+ fprintf(fp, "\t\tpath 0\n");
+ fprintf(fp, "\t\t{\n");
+ fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType());
+ fprintf(fp, "\t\t\tbegin\t%g\n", getBegin());
+ fprintf(fp, "\t\t\tend\t%g\n", getEnd());
+ fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() );
+ fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() );
+ fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() );
+ fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() );
+ fprintf(fp,"\t\t\ttwist\t%g\n", getTwist());
+
+ fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin());
+ fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset());
+ fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX());
+ fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY());
+ fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions());
+ fprintf(fp,"\t\t\tskew\t%g\n", getSkew());
+
+ fprintf(fp, "\t\t}\n");
+ return TRUE;
+}
+
+
+BOOL LLPathParams::importLegacyStream(std::istream& input_stream)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+
+ F32 tempF32;
+ F32 x, y;
+ U32 tempU32;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword, valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("scale",keyword))
+ {
+ // Legacy for one dimensional scale per path
+ sscanf(valuestr,"%g",&tempF32);
+ setScale(tempF32, tempF32);
+ }
+ else if (!strcmp("scale_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setScaleX(x);
+ }
+ else if (!strcmp("scale_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setScaleY(y);
+ }
+ else if (!strcmp("shear_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setShearX(x);
+ }
+ else if (!strcmp("shear_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setShearY(y);
+ }
+ else if (!strcmp("twist",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setTwist(tempF32);
+ }
+ else if (!strcmp("twist_begin", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTwistBegin(y);
+ }
+ else if (!strcmp("radius_offset", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRadiusOffset(y);
+ }
+ else if (!strcmp("taper_x", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperX(y);
+ }
+ else if (!strcmp("taper_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperY(y);
+ }
+ else if (!strcmp("revolutions", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRevolutions(y);
+ }
+ else if (!strcmp("skew", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setSkew(y);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << " in path import" << llendl;
+ }
+ }
+ return TRUE;
+}
+
+
+BOOL LLPathParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream << "\t\tpath 0\n";
+ output_stream << "\t\t{\n";
+ output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n";
+ output_stream << "\t\t\tbegin\t" << getBegin() << "\n";
+ output_stream << "\t\t\tend\t" << getEnd() << "\n";
+ output_stream << "\t\t\tscale_x\t" << getScaleX() << "\n";
+ output_stream << "\t\t\tscale_y\t" << getScaleY() << "\n";
+ output_stream << "\t\t\tshear_x\t" << getShearX() << "\n";
+ output_stream << "\t\t\tshear_y\t" << getShearY() << "\n";
+ output_stream <<"\t\t\ttwist\t" << getTwist() << "\n";
+
+ output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n";
+ output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n";
+ output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n";
+ output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n";
+ output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n";
+ output_stream <<"\t\t\tskew\t" << getSkew() << "\n";
+
+ output_stream << "\t\t}\n";
+ return TRUE;
+}
+
+LLSD LLPathParams::asLLSD() const
+{
+ LLSD sd = LLSD();
+ sd["curve"] = getCurveType();
+ sd["begin"] = getBegin();
+ sd["end"] = getEnd();
+ sd["scale_x"] = getScaleX();
+ sd["scale_y"] = getScaleY();
+ sd["shear_x"] = getShearX();
+ sd["shear_y"] = getShearY();
+ sd["twist"] = getTwist();
+ sd["twist_begin"] = getTwistBegin();
+ sd["radius_offset"] = getRadiusOffset();
+ sd["taper_x"] = getTaperX();
+ sd["taper_y"] = getTaperY();
+ sd["revolutions"] = getRevolutions();
+ sd["skew"] = getSkew();
+
+ return sd;
+}
+
+bool LLPathParams::fromLLSD(LLSD& sd)
+{
+ setCurveType(sd["curve"].asInteger());
+ setBegin((F32)sd["begin"].asReal());
+ setEnd((F32)sd["end"].asReal());
+ setScaleX((F32)sd["scale_x"].asReal());
+ setScaleY((F32)sd["scale_y"].asReal());
+ setShearX((F32)sd["shear_x"].asReal());
+ setShearY((F32)sd["shear_y"].asReal());
+ setTwist((F32)sd["twist"].asReal());
+ setTwistBegin((F32)sd["twist_begin"].asReal());
+ setRadiusOffset((F32)sd["radius_offset"].asReal());
+ setTaperX((F32)sd["taper_x"].asReal());
+ setTaperY((F32)sd["taper_y"].asReal());
+ setRevolutions((F32)sd["revolutions"].asReal());
+ setSkew((F32)sd["skew"].asReal());
+ return true;
+}
+
+void LLPathParams::copyParams(const LLPathParams ¶ms)
+{
+ setCurveType(params.getCurveType());
+ setBegin(params.getBegin());
+ setEnd(params.getEnd());
+ setScale(params.getScaleX(), params.getScaleY() );
+ setShear(params.getShearX(), params.getShearY() );
+ setTwist(params.getTwist());
+ setTwistBegin(params.getTwistBegin());
+ setRadiusOffset(params.getRadiusOffset());
+ setTaper( params.getTaperX(), params.getTaperY() );
+ setRevolutions(params.getRevolutions());
+ setSkew(params.getSkew());
+}
+
+S32 profile_delete_lock = 1 ;
+LLProfile::~LLProfile()
+{
+ if(profile_delete_lock)
+ {
+ llerrs << "LLProfile should not be deleted here!" << llendl ;
+ }
+}
+
+
+S32 LLVolume::sNumMeshPoints = 0;
+
+LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face, const BOOL is_unique)
+ : mParams(params)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ mUnique = is_unique;
+ mFaceMask = 0x0;
+ mDetail = detail;
+ mSculptLevel = -2;
+
+ // set defaults
+ if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE)
+ {
+ mPathp = new LLDynamicPath();
+ }
+ else
+ {
+ mPathp = new LLPath();
+ }
+ mProfilep = new LLProfile();
+
+ mGenerateSingleFace = generate_single_face;
+
+ generate();
+ if (mParams.getSculptID().isNull() && params.getSculptType() == LL_SCULPT_TYPE_NONE)
+ {
+ createVolumeFaces();
+ }
+}
+
+void LLVolume::resizePath(S32 length)
+{
+ mPathp->resizePath(length);
+ mVolumeFaces.clear();
+}
+
+void LLVolume::regen()
+{
+ generate();
+ createVolumeFaces();
+}
+
+void LLVolume::genBinormals(S32 face)
+{
+ mVolumeFaces[face].createBinormals();
+}
+
+LLVolume::~LLVolume()
+{
+ sNumMeshPoints -= mMesh.size();
+ delete mPathp;
+
+ profile_delete_lock = 0 ;
+ delete mProfilep;
+ profile_delete_lock = 1 ;
+
+ mPathp = NULL;
+ mProfilep = NULL;
+ mVolumeFaces.clear();
+}
+
+BOOL LLVolume::generate()
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+ llassert_always(mProfilep);
+
+ //Added 10.03.05 Dave Parks
+ // Split is a parameter to LLProfile::generate that tesselates edges on the profile
+ // to prevent lighting and texture interpolation errors on triangles that are
+ // stretched due to twisting or scaling on the path.
+ S32 split = (S32) ((mDetail)*0.66f);
+
+ if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_LINE &&
+ (mParams.getPathParams().getScale().mV[0] != 1.0f ||
+ mParams.getPathParams().getScale().mV[1] != 1.0f) &&
+ (mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_SQUARE ||
+ mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_ISOTRI ||
+ mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_EQUALTRI ||
+ mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_RIGHTTRI))
+ {
+ split = 0;
+ }
+
+ mLODScaleBias.setVec(0.5f, 0.5f, 0.5f);
+
+ F32 profile_detail = mDetail;
+ F32 path_detail = mDetail;
+
+ U8 path_type = mParams.getPathParams().getCurveType();
+ U8 profile_type = mParams.getProfileParams().getCurveType();
+
+ if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE)
+ { //cylinders don't care about Z-Axis
+ mLODScaleBias.setVec(0.6f, 0.6f, 0.0f);
+ }
+ else if (path_type == LL_PCODE_PATH_CIRCLE)
+ {
+ mLODScaleBias.setVec(0.6f, 0.6f, 0.6f);
+ }
+
+ //********************************************************************
+ //debug info, to be removed
+ if((U32)(mPathp->mPath.size() * mProfilep->mProfile.size()) > (1u << 20))
+ {
+ llinfos << "sizeS: " << mPathp->mPath.size() << " sizeT: " << mProfilep->mProfile.size() << llendl ;
+ llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ;
+ llinfos << mParams << llendl ;
+ llinfos << "more info to check if mProfilep is deleted or not." << llendl ;
+ llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ;
+
+ llerrs << "LLVolume corrupted!" << llendl ;
+ }
+ //********************************************************************
+
+ BOOL regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split);
+ BOOL regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split);
+
+ if (regenPath || regenProf )
+ {
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ //********************************************************************
+ //debug info, to be removed
+ if((U32)(sizeS * sizeT) > (1u << 20))
+ {
+ llinfos << "regenPath: " << (S32)regenPath << " regenProf: " << (S32)regenProf << llendl ;
+ llinfos << "sizeS: " << sizeS << " sizeT: " << sizeT << llendl ;
+ llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ;
+ llinfos << mParams << llendl ;
+ llinfos << "more info to check if mProfilep is deleted or not." << llendl ;
+ llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ;
+
+ llerrs << "LLVolume corrupted!" << llendl ;
+ }
+ //********************************************************************
+
+ sNumMeshPoints -= mMesh.size();
+ mMesh.resize(sizeT * sizeS);
+ sNumMeshPoints += mMesh.size();
+
+ //generate vertex positions
+
+ // Run along the path.
+ for (S32 s = 0; s < sizeS; ++s)
+ {
+ LLVector2 scale = mPathp->mPath[s].mScale;
+ LLQuaternion rot = mPathp->mPath[s].mRot;
+
+ // Run along the profile.
+ for (S32 t = 0; t < sizeT; ++t)
+ {
+ S32 m = s*sizeT + t;
+ Point& pt = mMesh[m];
+
+ pt.mPos.mV[0] = mProfilep->mProfile[t].mV[0] * scale.mV[0];
+ pt.mPos.mV[1] = mProfilep->mProfile[t].mV[1] * scale.mV[1];
+ pt.mPos.mV[2] = 0.0f;
+ pt.mPos = pt.mPos * rot;
+ pt.mPos += mPathp->mPath[s].mPos;
+ }
+ }
+
+ for (std::vector<LLProfile::Face>::iterator iter = mProfilep->mFaces.begin();
+ iter != mProfilep->mFaces.end(); ++iter)
+ {
+ LLFaceID id = iter->mFaceID;
+ mFaceMask |= id;
+ }
+
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+void LLVolume::createVolumeFaces()
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ if (mGenerateSingleFace)
+ {
+ // do nothing
+ }
+ else
+ {
+ S32 num_faces = getNumFaces();
+ BOOL partial_build = TRUE;
+ if (num_faces != mVolumeFaces.size())
+ {
+ partial_build = FALSE;
+ mVolumeFaces.resize(num_faces);
+ }
+ // Initialize volume faces with parameter data
+ for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++)
+ {
+ LLVolumeFace& vf = mVolumeFaces[i];
+ LLProfile::Face& face = mProfilep->mFaces[i];
+ vf.mBeginS = face.mIndex;
+ vf.mNumS = face.mCount;
+ if (vf.mNumS < 0)
+ {
+ llerrs << "Volume face corruption detected." << llendl;
+ }
+
+ vf.mBeginT = 0;
+ vf.mNumT= getPath().mPath.size();
+ vf.mID = i;
+
+ // Set the type mask bits correctly
+ if (mParams.getProfileParams().getHollow() > 0)
+ {
+ vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK;
+ }
+ if (mProfilep->isOpen())
+ {
+ vf.mTypeMask |= LLVolumeFace::OPEN_MASK;
+ }
+ if (face.mCap)
+ {
+ vf.mTypeMask |= LLVolumeFace::CAP_MASK;
+ if (face.mFaceID == LL_FACE_PATH_BEGIN)
+ {
+ vf.mTypeMask |= LLVolumeFace::TOP_MASK;
+ }
+ else
+ {
+ llassert(face.mFaceID == LL_FACE_PATH_END);
+ vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK;
+ }
+ }
+ else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END))
+ {
+ vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK;
+ }
+ else
+ {
+ vf.mTypeMask |= LLVolumeFace::SIDE_MASK;
+ if (face.mFlat)
+ {
+ vf.mTypeMask |= LLVolumeFace::FLAT_MASK;
+ }
+ if (face.mFaceID & LL_FACE_INNER_SIDE)
+ {
+ vf.mTypeMask |= LLVolumeFace::INNER_MASK;
+ if (face.mFlat && vf.mNumS > 2)
+ { //flat inner faces have to copy vert normals
+ vf.mNumS = vf.mNumS*2;
+ if (vf.mNumS < 0)
+ {
+ llerrs << "Volume face corruption detected." << llendl;
+ }
+ }
+ }
+ else
+ {
+ vf.mTypeMask |= LLVolumeFace::OUTER_MASK;
+ }
+ }
+ }
+
+ for (face_list_t::iterator iter = mVolumeFaces.begin();
+ iter != mVolumeFaces.end(); ++iter)
+ {
+ (*iter).create(this, partial_build);
+ }
+ }
+}
+
+
+inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b)
+{
+ // maps RGB values to vector values [0..255] -> [-0.5..0.5]
+ LLVector3 value;
+ value.mV[VX] = r / 255.f - 0.5f;
+ value.mV[VY] = g / 255.f - 0.5f;
+ value.mV[VZ] = b / 255.f - 0.5f;
+
+ return value;
+}
+
+inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
+{
+ U32 index = (x + y * sculpt_width) * sculpt_components;
+ return index;
+}
+
+
+inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
+{
+ U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width);
+ U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height);
+
+ return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
+}
+
+
+inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data)
+{
+ LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]);
+
+ return v;
+}
+
+inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
+{
+ U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components);
+
+ return sculpt_index_to_vector(index, sculpt_data);
+}
+
+inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
+{
+ U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
+
+ return sculpt_index_to_vector(index, sculpt_data);
+}
+
+
+F32 LLVolume::sculptGetSurfaceArea()
+{
+ // test to see if image has enough variation to create non-degenerate geometry
+
+ F32 area = 0;
+
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ for (S32 s = 0; s < sizeS-1; s++)
+ {
+ for (S32 t = 0; t < sizeT-1; t++)
+ {
+ // get four corners of quad
+ LLVector3 p1 = mMesh[(s )*sizeT + (t )].mPos;
+ LLVector3 p2 = mMesh[(s+1)*sizeT + (t )].mPos;
+ LLVector3 p3 = mMesh[(s )*sizeT + (t+1)].mPos;
+ LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos;
+
+ // compute the area of the quad by taking the length of the cross product of the two triangles
+ LLVector3 cross1 = (p1 - p2) % (p1 - p3);
+ LLVector3 cross2 = (p4 - p2) % (p4 - p3);
+ area += (cross1.magVec() + cross2.magVec()) / 2.0;
+ }
+ }
+
+ return area;
+}
+
+// create placeholder shape
+void LLVolume::sculptGeneratePlaceholder()
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ S32 line = 0;
+
+ // for now, this is a sphere.
+ for (S32 s = 0; s < sizeS; s++)
+ {
+ for (S32 t = 0; t < sizeT; t++)
+ {
+ S32 i = t + line;
+ Point& pt = mMesh[i];
+
+
+ F32 u = (F32)s/(sizeS-1);
+ F32 v = (F32)t/(sizeT-1);
+
+ const F32 RADIUS = (F32) 0.3;
+
+ pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS);
+ pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS);
+ pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS);
+
+ }
+ line += sizeT;
+ }
+}
+
+// create the vertices from the map
+void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type)
+{
+ U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
+ BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
+ BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
+ BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR
+
+
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ S32 line = 0;
+ for (S32 s = 0; s < sizeS; s++)
+ {
+ // Run along the profile.
+ for (S32 t = 0; t < sizeT; t++)
+ {
+ S32 i = t + line;
+ Point& pt = mMesh[i];
+
+ S32 reversed_t = t;
+
+ if (reverse_horizontal)
+ {
+ reversed_t = sizeT - t - 1;
+ }
+
+ U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width);
+ U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height);
+
+
+ if (y == 0) // top row stitching
+ {
+ // pinch?
+ if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
+ {
+ x = sculpt_width / 2;
+ }
+ }
+
+ if (y == sculpt_height) // bottom row stitching
+ {
+ // wrap?
+ if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
+ {
+ y = 0;
+ }
+ else
+ {
+ y = sculpt_height - 1;
+ }
+
+ // pinch?
+ if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
+ {
+ x = sculpt_width / 2;
+ }
+ }
+
+ if (x == sculpt_width) // side stitching
+ {
+ // wrap?
+ if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
+ {
+ x = 0;
+ }
+
+ else
+ {
+ x = sculpt_width - 1;
+ }
+ }
+
+ pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data);
+
+ if (sculpt_mirror)
+ {
+ pt.mPos.mV[VX] *= -1.f;
+ }
+ }
+
+ line += sizeT;
+ }
+}
+
+
+const S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square
+const S32 SCULPT_REZ_2 = 8;
+const S32 SCULPT_REZ_3 = 16;
+const S32 SCULPT_REZ_4 = 32;
+
+S32 sculpt_sides(F32 detail)
+{
+
+ // detail is usually one of: 1, 1.5, 2.5, 4.0.
+
+ if (detail <= 1.0)
+ {
+ return SCULPT_REZ_1;
+ }
+ if (detail <= 2.0)
+ {
+ return SCULPT_REZ_2;
+ }
+ if (detail <= 3.0)
+ {
+ return SCULPT_REZ_3;
+ }
+ else
+ {
+ return SCULPT_REZ_4;
+ }
+}
+
+
+
+// determine the number of vertices in both s and t direction for this sculpt
+void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t)
+{
+ // this code has the following properties:
+ // 1) the aspect ratio of the mesh is as close as possible to the ratio of the map
+ // while still using all available verts
+ // 2) the mesh cannot have more verts than is allowed by LOD
+ // 3) the mesh cannot have more verts than is allowed by the map
+
+ S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0);
+ S32 max_vertices_map = width * height / 4;
+
+ S32 vertices;
+ if (max_vertices_map > 0)
+ vertices = llmin(max_vertices_lod, max_vertices_map);
+ else
+ vertices = max_vertices_lod;
+
+
+ F32 ratio;
+ if ((width == 0) || (height == 0))
+ ratio = 1.f;
+ else
+ ratio = (F32) width / (F32) height;
+
+
+ s = (S32)fsqrtf(((F32)vertices / ratio));
+
+ s = llmax(s, 4); // no degenerate sizes, please
+ t = vertices / s;
+
+ t = llmax(t, 4); // no degenerate sizes, please
+ s = vertices / t;
+}
+
+// sculpt replaces generate() for sculpted surfaces
+void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+ U8 sculpt_type = mParams.getSculptType();
+
+ BOOL data_is_empty = FALSE;
+
+ if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL)
+ {
+ sculpt_level = -1;
+ data_is_empty = TRUE;
+ }
+
+ S32 requested_sizeS = 0;
+ S32 requested_sizeT = 0;
+
+ sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT);
+
+ mPathp->generate(mParams.getPathParams(), mDetail, 0, TRUE, requested_sizeS);
+ mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, TRUE, requested_sizeT);
+
+ S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got
+ S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got
+
+ // weird crash bug - DEV-11158 - trying to collect more data:
+ if ((sizeS == 0) || (sizeT == 0))
+ {
+ llwarns << "sculpt bad mesh size " << sizeS << " " << sizeT << llendl;
+ }
+
+ sNumMeshPoints -= mMesh.size();
+ mMesh.resize(sizeS * sizeT);
+ sNumMeshPoints += mMesh.size();
+
+ //generate vertex positions
+ if (!data_is_empty)
+ {
+ sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type);
+
+ // don't test lowest LOD to support legacy content DEV-33670
+ if (mDetail > SCULPT_MIN_AREA_DETAIL)
+ {
+ if (sculptGetSurfaceArea() < SCULPT_MIN_AREA)
+ {
+ data_is_empty = TRUE;
+ }
+ }
+ }
+
+ if (data_is_empty)
+ {
+ sculptGeneratePlaceholder();
+ }
+
+
+
+ for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++)
+ {
+ mFaceMask |= mProfilep->mFaces[i].mFaceID;
+ }
+
+ mSculptLevel = sculpt_level;
+
+ // Delete any existing faces so that they get regenerated
+ mVolumeFaces.clear();
+
+ createVolumeFaces();
+}
+
+
+
+
+BOOL LLVolume::isCap(S32 face)
+{
+ return mProfilep->mFaces[face].mCap;
+}
+
+BOOL LLVolume::isFlat(S32 face)
+{
+ return mProfilep->mFaces[face].mFlat;
+}
+
+
+bool LLVolumeParams::operator==(const LLVolumeParams ¶ms) const
+{
+ return ( (getPathParams() == params.getPathParams()) &&
+ (getProfileParams() == params.getProfileParams()) &&
+ (mSculptID == params.mSculptID) &&
+ (mSculptType == params.mSculptType) );
+}
+
+bool LLVolumeParams::operator!=(const LLVolumeParams ¶ms) const
+{
+ return ( (getPathParams() != params.getPathParams()) ||
+ (getProfileParams() != params.getProfileParams()) ||
+ (mSculptID != params.mSculptID) ||
+ (mSculptType != params.mSculptType) );
+}
+
+bool LLVolumeParams::operator<(const LLVolumeParams ¶ms) const
+{
+ if( getPathParams() != params.getPathParams() )
+ {
+ return getPathParams() < params.getPathParams();
+ }
+
+ if (getProfileParams() != params.getProfileParams())
+ {
+ return getProfileParams() < params.getProfileParams();
+ }
+
+ if (mSculptID != params.mSculptID)
+ {
+ return mSculptID < params.mSculptID;
+ }
+
+
+ return mSculptType < params.mSculptType;
+
+
+}
+
+void LLVolumeParams::copyParams(const LLVolumeParams ¶ms)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+ mProfileParams.copyParams(params.mProfileParams);
+ mPathParams.copyParams(params.mPathParams);
+ mSculptID = params.getSculptID();
+ mSculptType = params.getSculptType();
+}
+
+// Less restricitve approx 0 for volumes
+const F32 APPROXIMATELY_ZERO = 0.001f;
+bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO)
+{
+ return (f >= -tolerance) && (f <= tolerance);
+}
+
+// return true if in range (or nearly so)
+static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO)
+{
+ F32 min_delta = v - min;
+ if (min_delta < 0.f)
+ {
+ v = min;
+ if (!approx_zero(min_delta, tolerance))
+ return false;
+ }
+ F32 max_delta = max - v;
+ if (max_delta < 0.f)
+ {
+ v = max;
+ if (!approx_zero(max_delta, tolerance))
+ return false;
+ }
+ return true;
+}
+
+bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e)
+{
+ bool valid = true;
+
+ // First, clamp to valid ranges.
+ F32 begin = b;
+ valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
+
+ F32 end = e;
+ if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error
+ valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
+
+ valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);
+
+ // Now set them.
+ mProfileParams.setBegin(begin);
+ mProfileParams.setEnd(end);
+
+ return valid;
+}
+
+bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e)
{
- if (!mData)
+ bool valid = true;
+
+ // First, clamp to valid ranges.
+ F32 begin = b;
+ valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
+
+ F32 end = e;
+ valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
+
+ valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);
+
+ // Now set them.
+ mPathParams.setBegin(begin);
+ mPathParams.setEnd(end);
+
+ return valid;
+}
+
+bool LLVolumeParams::setHollow(const F32 h)
+{
+ // Validate the hollow based on path and profile.
+ U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK;
+
+ F32 max_hollow = HOLLOW_MAX;
+
+ // Only square holes have trouble.
+ if (LL_PCODE_HOLE_SQUARE == hole_type)
{
- mData = (LLVector4a*) malloc(sizeof(LLVector4a)*2);
+ switch(profile)
+ {
+ case LL_PCODE_PROFILE_CIRCLE:
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ max_hollow = HOLLOW_MAX_SQUARE;
+ }
}
+
+ F32 hollow = h;
+ bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow);
+ mProfileParams.setHollow(hollow);
+
+ return valid;
+}
+
+bool LLVolumeParams::setTwistBegin(const F32 b)
+{
+ F32 twist_begin = b;
+ bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX);
+ mPathParams.setTwistBegin(twist_begin);
+ return valid;
+}
+
+bool LLVolumeParams::setTwistEnd(const F32 e)
+{
+ F32 twist_end = e;
+ bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX);
+ mPathParams.setTwistEnd(twist_end);
+ return valid;
}
-LLVolumeFace::VertexData::VertexData()
+bool LLVolumeParams::setRatio(const F32 x, const F32 y)
{
- mData = NULL;
- init();
+ F32 min_x = RATIO_MIN;
+ F32 max_x = RATIO_MAX;
+ F32 min_y = RATIO_MIN;
+ F32 max_y = RATIO_MAX;
+ // If this is a circular path (and not a sphere) then 'ratio' is actually hole size.
+ U8 path_type = mPathParams.getCurveType();
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PATH_CIRCLE == path_type &&
+ LL_PCODE_PROFILE_CIRCLE_HALF != profile_type)
+ {
+ // Holes are more restricted...
+ min_x = HOLE_X_MIN;
+ max_x = HOLE_X_MAX;
+ min_y = HOLE_Y_MIN;
+ max_y = HOLE_Y_MAX;
+ }
+
+ F32 ratio_x = x;
+ bool valid = limit_range(ratio_x, min_x, max_x);
+ F32 ratio_y = y;
+ valid &= limit_range(ratio_y, min_y, max_y);
+
+ mPathParams.setScale(ratio_x, ratio_y);
+
+ return valid;
+}
+
+bool LLVolumeParams::setShear(const F32 x, const F32 y)
+{
+ F32 shear_x = x;
+ bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX);
+ F32 shear_y = y;
+ valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX);
+ mPathParams.setShear(shear_x, shear_y);
+ return valid;
+}
+
+bool LLVolumeParams::setTaperX(const F32 v)
+{
+ F32 taper = v;
+ bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
+ mPathParams.setTaperX(taper);
+ return valid;
+}
+
+bool LLVolumeParams::setTaperY(const F32 v)
+{
+ F32 taper = v;
+ bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
+ mPathParams.setTaperY(taper);
+ return valid;
+}
+
+bool LLVolumeParams::setRevolutions(const F32 r)
+{
+ F32 revolutions = r;
+ bool valid = limit_range(revolutions, REV_MIN, REV_MAX);
+ mPathParams.setRevolutions(revolutions);
+ return valid;
+}
+
+bool LLVolumeParams::setRadiusOffset(const F32 offset)
+{
+ bool valid = true;
+
+ // If this is a sphere, just set it to 0 and get out.
+ U8 path_type = mPathParams.getCurveType();
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ||
+ LL_PCODE_PATH_CIRCLE != path_type )
+ {
+ mPathParams.setRadiusOffset(0.f);
+ return true;
+ }
+
+ // Limit radius offset, based on taper and hole size y.
+ F32 radius_offset = offset;
+ F32 taper_y = getTaperY();
+ F32 radius_mag = fabs(radius_offset);
+ F32 hole_y_mag = fabs(getRatioY());
+ F32 taper_y_mag = fabs(taper_y);
+ // Check to see if the taper effects us.
+ if ( (radius_offset > 0.f && taper_y < 0.f) ||
+ (radius_offset < 0.f && taper_y > 0.f) )
+ {
+ // The taper does not help increase the radius offset range.
+ taper_y_mag = 0.f;
+ }
+ F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag);
+
+ // Enforce the maximum magnitude.
+ F32 delta = max_radius_mag - radius_mag;
+ if (delta < 0.f)
+ {
+ // Check radius offset sign.
+ if (radius_offset < 0.f)
+ {
+ radius_offset = -max_radius_mag;
+ }
+ else
+ {
+ radius_offset = max_radius_mag;
+ }
+ valid = approx_zero(delta, .1f);
+ }
+
+ mPathParams.setRadiusOffset(radius_offset);
+ return valid;
+}
+
+bool LLVolumeParams::setSkew(const F32 skew_value)
+{
+ bool valid = true;
+
+ // Check the skew value against the revolutions.
+ F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX);
+ F32 skew_mag = fabs(skew);
+ F32 revolutions = getRevolutions();
+ F32 scale_x = getRatioX();
+ F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f);
+ // Discontinuity; A revolution of 1 allows skews below 0.5.
+ if ( fabs(revolutions - 1.0f) < 0.001)
+ min_skew_mag = 0.0f;
+
+ // Clip skew.
+ F32 delta = skew_mag - min_skew_mag;
+ if (delta < 0.f)
+ {
+ // Check skew sign.
+ if (skew < 0.0f)
+ {
+ skew = -min_skew_mag;
+ }
+ else
+ {
+ skew = min_skew_mag;
+ }
+ valid = approx_zero(delta, .01f);
+ }
+
+ mPathParams.setSkew(skew);
+ return valid;
+}
+
+bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type)
+{
+ mSculptID = sculpt_id;
+ mSculptType = sculpt_type;
+ return true;
+}
+
+bool LLVolumeParams::setType(U8 profile, U8 path)
+{
+ bool result = true;
+ // First, check profile and path for validity.
+ U8 profile_type = profile & LL_PCODE_PROFILE_MASK;
+ U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4;
+ U8 path_type = path >> 4;
+
+ if (profile_type > LL_PCODE_PROFILE_MAX)
+ {
+ // Bad profile. Make it square.
+ profile = LL_PCODE_PROFILE_SQUARE;
+ result = false;
+ llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type
+ << ") to be LL_PCODE_PROFILE_SQUARE" << llendl;
+ }
+ else if (hole_type > LL_PCODE_HOLE_MAX)
+ {
+ // Bad hole. Make it the same.
+ profile = profile_type;
+ result = false;
+ llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type
+ << ") to be LL_PCODE_HOLE_SAME" << llendl;
+ }
+
+ if (path_type < LL_PCODE_PATH_MIN ||
+ path_type > LL_PCODE_PATH_MAX)
+ {
+ // Bad path. Make it linear.
+ result = false;
+ llwarns << "LLVolumeParams::setType changing bad path (" << path
+ << ") to be LL_PCODE_PATH_LINE" << llendl;
+ path = LL_PCODE_PATH_LINE;
+ }
+
+ mProfileParams.setCurveType(profile);
+ mPathParams.setCurveType(path);
+ return result;
+}
+
+// static
+bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow,
+ U8 path_curve, F32 path_begin, F32 path_end,
+ F32 scx, F32 scy, F32 shx, F32 shy,
+ F32 twistend, F32 twistbegin, F32 radiusoffset,
+ F32 tx, F32 ty, F32 revolutions, F32 skew)
+{
+ LLVolumeParams test_params;
+ if (!test_params.setType (prof_curve, path_curve))
+ {
+ return false;
+ }
+ if (!test_params.setBeginAndEndS (prof_begin, prof_end))
+ {
+ return false;
+ }
+ if (!test_params.setBeginAndEndT (path_begin, path_end))
+ {
+ return false;
+ }
+ if (!test_params.setHollow (hollow))
+ {
+ return false;
+ }
+ if (!test_params.setTwistBegin (twistbegin))
+ {
+ return false;
+ }
+ if (!test_params.setTwistEnd (twistend))
+ {
+ return false;
+ }
+ if (!test_params.setRatio (scx, scy))
+ {
+ return false;
+ }
+ if (!test_params.setShear (shx, shy))
+ {
+ return false;
+ }
+ if (!test_params.setTaper (tx, ty))
+ {
+ return false;
+ }
+ if (!test_params.setRevolutions (revolutions))
+ {
+ return false;
+ }
+ if (!test_params.setRadiusOffset (radiusoffset))
+ {
+ return false;
+ }
+ if (!test_params.setSkew (skew))
+ {
+ return false;
+ }
+ return true;
}
+
+S32 *LLVolume::getTriangleIndices(U32 &num_indices) const
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
-LLVolumeFace::VertexData::VertexData(const VertexData& rhs)
+ S32 expected_num_triangle_indices = getNumTriangleIndices();
+ if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES)
+ {
+ // we don't allow LLVolumes with this many vertices
+ llwarns << "Couldn't allocate triangle indices" << llendl;
+ num_indices = 0;
+ return NULL;
+ }
+
+ S32* index = new S32[expected_num_triangle_indices];
+ S32 count = 0;
+
+ // Let's do this totally diffently, as we don't care about faces...
+ // Counter-clockwise triangles are forward facing...
+
+ BOOL open = getProfile().isOpen();
+ BOOL hollow = (mParams.getProfileParams().getHollow() > 0);
+ BOOL path_open = getPath().isOpen();
+ S32 size_s, size_s_out, size_t;
+ S32 s, t, i;
+ size_s = getProfile().getTotal();
+ size_s_out = getProfile().getTotalOut();
+ size_t = getPath().mPath.size();
+
+ // NOTE -- if the construction of the triangles below ever changes
+ // then getNumTriangleIndices() method may also have to be updated.
+
+ if (open) /* Flawfinder: ignore */
+ {
+ if (hollow)
+ {
+ // Open hollow -- much like the closed solid, except we
+ // we need to stitch up the gap between s=0 and s=size_s-1
+
+ for (t = 0; t < size_t - 1; t++)
+ {
+ // The outer face, first cut, and inner face
+ for (s = 0; s < size_s - 1; s++)
+ {
+ i = s + t*size_s;
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s + 1; // x+1,y+1
+ }
+
+ // The other cut face
+ index[count++] = s + t*size_s; // x,y
+ index[count++] = 0 + t*size_s; // x+1,y
+ index[count++] = s + (t+1)*size_s; // x,y+1
+
+ index[count++] = s + (t+1)*size_s; // x,y+1
+ index[count++] = 0 + t*size_s; // x+1,y
+ index[count++] = 0 + (t+1)*size_s; // x+1,y+1
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ // Top cap
+ S32 pt1 = 0;
+ S32 pt2 = size_s-1;
+ S32 i = (size_t - 1)*size_s;
+
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ index[count++] = pt1 + i;
+ index[count++] = pt1 + 1 + i;
+ index[count++] = pt2 + i;
+ pt1++;
+ }
+ else
+ {
+ index[count++] = pt1 + i;
+ index[count++] = pt2 - 1 + i;
+ index[count++] = pt2 + i;
+ pt2--;
+ }
+ }
+
+ // Bottom cap
+ pt1 = 0;
+ pt2 = size_s-1;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt2 - 1;
+ pt2--;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Open solid
+
+ for (t = 0; t < size_t - 1; t++)
+ {
+ // Outer face + 1 cut face
+ for (s = 0; s < size_s - 1; s++)
+ {
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s + 1; // x+1,y+1
+ }
+
+ // The other cut face
+ index[count++] = (size_s - 1) + (t*size_s); // x,y
+ index[count++] = 0 + t*size_s; // x+1,y
+ index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1
+
+ index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1
+ index[count++] = 0 + (t*size_s); // x+1,y
+ index[count++] = 0 + (t+1)*size_s; // x+1,y+1
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ for (s = 0; s < size_s - 2; s++)
+ {
+ index[count++] = s+1;
+ index[count++] = s;
+ index[count++] = size_s - 1;
+ }
+
+ // We've got a top cap
+ S32 offset = (size_t - 1)*size_s;
+ for (s = 0; s < size_s - 2; s++)
+ {
+ // Inverted ordering from bottom cap.
+ index[count++] = offset + size_s - 1;
+ index[count++] = offset + s;
+ index[count++] = offset + s + 1;
+ }
+ }
+ }
+ }
+ else if (hollow)
+ {
+ // Closed hollow
+ // Outer face
+
+ for (t = 0; t < size_t - 1; t++)
+ {
+ for (s = 0; s < size_s_out - 1; s++)
+ {
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + 1 + size_s; // x+1,y+1
+ }
+ }
+
+ // Inner face
+ // Invert facing from outer face
+ for (t = 0; t < size_t - 1; t++)
+ {
+ for (s = size_s_out; s < size_s - 1; s++)
+ {
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + 1 + size_s; // x+1,y+1
+ }
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ // Top cap
+ S32 pt1 = 0;
+ S32 pt2 = size_s-1;
+ S32 i = (size_t - 1)*size_s;
+
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ index[count++] = pt1 + i;
+ index[count++] = pt1 + 1 + i;
+ index[count++] = pt2 + i;
+ pt1++;
+ }
+ else
+ {
+ index[count++] = pt1 + i;
+ index[count++] = pt2 - 1 + i;
+ index[count++] = pt2 + i;
+ pt2--;
+ }
+ }
+
+ // Bottom cap
+ pt1 = 0;
+ pt2 = size_s-1;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt2 - 1;
+ pt2--;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Closed solid. Easy case.
+ for (t = 0; t < size_t - 1; t++)
+ {
+ for (s = 0; s < size_s - 1; s++)
+ {
+ // Should wrap properly, but for now...
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s + 1; // x+1,y+1
+ }
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ // bottom cap
+ for (s = 1; s < size_s - 2; s++)
+ {
+ index[count++] = s+1;
+ index[count++] = s;
+ index[count++] = 0;
+ }
+
+ // top cap
+ S32 offset = (size_t - 1)*size_s;
+ for (s = 1; s < size_s - 2; s++)
+ {
+ // Inverted ordering from bottom cap.
+ index[count++] = offset;
+ index[count++] = offset + s;
+ index[count++] = offset + s + 1;
+ }
+ }
+ }
+
+#ifdef LL_DEBUG
+ // assert that we computed the correct number of indices
+ if (count != expected_num_triangle_indices )
+ {
+ llerrs << "bad index count prediciton:"
+ << " expected=" << expected_num_triangle_indices
+ << " actual=" << count << llendl;
+ }
+#endif
+
+#if 0
+ // verify that each index does not point beyond the size of the mesh
+ S32 num_vertices = mMesh.size();
+ for (i = 0; i < count; i+=3)
+ {
+ llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl;
+ llassert(index[i] < num_vertices);
+ llassert(index[i+1] < num_vertices);
+ llassert(index[i+2] < num_vertices);
+ }
+#endif
+
+ num_indices = count;
+ return index;
+}
+
+S32 LLVolume::getNumTriangleIndices() const
{
- mData = NULL;
- *this = rhs;
+ BOOL profile_open = getProfile().isOpen();
+ BOOL hollow = (mParams.getProfileParams().getHollow() > 0);
+ BOOL path_open = getPath().isOpen();
+
+ S32 size_s, size_s_out, size_t;
+ size_s = getProfile().getTotal();
+ size_s_out = getProfile().getTotalOut();
+ size_t = getPath().mPath.size();
+
+ S32 count = 0;
+ if (profile_open) /* Flawfinder: ignore */
+ {
+ if (hollow)
+ {
+ // Open hollow -- much like the closed solid, except we
+ // we need to stitch up the gap between s=0 and s=size_s-1
+ count = (size_t - 1) * (((size_s -1) * 6) + 6);
+ }
+ else
+ {
+ count = (size_t - 1) * (((size_s -1) * 6) + 6);
+ }
+ }
+ else if (hollow)
+ {
+ // Closed hollow
+ // Outer face
+ count = (size_t - 1) * (size_s_out - 1) * 6;
+
+ // Inner face
+ count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6;
+ }
+ else
+ {
+ // Closed solid. Easy case.
+ count = (size_t - 1) * (size_s - 1) * 6;
+ }
+
+ if (path_open)
+ {
+ S32 cap_triangle_count = size_s - 3;
+ if ( profile_open
+ || hollow )
+ {
+ cap_triangle_count = size_s - 2;
+ }
+ if ( cap_triangle_count > 0 )
+ {
+ // top and bottom caps
+ count += cap_triangle_count * 2 * 3;
+ }
+ }
+ return count;
}
-const LLVolumeFace::VertexData& LLVolumeFace::VertexData::operator=(const LLVolumeFace::VertexData& rhs)
+//-----------------------------------------------------------------------------
+// generateSilhouetteVertices()
+//-----------------------------------------------------------------------------
+void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices,
+ std::vector<LLVector3> &normals,
+ std::vector<S32> &segments,
+ const LLVector3& obj_cam_vec,
+ const LLMatrix4& mat,
+ const LLMatrix3& norm_mat,
+ S32 face_mask)
{
- if (this != &rhs)
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ vertices.clear();
+ normals.clear();
+ segments.clear();
+
+ S32 cur_index = 0;
+ //for each face
+ for (face_list_t::iterator iter = mVolumeFaces.begin();
+ iter != mVolumeFaces.end(); ++iter)
{
- init();
- LLVector4a::memcpyNonAliased16((F32*) mData, (F32*) rhs.mData, 2*sizeof(LLVector4a));
- mTexCoord = rhs.mTexCoord;
+ const LLVolumeFace& face = *iter;
+
+ if (!(face_mask & (0x1 << cur_index++)))
+ {
+ continue;
+ }
+ if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) {
+
+ }
+ else {
+
+ //==============================================
+ //DEBUG draw edge map instead of silhouette edge
+ //==============================================
+
+#if DEBUG_SILHOUETTE_EDGE_MAP
+
+ //for each triangle
+ U32 count = face.mIndices.size();
+ for (U32 j = 0; j < count/3; j++) {
+ //get vertices
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ //get current face center
+ LLVector3 cCenter = (face.mVertices[v1].mPosition +
+ face.mVertices[v2].mPosition +
+ face.mVertices[v3].mPosition) / 3.0f;
+
+ //for each edge
+ for (S32 k = 0; k < 3; k++) {
+ S32 nIndex = face.mEdge[j*3+k];
+ if (nIndex <= -1) {
+ continue;
+ }
+
+ if (nIndex >= (S32) count/3) {
+ continue;
+ }
+ //get neighbor vertices
+ v1 = face.mIndices[nIndex*3+0];
+ v2 = face.mIndices[nIndex*3+1];
+ v3 = face.mIndices[nIndex*3+2];
+
+ //get neighbor face center
+ LLVector3 nCenter = (face.mVertices[v1].mPosition +
+ face.mVertices[v2].mPosition +
+ face.mVertices[v3].mPosition) / 3.0f;
+
+ //draw line
+ vertices.push_back(cCenter);
+ vertices.push_back(nCenter);
+ normals.push_back(LLVector3(1,1,1));
+ normals.push_back(LLVector3(1,1,1));
+ segments.push_back(vertices.size());
+ }
+ }
+
+ continue;
+
+ //==============================================
+ //DEBUG
+ //==============================================
+
+ //==============================================
+ //DEBUG draw normals instead of silhouette edge
+ //==============================================
+#elif DEBUG_SILHOUETTE_NORMALS
+
+ //for each vertex
+ for (U32 j = 0; j < face.mVertices.size(); j++) {
+ vertices.push_back(face.mVertices[j].mPosition);
+ vertices.push_back(face.mVertices[j].mPosition + face.mVertices[j].mNormal*0.1f);
+ normals.push_back(LLVector3(0,0,1));
+ normals.push_back(LLVector3(0,0,1));
+ segments.push_back(vertices.size());
+#if DEBUG_SILHOUETTE_BINORMALS
+ vertices.push_back(face.mVertices[j].mPosition);
+ vertices.push_back(face.mVertices[j].mPosition + face.mVertices[j].mBinormal*0.1f);
+ normals.push_back(LLVector3(0,0,1));
+ normals.push_back(LLVector3(0,0,1));
+ segments.push_back(vertices.size());
+#endif
+ }
+
+ continue;
+#else
+ //==============================================
+ //DEBUG
+ //==============================================
+
+ static const U8 AWAY = 0x01,
+ TOWARDS = 0x02;
+
+ //for each triangle
+ std::vector<U8> fFacing;
+ vector_append(fFacing, face.mIndices.size()/3);
+ for (U32 j = 0; j < face.mIndices.size()/3; j++)
+ {
+ //approximate normal
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ LLVector3 norm = (face.mVertices[v1].mPosition - face.mVertices[v2].mPosition) %
+ (face.mVertices[v2].mPosition - face.mVertices[v3].mPosition);
+
+ if (norm.magVecSquared() < 0.00000001f)
+ {
+ fFacing[j] = AWAY | TOWARDS;
+ }
+ else
+ {
+ //get view vector
+ LLVector3 view = (obj_cam_vec-face.mVertices[v1].mPosition);
+ bool away = view * norm > 0.0f;
+ if (away)
+ {
+ fFacing[j] = AWAY;
+ }
+ else
+ {
+ fFacing[j] = TOWARDS;
+ }
+ }
+ }
+
+ //for each triangle
+ for (U32 j = 0; j < face.mIndices.size()/3; j++)
+ {
+ if (fFacing[j] == (AWAY | TOWARDS))
+ { //this is a degenerate triangle
+ //take neighbor facing (degenerate faces get facing of one of their neighbors)
+ // *FIX IF NEEDED: this does not deal with neighboring degenerate faces
+ for (S32 k = 0; k < 3; k++)
+ {
+ S32 index = face.mEdge[j*3+k];
+ if (index != -1)
+ {
+ fFacing[j] = fFacing[index];
+ break;
+ }
+ }
+ continue; //skip degenerate face
+ }
+
+ //for each edge
+ for (S32 k = 0; k < 3; k++) {
+ S32 index = face.mEdge[j*3+k];
+ if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) {
+ //our neighbor is degenerate, make him face our direction
+ fFacing[face.mEdge[j*3+k]] = fFacing[j];
+ continue;
+ }
+
+ if (index == -1 || //edge has no neighbor, MUST be a silhouette edge
+ (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge
+
+ S32 v1 = face.mIndices[j*3+k];
+ S32 v2 = face.mIndices[j*3+((k+1)%3)];
+
+ vertices.push_back(face.mVertices[v1].mPosition*mat);
+ LLVector3 norm1 = face.mVertices[v1].mNormal * norm_mat;
+ norm1.normVec();
+ normals.push_back(norm1);
+
+ vertices.push_back(face.mVertices[v2].mPosition*mat);
+ LLVector3 norm2 = face.mVertices[v2].mNormal * norm_mat;
+ norm2.normVec();
+ normals.push_back(norm2);
+
+ segments.push_back(vertices.size());
+ }
+ }
+ }
+#endif
+ }
}
- return *this;
}
-LLVolumeFace::VertexData::~VertexData()
+S32 LLVolume::lineSegmentIntersect(const LLVector3& start, const LLVector3& end,
+ S32 face,
+ LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal)
{
- free(mData);
- mData = NULL;
+ S32 hit_face = -1;
+
+ S32 start_face;
+ S32 end_face;
+
+ if (face == -1) // ALL_SIDES
+ {
+ start_face = 0;
+ end_face = getNumVolumeFaces() - 1;
+ }
+ else
+ {
+ start_face = face;
+ end_face = face;
+ }
+
+ LLVector3 dir = end - start;
+
+ F32 closest_t = 2.f; // must be larger than 1
+
+ for (S32 i = start_face; i <= end_face; i++)
+ {
+ const LLVolumeFace &face = getVolumeFace((U32)i);
+
+ LLVector3 box_center = (face.mExtents[0] + face.mExtents[1]) / 2.f;
+ LLVector3 box_size = face.mExtents[1] - face.mExtents[0];
+
+ if (LLLineSegmentBoxIntersect(start, end, box_center, box_size))
+ {
+ if (bi_normal != NULL) // if the caller wants binormals, we may need to generate them
+ {
+ genBinormals(i);
+ }
+
+ for (U32 tri = 0; tri < face.mIndices.size()/3; tri++)
+ {
+ S32 index1 = face.mIndices[tri*3+0];
+ S32 index2 = face.mIndices[tri*3+1];
+ S32 index3 = face.mIndices[tri*3+2];
+
+ F32 a, b, t;
+
+ if (LLTriangleRayIntersect(face.mVertices[index1].mPosition,
+ face.mVertices[index2].mPosition,
+ face.mVertices[index3].mPosition,
+ start, dir, &a, &b, &t, FALSE))
+ {
+ if ((t >= 0.f) && // if hit is after start
+ (t <= 1.f) && // and before end
+ (t < closest_t)) // and this hit is closer
+ {
+ closest_t = t;
+ hit_face = i;
+
+ if (intersection != NULL)
+ {
+ *intersection = start + dir * closest_t;
+ }
+
+ if (tex_coord != NULL)
+ {
+ *tex_coord = ((1.f - a - b) * face.mVertices[index1].mTexCoord +
+ a * face.mVertices[index2].mTexCoord +
+ b * face.mVertices[index3].mTexCoord);
+
+ }
+
+ if (normal != NULL)
+ {
+ *normal = ((1.f - a - b) * face.mVertices[index1].mNormal +
+ a * face.mVertices[index2].mNormal +
+ b * face.mVertices[index3].mNormal);
+ }
+
+ if (bi_normal != NULL)
+ {
+ *bi_normal = ((1.f - a - b) * face.mVertices[index1].mBinormal +
+ a * face.mVertices[index2].mBinormal +
+ b * face.mVertices[index3].mBinormal);
+ }
+
+ }
+ }
+ }
+ }
+ }
+
+
+ return hit_face;
}
-LLVector4a& LLVolumeFace::VertexData::getPosition()
+class LLVertexIndexPair
+{
+public:
+ LLVertexIndexPair(const LLVector3 &vertex, const S32 index);
+
+ LLVector3 mVertex;
+ S32 mIndex;
+};
+
+LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index)
{
- return mData[POSITION];
+ mVertex = vertex;
+ mIndex = index;
}
-LLVector4a& LLVolumeFace::VertexData::getNormal()
+const F32 VERTEX_SLOP = 0.00001f;
+const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP;
+
+struct lessVertex
+{
+ bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b)
+ {
+ const F32 slop = VERTEX_SLOP;
+
+ if (a->mVertex.mV[0] + slop < b->mVertex.mV[0])
+ {
+ return TRUE;
+ }
+ else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0])
+ {
+ return FALSE;
+ }
+
+ if (a->mVertex.mV[1] + slop < b->mVertex.mV[1])
+ {
+ return TRUE;
+ }
+ else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1])
+ {
+ return FALSE;
+ }
+
+ if (a->mVertex.mV[2] + slop < b->mVertex.mV[2])
+ {
+ return TRUE;
+ }
+ else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2])
+ {
+ return FALSE;
+ }
+
+ return FALSE;
+ }
+};
+
+struct lessTriangle
{
- return mData[NORMAL];
+ bool operator()(const S32 *a, const S32 *b)
+ {
+ if (*a < *b)
+ {
+ return TRUE;
+ }
+ else if (*a > *b)
+ {
+ return FALSE;
+ }
+
+ if (*(a+1) < *(b+1))
+ {
+ return TRUE;
+ }
+ else if (*(a+1) > *(b+1))
+ {
+ return FALSE;
+ }
+
+ if (*(a+2) < *(b+2))
+ {
+ return TRUE;
+ }
+ else if (*(a+2) > *(b+2))
+ {
+ return FALSE;
+ }
+
+ return FALSE;
+ }
+};
+
+BOOL equalTriangle(const S32 *a, const S32 *b)
+{
+ if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2)))
+ {
+ return TRUE;
+ }
+ return FALSE;
}
-const LLVector4a& LLVolumeFace::VertexData::getPosition() const
+BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices,
+ const std::vector<Point>& input_vertices,
+ const S32 num_input_triangles,
+ S32 *input_triangles,
+ S32 &num_output_vertices,
+ LLVector3 **output_vertices,
+ S32 &num_output_triangles,
+ S32 **output_triangles)
{
- return mData[POSITION];
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ /* Testing: avoid any cleanup
+ static BOOL skip_cleanup = TRUE;
+ if ( skip_cleanup )
+ {
+ num_output_vertices = num_input_vertices;
+ num_output_triangles = num_input_triangles;
+
+ *output_vertices = new LLVector3[num_input_vertices];
+ for (S32 index = 0; index < num_input_vertices; index++)
+ {
+ (*output_vertices)[index] = input_vertices[index].mPos;
+ }
+
+ *output_triangles = new S32[num_input_triangles*3];
+ memcpy(*output_triangles, input_triangles, 3*num_input_triangles*sizeof(S32)); // Flawfinder: ignore
+ return TRUE;
+ }
+ */
+
+ // Here's how we do this:
+ // Create a structure which contains the original vertex index and the
+ // LLVector3 data.
+ // "Sort" the data by the vectors
+ // Create an array the size of the old vertex list, with a mapping of
+ // old indices to new indices.
+ // Go through triangles, shift so the lowest index is first
+ // Sort triangles by first index
+ // Remove duplicate triangles
+ // Allocate and pack new triangle data.
+
+ //LLTimer cleanupTimer;
+ //llinfos << "In vertices: " << num_input_vertices << llendl;
+ //llinfos << "In triangles: " << num_input_triangles << llendl;
+
+ S32 i;
+ typedef std::multiset<LLVertexIndexPair*, lessVertex> vertex_set_t;
+ vertex_set_t vertex_list;
+
+ LLVertexIndexPair *pairp = NULL;
+ for (i = 0; i < num_input_vertices; i++)
+ {
+ LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i);
+ vertex_list.insert(new_pairp);
+ }
+
+ // Generate the vertex mapping and the list of vertices without
+ // duplicates. This will crash if there are no vertices.
+ llassert(num_input_vertices > 0); // check for no vertices!
+ S32 *vertex_mapping = new S32[num_input_vertices];
+ LLVector3 *new_vertices = new LLVector3[num_input_vertices];
+ LLVertexIndexPair *prev_pairp = NULL;
+
+ S32 new_num_vertices;
+
+ new_num_vertices = 0;
+ for (vertex_set_t::iterator iter = vertex_list.begin(),
+ end = vertex_list.end();
+ iter != end; iter++)
+ {
+ pairp = *iter;
+ if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD))
+ {
+ new_vertices[new_num_vertices] = pairp->mVertex;
+ //llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl;
+ new_num_vertices++;
+ // Update the previous
+ prev_pairp = pairp;
+ }
+ else
+ {
+ //llinfos << "Removed duplicate vertex " << pairp->mVertex << ", distance magVecSquared() is " << (pairp->mVertex - prev_pairp->mVertex).magVecSquared() << llendl;
+ }
+ vertex_mapping[pairp->mIndex] = new_num_vertices - 1;
+ }
+
+ // Iterate through triangles and remove degenerates, re-ordering vertices
+ // along the way.
+ S32 *new_triangles = new S32[num_input_triangles * 3];
+ S32 new_num_triangles = 0;
+
+ for (i = 0; i < num_input_triangles; i++)
+ {
+ S32 v1 = i*3;
+ S32 v2 = v1 + 1;
+ S32 v3 = v1 + 2;
+
+ //llinfos << "Checking triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl;
+ input_triangles[v1] = vertex_mapping[input_triangles[v1]];
+ input_triangles[v2] = vertex_mapping[input_triangles[v2]];
+ input_triangles[v3] = vertex_mapping[input_triangles[v3]];
+
+ if ((input_triangles[v1] == input_triangles[v2])
+ || (input_triangles[v1] == input_triangles[v3])
+ || (input_triangles[v2] == input_triangles[v3]))
+ {
+ //llinfos << "Removing degenerate triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl;
+ // Degenerate triangle, skip
+ continue;
+ }
+
+ if (input_triangles[v1] < input_triangles[v2])
+ {
+ if (input_triangles[v1] < input_triangles[v3])
+ {
+ // (0 < 1) && (0 < 2)
+ new_triangles[new_num_triangles*3] = input_triangles[v1];
+ new_triangles[new_num_triangles*3+1] = input_triangles[v2];
+ new_triangles[new_num_triangles*3+2] = input_triangles[v3];
+ }
+ else
+ {
+ // (0 < 1) && (2 < 0)
+ new_triangles[new_num_triangles*3] = input_triangles[v3];
+ new_triangles[new_num_triangles*3+1] = input_triangles[v1];
+ new_triangles[new_num_triangles*3+2] = input_triangles[v2];
+ }
+ }
+ else if (input_triangles[v2] < input_triangles[v3])
+ {
+ // (1 < 0) && (1 < 2)
+ new_triangles[new_num_triangles*3] = input_triangles[v2];
+ new_triangles[new_num_triangles*3+1] = input_triangles[v3];
+ new_triangles[new_num_triangles*3+2] = input_triangles[v1];
+ }
+ else
+ {
+ // (1 < 0) && (2 < 1)
+ new_triangles[new_num_triangles*3] = input_triangles[v3];
+ new_triangles[new_num_triangles*3+1] = input_triangles[v1];
+ new_triangles[new_num_triangles*3+2] = input_triangles[v2];
+ }
+ new_num_triangles++;
+ }
+
+ if (new_num_triangles == 0)
+ {
+ llwarns << "Created volume object with 0 faces." << llendl;
+ delete[] new_triangles;
+ delete[] vertex_mapping;
+ delete[] new_vertices;
+ return FALSE;
+ }
+
+ typedef std::set<S32*, lessTriangle> triangle_set_t;
+ triangle_set_t triangle_list;
+
+ for (i = 0; i < new_num_triangles; i++)
+ {
+ triangle_list.insert(&new_triangles[i*3]);
+ }
+
+ // Sort through the triangle list, and delete duplicates
+
+ S32 *prevp = NULL;
+ S32 *curp = NULL;
+
+ S32 *sorted_tris = new S32[new_num_triangles*3];
+ S32 cur_tri = 0;
+ for (triangle_set_t::iterator iter = triangle_list.begin(),
+ end = triangle_list.end();
+ iter != end; iter++)
+ {
+ curp = *iter;
+ if (!prevp || !equalTriangle(prevp, curp))
+ {
+ //llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
+ sorted_tris[cur_tri*3] = *curp;
+ sorted_tris[cur_tri*3+1] = *(curp+1);
+ sorted_tris[cur_tri*3+2] = *(curp+2);
+ cur_tri++;
+ prevp = curp;
+ }
+ else
+ {
+ //llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
+ }
+ }
+
+ *output_vertices = new LLVector3[new_num_vertices];
+ num_output_vertices = new_num_vertices;
+ for (i = 0; i < new_num_vertices; i++)
+ {
+ (*output_vertices)[i] = new_vertices[i];
+ }
+
+ *output_triangles = new S32[cur_tri*3];
+ num_output_triangles = cur_tri;
+ memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32)); /* Flawfinder: ignore */
+
+ /*
+ llinfos << "Out vertices: " << num_output_vertices << llendl;
+ llinfos << "Out triangles: " << num_output_triangles << llendl;
+ for (i = 0; i < num_output_vertices; i++)
+ {
+ llinfos << i << ":" << (*output_vertices)[i] << llendl;
+ }
+ for (i = 0; i < num_output_triangles; i++)
+ {
+ llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl;
+ }
+ */
+
+ //llinfos << "Out vertices: " << num_output_vertices << llendl;
+ //llinfos << "Out triangles: " << num_output_triangles << llendl;
+ delete[] vertex_mapping;
+ vertex_mapping = NULL;
+ delete[] new_vertices;
+ new_vertices = NULL;
+ delete[] new_triangles;
+ new_triangles = NULL;
+ delete[] sorted_tris;
+ sorted_tris = NULL;
+ triangle_list.clear();
+ std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer());
+ vertex_list.clear();
+
+ return TRUE;
}
-const LLVector4a& LLVolumeFace::VertexData::getNormal() const
+
+BOOL LLVolumeParams::importFile(LLFILE *fp)
{
- return mData[NORMAL];
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ //llinfos << "importing volume" << llendl;
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of this buffer will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+
+ while (!feof(fp))
+ {
+ if (fgets(buffer, BUFSIZE, fp) == NULL)
+ {
+ buffer[0] = '\0';
+ }
+
+ sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("profile", keyword))
+ {
+ mProfileParams.importFile(fp);
+ }
+ else if (!strcmp("path",keyword))
+ {
+ mPathParams.importFile(fp);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+BOOL LLVolumeParams::exportFile(LLFILE *fp) const
+{
+ fprintf(fp,"\tshape 0\n");
+ fprintf(fp,"\t{\n");
+ mPathParams.exportFile(fp);
+ mProfileParams.exportFile(fp);
+ fprintf(fp, "\t}\n");
+ return TRUE;
}
-void LLVolumeFace::VertexData::setPosition(const LLVector4a& pos)
+BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream)
{
- mData[POSITION] = pos;
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ //llinfos << "importing volume" << llendl;
+ const S32 BUFSIZE = 16384;
+ // *NOTE: changing the size or type of this buffer will require
+ // changing the sscanf below.
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ char keyword[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf(buffer, " %255s", keyword);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("profile", keyword))
+ {
+ mProfileParams.importLegacyStream(input_stream);
+ }
+ else if (!strcmp("path",keyword))
+ {
+ mPathParams.importLegacyStream(input_stream);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
+ }
+ }
+
+ return TRUE;
}
-void LLVolumeFace::VertexData::setNormal(const LLVector4a& norm)
+BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const
{
- mData[NORMAL] = norm;
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ output_stream <<"\tshape 0\n";
+ output_stream <<"\t{\n";
+ mPathParams.exportLegacyStream(output_stream);
+ mProfileParams.exportLegacyStream(output_stream);
+ output_stream << "\t}\n";
+ return TRUE;
}
-bool LLVolumeFace::VertexData::operator<(const LLVolumeFace::VertexData& rhs)const
+LLSD LLVolumeParams::asLLSD() const
{
- const F32* lp = this->getPosition().getF32ptr();
- const F32* rp = rhs.getPosition().getF32ptr();
+ LLSD sd = LLSD();
+ sd["path"] = mPathParams;
+ sd["profile"] = mProfileParams;
+ return sd;
+}
- if (lp[0] != rp[0])
+bool LLVolumeParams::fromLLSD(LLSD& sd)
+{
+ mPathParams.fromLLSD(sd["path"]);
+ mProfileParams.fromLLSD(sd["profile"]);
+ return true;
+}
+
+void LLVolumeParams::reduceS(F32 begin, F32 end)
+{
+ begin = llclampf(begin);
+ end = llclampf(end);
+ if (begin > end)
+ {
+ F32 temp = begin;
+ begin = end;
+ end = temp;
+ }
+ F32 a = mProfileParams.getBegin();
+ F32 b = mProfileParams.getEnd();
+ mProfileParams.setBegin(a + begin * (b - a));
+ mProfileParams.setEnd(a + end * (b - a));
+}
+
+void LLVolumeParams::reduceT(F32 begin, F32 end)
+{
+ begin = llclampf(begin);
+ end = llclampf(end);
+ if (begin > end)
+ {
+ F32 temp = begin;
+ begin = end;
+ end = temp;
+ }
+ F32 a = mPathParams.getBegin();
+ F32 b = mPathParams.getEnd();
+ mPathParams.setBegin(a + begin * (b - a));
+ mPathParams.setEnd(a + end * (b - a));
+}
+
+const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity
+const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity
+
+// returns TRUE if the shape can be approximated with a convex shape
+// for collison purposes
+BOOL LLVolumeParams::isConvex() const
+{
+ F32 path_length = mPathParams.getEnd() - mPathParams.getBegin();
+ F32 hollow = mProfileParams.getHollow();
+
+ U8 path_type = mPathParams.getCurveType();
+ if ( path_length > MIN_CONCAVE_PATH_WEDGE
+ && ( mPathParams.getTwist() != mPathParams.getTwistBegin()
+ || (hollow > 0.f
+ && LL_PCODE_PATH_LINE != path_type) ) )
+ {
+ // twist along a "not too short" path is concave
+ return FALSE;
+ }
+
+ F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin();
+ BOOL same_hole = hollow == 0.f
+ || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME;
+
+ F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE;
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
+ {
+ // it is a sphere and spheres get twice the minimum profile wedge
+ min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE;
+ }
+
+ BOOL convex_profile = ( ( profile_length == 1.f
+ || profile_length <= 0.5f )
+ && hollow == 0.f ) // trivially convex
+ || ( profile_length <= min_profile_wedge
+ && same_hole ); // effectvely convex (even when hollow)
+
+ if (!convex_profile)
+ {
+ // profile is concave
+ return FALSE;
+ }
+
+ if ( LL_PCODE_PATH_LINE == path_type )
{
- return lp[0] < rp[0];
+ // straight paths with convex profile
+ return TRUE;
}
- if (rp[1] != lp[1])
+ BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f);
+ if (concave_path)
{
- return lp[1] < rp[1];
+ return FALSE;
}
- if (rp[2] != lp[2])
+ // we're left with spheres, toroids and tubes
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
{
- return lp[2] < rp[2];
+ // at this stage all spheres must be convex
+ return TRUE;
}
- lp = getNormal().getF32ptr();
- rp = rhs.getNormal().getF32ptr();
+ // it's a toroid or tube
+ if ( path_length <= MIN_CONCAVE_PATH_WEDGE )
+ {
+ // effectively convex
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+// debug
+void LLVolumeParams::setCube()
+{
+ mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE);
+ mProfileParams.setBegin(0.f);
+ mProfileParams.setEnd(1.f);
+ mProfileParams.setHollow(0.f);
+
+ mPathParams.setBegin(0.f);
+ mPathParams.setEnd(1.f);
+ mPathParams.setScale(1.f, 1.f);
+ mPathParams.setShear(0.f, 0.f);
+ mPathParams.setCurveType(LL_PCODE_PATH_LINE);
+ mPathParams.setTwistBegin(0.f);
+ mPathParams.setTwistEnd(0.f);
+ mPathParams.setRadiusOffset(0.f);
+ mPathParams.setTaper(0.f, 0.f);
+ mPathParams.setRevolutions(0.f);
+ mPathParams.setSkew(0.f);
+}
+
+LLFaceID LLVolume::generateFaceMask()
+{
+ LLFaceID new_mask = 0x0000;
+
+ switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_CIRCLE:
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ new_mask |= LL_FACE_OUTER_SIDE_0;
+ break;
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++)
+ {
+ new_mask |= LL_FACE_OUTER_SIDE_0 << side;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ {
+ for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++)
+ {
+ new_mask |= LL_FACE_OUTER_SIDE_0 << side;
+ }
+ }
+ break;
+ default:
+ llerrs << "Unknown profile!" << llendl;
+ break;
+ }
+
+ // handle hollow objects
+ if (mParams.getProfileParams().getHollow() > 0)
+ {
+ new_mask |= LL_FACE_INNER_SIDE;
+ }
+
+ // handle open profile curves
+ if (mProfilep->isOpen())
+ {
+ new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END;
+ }
- if (lp[0] != rp[0])
+ // handle open path curves
+ if (mPathp->isOpen())
{
- return lp[0] < rp[0];
+ new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END;
}
- if (rp[1] != lp[1])
+ return new_mask;
+}
+
+BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask)
+{
+ LLFaceID test_mask = 0;
+ for(S32 i = 0; i < getNumFaces(); i++)
{
- return lp[1] < rp[1];
+ test_mask |= mProfilep->mFaces[i].mFaceID;
}
- if (rp[2] != lp[2])
+ return test_mask == face_mask;
+}
+
+BOOL LLVolume::isConvex() const
+{
+ // mParams.isConvex() may return FALSE even though the final
+ // geometry is actually convex due to LOD approximations.
+ // TODO -- provide LLPath and LLProfile with isConvex() methods
+ // that correctly determine convexity. -- Leviathan
+ return mParams.isConvex();
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params)
+{
+ s << "{type=" << (U32) profile_params.mCurveType;
+ s << ", begin=" << profile_params.mBegin;
+ s << ", end=" << profile_params.mEnd;
+ s << ", hollow=" << profile_params.mHollow;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params)
+{
+ s << "{type=" << (U32) path_params.mCurveType;
+ s << ", begin=" << path_params.mBegin;
+ s << ", end=" << path_params.mEnd;
+ s << ", twist=" << path_params.mTwistEnd;
+ s << ", scale=" << path_params.mScale;
+ s << ", shear=" << path_params.mShear;
+ s << ", twist_begin=" << path_params.mTwistBegin;
+ s << ", radius_offset=" << path_params.mRadiusOffset;
+ s << ", taper=" << path_params.mTaper;
+ s << ", revolutions=" << path_params.mRevolutions;
+ s << ", skew=" << path_params.mSkew;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params)
+{
+ s << "{profileparams = " << volume_params.mProfileParams;
+ s << ", pathparams = " << volume_params.mPathParams;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLProfile &profile)
+{
+ s << " {open=" << (U32) profile.mOpen;
+ s << ", dirty=" << profile.mDirty;
+ s << ", totalout=" << profile.mTotalOut;
+ s << ", total=" << profile.mTotal;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLPath &path)
+{
+ s << "{open=" << (U32) path.mOpen;
+ s << ", dirty=" << path.mDirty;
+ s << ", step=" << path.mStep;
+ s << ", total=" << path.mTotal;
+ s << "}";
+ return s;
+}
+
+std::ostream& operator<<(std::ostream &s, const LLVolume &volume)
+{
+ s << "{params = " << volume.getParams();
+ s << ", path = " << *volume.mPathp;
+ s << ", profile = " << *volume.mProfilep;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLVolume *volumep)
+{
+ s << "{params = " << volumep->getParams();
+ s << ", path = " << *(volumep->mPathp);
+ s << ", profile = " << *(volumep->mProfilep);
+ s << "}";
+ return s;
+}
+
+
+BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build)
+{
+ BOOL ret = FALSE ;
+ if (mTypeMask & CAP_MASK)
+ {
+ ret = createCap(volume, partial_build);
+ }
+ else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK))
+ {
+ ret = createSide(volume, partial_build);
+ }
+ else
{
- return lp[2] < rp[2];
+ llerrs << "Unknown/uninitialized face type!" << llendl;
}
- if (mTexCoord.mV[0] != rhs.mTexCoord.mV[0])
+ //update the range of the texture coordinates
+ if(ret)
{
- return mTexCoord.mV[0] < rhs.mTexCoord.mV[0];
+ mTexCoordExtents[0].setVec(1.f, 1.f) ;
+ mTexCoordExtents[1].setVec(0.f, 0.f) ;
+
+ U32 end = mVertices.size() ;
+ for(U32 i = 0 ; i < end ; i++)
+ {
+ if(mTexCoordExtents[0].mV[0] > mVertices[i].mTexCoord.mV[0])
+ {
+ mTexCoordExtents[0].mV[0] = mVertices[i].mTexCoord.mV[0] ;
+ }
+ if(mTexCoordExtents[1].mV[0] < mVertices[i].mTexCoord.mV[0])
+ {
+ mTexCoordExtents[1].mV[0] = mVertices[i].mTexCoord.mV[0] ;
+ }
+
+ if(mTexCoordExtents[0].mV[1] > mVertices[i].mTexCoord.mV[1])
+ {
+ mTexCoordExtents[0].mV[1] = mVertices[i].mTexCoord.mV[1] ;
+ }
+ if(mTexCoordExtents[1].mV[1] < mVertices[i].mTexCoord.mV[1])
+ {
+ mTexCoordExtents[1].mV[1] = mVertices[i].mTexCoord.mV[1] ;
+ }
+ }
+ mTexCoordExtents[0].mV[0] = llmax(0.f, mTexCoordExtents[0].mV[0]) ;
+ mTexCoordExtents[0].mV[1] = llmax(0.f, mTexCoordExtents[0].mV[1]) ;
+ mTexCoordExtents[1].mV[0] = llmin(1.f, mTexCoordExtents[1].mV[0]) ;
+ mTexCoordExtents[1].mV[1] = llmin(1.f, mTexCoordExtents[1].mV[1]) ;
}
- return mTexCoord.mV[1] < rhs.mTexCoord.mV[1];
+ return ret ;
}
-bool LLVolumeFace::VertexData::operator==(const LLVolumeFace::VertexData& rhs)const
+void LerpPlanarVertex(LLVolumeFace::VertexData& v0,
+ LLVolumeFace::VertexData& v1,
+ LLVolumeFace::VertexData& v2,
+ LLVolumeFace::VertexData& vout,
+ F32 coef01,
+ F32 coef02)
{
- return mData[POSITION].equals3(rhs.getPosition()) &&
- mData[NORMAL].equals3(rhs.getNormal()) &&
- mTexCoord == rhs.mTexCoord;
+ vout.mPosition = v0.mPosition + ((v1.mPosition-v0.mPosition)*coef01)+((v2.mPosition-v0.mPosition)*coef02);
+ vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02);
+ vout.mNormal = v0.mNormal;
+ vout.mBinormal = v0.mBinormal;
}
-bool LLVolumeFace::VertexData::compareNormal(const LLVolumeFace::VertexData& rhs, F32 angle_cutoff) const
+BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build)
{
- bool retval = false;
- if (rhs.mData[POSITION].equals3(mData[POSITION]) && rhs.mTexCoord == mTexCoord)
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ const std::vector<LLVolume::Point>& mesh = volume->getMesh();
+ const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
+ S32 max_s = volume->getProfile().getTotal();
+ S32 max_t = volume->getPath().mPath.size();
+
+ // S32 i;
+ S32 num_vertices = 0, num_indices = 0;
+ S32 grid_size = (profile.size()-1)/4;
+ S32 quad_count = (grid_size * grid_size);
+
+ num_vertices = (grid_size+1)*(grid_size+1);
+ num_indices = quad_count * 4;
+
+ LLVector3& min = mExtents[0];
+ LLVector3& max = mExtents[1];
+
+ S32 offset = 0;
+ if (mTypeMask & TOP_MASK)
+ offset = (max_t-1) * max_s;
+ else
+ offset = mBeginS;
+
+ VertexData corners[4];
+ VertexData baseVert;
+ for(int t = 0; t < 4; t++){
+ corners[t].mPosition = mesh[offset + (grid_size*t)].mPos;
+ corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f;
+ corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1];
+ }
+ baseVert.mNormal =
+ ((corners[1].mPosition-corners[0].mPosition) %
+ (corners[2].mPosition-corners[1].mPosition));
+ baseVert.mNormal.normVec();
+ if(!(mTypeMask & TOP_MASK)){
+ baseVert.mNormal *= -1.0f;
+ }else{
+ //Swap the UVs on the U(X) axis for top face
+ LLVector2 swap;
+ swap = corners[0].mTexCoord;
+ corners[0].mTexCoord=corners[3].mTexCoord;
+ corners[3].mTexCoord=swap;
+ swap = corners[1].mTexCoord;
+ corners[1].mTexCoord=corners[2].mTexCoord;
+ corners[2].mTexCoord=swap;
+ }
+ baseVert.mBinormal = calc_binormal_from_triangle(
+ corners[0].mPosition, corners[0].mTexCoord,
+ corners[1].mPosition, corners[1].mTexCoord,
+ corners[2].mPosition, corners[2].mTexCoord);
+ for(int t = 0; t < 4; t++){
+ corners[t].mBinormal = baseVert.mBinormal;
+ corners[t].mNormal = baseVert.mNormal;
+ }
+ mHasBinormals = TRUE;
+
+ if (partial_build)
+ {
+ mVertices.clear();
+ }
+
+ S32 vtop = mVertices.size();
+ for(int gx = 0;gx<grid_size+1;gx++){
+ for(int gy = 0;gy<grid_size+1;gy++){
+ VertexData newVert;
+ LerpPlanarVertex(
+ corners[0],
+ corners[1],
+ corners[3],
+ newVert,
+ (F32)gx/(F32)grid_size,
+ (F32)gy/(F32)grid_size);
+ mVertices.push_back(newVert);
+
+ if (gx == 0 && gy == 0)
+ {
+ min = max = newVert.mPosition;
+ }
+ else
+ {
+ update_min_max(min,max,newVert.mPosition);
+ }
+ }
+ }
+
+ mCenter = (min + max) * 0.5f;
+
+ if (!partial_build)
+ {
+#if GEN_TRI_STRIP
+ mTriStrip.clear();
+#endif
+ S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0};
+ for(S32 gx = 0;gx<grid_size;gx++)
+ {
+
+ for(S32 gy = 0;gy<grid_size;gy++)
+ {
+ if (mTypeMask & TOP_MASK)
+ {
+ for(S32 i=5;i>=0;i--)
+ {
+ mIndices.push_back(vtop+(gy*(grid_size+1))+gx+idxs[i]);
+ }
+
+#if GEN_TRI_STRIP
+ if (gy == 0)
+ {
+ mTriStrip.push_back((gx+1)*(grid_size+1));
+ mTriStrip.push_back((gx+1)*(grid_size+1));
+ mTriStrip.push_back(gx*(grid_size+1));
+ }
+
+ mTriStrip.push_back(gy+1+(gx+1)*(grid_size+1));
+ mTriStrip.push_back(gy+1+gx*(grid_size+1));
+
+
+ if (gy == grid_size-1)
+ {
+ mTriStrip.push_back(gy+1+gx*(grid_size+1));
+ }
+#endif
+ }
+ else
+ {
+ for(S32 i=0;i<6;i++)
+ {
+ mIndices.push_back(vtop+(gy*(grid_size+1))+gx+idxs[i]);
+ }
+
+#if GEN_TRI_STRIP
+ if (gy == 0)
+ {
+ mTriStrip.push_back(gx*(grid_size+1));
+ mTriStrip.push_back(gx*(grid_size+1));
+ mTriStrip.push_back((gx+1)*(grid_size+1));
+ }
+
+ mTriStrip.push_back(gy+1+gx*(grid_size+1));
+ mTriStrip.push_back(gy+1+(gx+1)*(grid_size+1));
+
+ if (gy == grid_size-1)
+ {
+ mTriStrip.push_back(gy+1+(gx+1)*(grid_size+1));
+ }
+#endif
+ }
+ }
+
+ }
+
+#if GEN_TRI_STRIP
+ if (mTriStrip.size()%2 == 1)
+ {
+ mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]);
+ }
+#endif
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ if (!(mTypeMask & HOLLOW_MASK) &&
+ !(mTypeMask & OPEN_MASK) &&
+ ((volume->getParams().getPathParams().getBegin()==0.0f)&&
+ (volume->getParams().getPathParams().getEnd()==1.0f))&&
+ (volume->getParams().getProfileParams().getCurveType()==LL_PCODE_PROFILE_SQUARE &&
+ volume->getParams().getPathParams().getCurveType()==LL_PCODE_PATH_LINE)
+ ){
+ return createUnCutCubeCap(volume, partial_build);
+ }
+
+ S32 num_vertices = 0, num_indices = 0;
+
+ const std::vector<LLVolume::Point>& mesh = volume->getMesh();
+ const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
+
+ // All types of caps have the same number of vertices and indices
+ num_vertices = profile.size();
+ num_indices = (profile.size() - 2)*3;
+
+ mVertices.resize(num_vertices);
+
+ if (!partial_build)
+ {
+ mIndices.resize(num_indices);
+ }
+
+ S32 max_s = volume->getProfile().getTotal();
+ S32 max_t = volume->getPath().mPath.size();
+
+ mCenter.clearVec();
+
+ S32 offset = 0;
+ if (mTypeMask & TOP_MASK)
+ {
+ offset = (max_t-1) * max_s;
+ }
+ else
+ {
+ offset = mBeginS;
+ }
+
+ // Figure out the normal, assume all caps are flat faces.
+ // Cross product to get normals.
+
+ LLVector2 cuv;
+ LLVector2 min_uv, max_uv;
+
+ LLVector3& min = mExtents[0];
+ LLVector3& max = mExtents[1];
+
+ // Copy the vertices into the array
+ for (S32 i = 0; i < num_vertices; i++)
{
- if (angle_cutoff > 1.f)
+ if (mTypeMask & TOP_MASK)
{
- retval = (mData[NORMAL].equals3(rhs.mData[NORMAL]));
+ mVertices[i].mTexCoord.mV[0] = profile[i].mV[0]+0.5f;
+ mVertices[i].mTexCoord.mV[1] = profile[i].mV[1]+0.5f;
}
else
{
- F32 cur_angle = rhs.mData[NORMAL].dot3(mData[NORMAL]).getF32();
- retval = cur_angle > angle_cutoff;
+ // Mirror for underside.
+ mVertices[i].mTexCoord.mV[0] = profile[i].mV[0]+0.5f;
+ mVertices[i].mTexCoord.mV[1] = 0.5f - profile[i].mV[1];
+ }
+
+ mVertices[i].mPosition = mesh[i + offset].mPos;
+
+ if (i == 0)
+ {
+ min = max = mVertices[i].mPosition;
+ min_uv = max_uv = mVertices[i].mTexCoord;
+ }
+ else
+ {
+ update_min_max(min,max, mVertices[i].mPosition);
+ update_min_max(min_uv, max_uv, mVertices[i].mTexCoord);
}
}
- return retval;
+ mCenter = (min+max)*0.5f;
+ cuv = (min_uv + max_uv)*0.5f;
+
+ LLVector3 binormal = calc_binormal_from_triangle(
+ mCenter, cuv,
+ mVertices[0].mPosition, mVertices[0].mTexCoord,
+ mVertices[1].mPosition, mVertices[1].mTexCoord);
+ binormal.normVec();
+
+ LLVector3 d0;
+ LLVector3 d1;
+ LLVector3 normal;
+
+ d0 = mCenter-mVertices[0].mPosition;
+ d1 = mCenter-mVertices[1].mPosition;
+
+ normal = (mTypeMask & TOP_MASK) ? (d0%d1) : (d1%d0);
+ normal.normVec();
+
+ VertexData vd;
+ vd.mPosition = mCenter;
+ vd.mNormal = normal;
+ vd.mBinormal = binormal;
+ vd.mTexCoord = cuv;
+
+ if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
+ {
+ mVertices.push_back(vd);
+ num_vertices++;
+ if (!partial_build)
+ {
+ vector_append(mIndices, 3);
+ }
+ }
+
+
+ for (S32 i = 0; i < num_vertices; i++)
+ {
+ mVertices[i].mBinormal = binormal;
+ mVertices[i].mNormal = normal;
+ }
+
+ mHasBinormals = TRUE;
+
+ if (partial_build)
+ {
+ return TRUE;
+ }
+
+ if (mTypeMask & HOLLOW_MASK)
+ {
+ if (mTypeMask & TOP_MASK)
+ {
+ // HOLLOW TOP
+ // Does it matter if it's open or closed? - djs
+
+ S32 pt1 = 0, pt2 = num_vertices - 1;
+ S32 i = 0;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = profile[pt1];
+ LLVector3 p2 = profile[pt2];
+ LLVector3 pa = profile[pt1+1];
+ LLVector3 pb = profile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt1 + 1;
+ mIndices[i++] = pt2;
+ pt1++;
+ }
+ else
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2 - 1;
+ mIndices[i++] = pt2;
+ pt2--;
+ }
+ }
+
+ makeTriStrip();
+ }
+ else
+ {
+ // HOLLOW BOTTOM
+ // Does it matter if it's open or closed? - djs
+
+ llassert(mTypeMask & BOTTOM_MASK);
+ S32 pt1 = 0, pt2 = num_vertices - 1;
+
+ S32 i = 0;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = profile[pt1];
+ LLVector3 p2 = profile[pt2];
+ LLVector3 pa = profile[pt1+1];
+ LLVector3 pb = profile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ // Flipped backfacing from top
+ if (use_tri1a2)
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2;
+ mIndices[i++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2;
+ mIndices[i++] = pt2 - 1;
+ pt2--;
+ }
+ }
+
+ makeTriStrip();
+ }
+ }
+ else
+ {
+ // Not hollow, generate the triangle fan.
+ U16 v1 = 2;
+ U16 v2 = 1;
+
+ if (mTypeMask & TOP_MASK)
+ {
+ v1 = 1;
+ v2 = 2;
+ }
+
+ for (S32 i = 0; i < (num_vertices - 2); i++)
+ {
+ mIndices[3*i] = num_vertices - 1;
+ mIndices[3*i+v1] = i;
+ mIndices[3*i+v2] = i + 1;
+ }
+
+#if GEN_TRI_STRIP
+ //make tri strip
+ if (mTypeMask & OPEN_MASK)
+ {
+ makeTriStrip();
+ }
+ else
+ {
+ S32 j = num_vertices-2;
+ if (mTypeMask & TOP_MASK)
+ {
+ mTriStrip.push_back(0);
+ for (S32 i = 0; i <= j; ++i)
+ {
+ mTriStrip.push_back(i);
+ if (i != j)
+ {
+ mTriStrip.push_back(j);
+ }
+ --j;
+ }
+ }
+ else
+ {
+ mTriStrip.push_back(j);
+ for (S32 i = 0; i <= j; ++i)
+ {
+ if (i != j)
+ {
+ mTriStrip.push_back(j);
+ }
+ mTriStrip.push_back(i);
+ --j;
+ }
+ }
+
+ mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]);
+
+ if (mTriStrip.size()%2 == 1)
+ {
+ mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]);
+ }
+ }
+#endif
+ }
+
+ return TRUE;
+}
+
+void LLVolumeFace::makeTriStrip()
+{
+#if GEN_TRI_STRIP
+ for (U32 i = 0; i < mIndices.size(); i+=3)
+ {
+ U16 i0 = mIndices[i];
+ U16 i1 = mIndices[i+1];
+ U16 i2 = mIndices[i+2];
+
+ if ((i/3)%2 == 1)
+ {
+ mTriStrip.push_back(i0);
+ mTriStrip.push_back(i0);
+ mTriStrip.push_back(i1);
+ mTriStrip.push_back(i2);
+ mTriStrip.push_back(i2);
+ }
+ else
+ {
+ mTriStrip.push_back(i2);
+ mTriStrip.push_back(i2);
+ mTriStrip.push_back(i1);
+ mTriStrip.push_back(i0);
+ mTriStrip.push_back(i0);
+ }
+ }
+
+ if (mTriStrip.size()%2 == 1)
+ {
+ mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]);
+ }
+#endif
+}
+
+void LLVolumeFace::createBinormals()
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ if (!mHasBinormals)
+ {
+ //generate binormals
+ for (U32 i = 0; i < mIndices.size()/3; i++)
+ { //for each triangle
+ const VertexData& v0 = mVertices[mIndices[i*3+0]];
+ const VertexData& v1 = mVertices[mIndices[i*3+1]];
+ const VertexData& v2 = mVertices[mIndices[i*3+2]];
+
+ //calculate binormal
+ LLVector3 binorm = calc_binormal_from_triangle(v0.mPosition, v0.mTexCoord,
+ v1.mPosition, v1.mTexCoord,
+ v2.mPosition, v2.mTexCoord);
+
+ for (U32 j = 0; j < 3; j++)
+ { //add triangle normal to vertices
+ mVertices[mIndices[i*3+j]].mBinormal += binorm; // * (weight_sum - d[j])/weight_sum;
+ }
+
+ //even out quad contributions
+ if (i % 2 == 0)
+ {
+ mVertices[mIndices[i*3+2]].mBinormal += binorm;
+ }
+ else
+ {
+ mVertices[mIndices[i*3+1]].mBinormal += binorm;
+ }
+ }
+
+ //normalize binormals
+ for (U32 i = 0; i < mVertices.size(); i++)
+ {
+ mVertices[i].mBinormal.normVec();
+ mVertices[i].mNormal.normVec();
+ }
+
+ mHasBinormals = TRUE;
+ }
+}
+
+BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build)
+{
+ LLMemType m1(LLMemType::MTYPE_VOLUME);
+
+ BOOL flat = mTypeMask & FLAT_MASK;
+
+ U8 sculpt_type = volume->getParams().getSculptType();
+ U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
+ BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
+ BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
+ BOOL sculpt_reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR
+
+ S32 num_vertices, num_indices;
+
+ const std::vector<LLVolume::Point>& mesh = volume->getMesh();
+ const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
+ const std::vector<LLPath::PathPt>& path_data = volume->getPath().mPath;
+
+ S32 max_s = volume->getProfile().getTotal();
+
+ S32 s, t, i;
+ F32 ss, tt;
+
+ num_vertices = mNumS*mNumT;
+ num_indices = (mNumS-1)*(mNumT-1)*6;
+
+ mVertices.resize(num_vertices);
+
+ if (!partial_build)
+ {
+ mIndices.resize(num_indices);
+ mEdge.resize(num_indices);
+ }
+ else
+ {
+ mHasBinormals = FALSE;
+ }
+
+ S32 begin_stex = llfloor( profile[mBeginS].mV[2] );
+ S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS;
+
+ S32 cur_vertex = 0;
+ // Copy the vertices into the array
+ for (t = mBeginT; t < mBeginT + mNumT; t++)
+ {
+ tt = path_data[t].mTexT;
+ for (s = 0; s < num_s; s++)
+ {
+ if (mTypeMask & END_MASK)
+ {
+ if (s)
+ {
+ ss = 1.f;
+ }
+ else
+ {
+ ss = 0.f;
+ }
+ }
+ else
+ {
+ // Get s value for tex-coord.
+ if (!flat)
+ {
+ ss = profile[mBeginS + s].mV[2];
+ }
+ else
+ {
+ ss = profile[mBeginS + s].mV[2] - begin_stex;
+ }
+ }
+
+ if (sculpt_reverse_horizontal)
+ {
+ ss = 1.f - ss;
+ }
+
+ // Check to see if this triangle wraps around the array.
+ if (mBeginS + s >= max_s)
+ {
+ // We're wrapping
+ i = mBeginS + s + max_s*(t-1);
+ }
+ else
+ {
+ i = mBeginS + s + max_s*t;
+ }
+
+ mVertices[cur_vertex].mPosition = mesh[i].mPos;
+ mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt);
+
+ mVertices[cur_vertex].mNormal = LLVector3(0,0,0);
+ mVertices[cur_vertex].mBinormal = LLVector3(0,0,0);
+
+ cur_vertex++;
+
+ if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2 && s > 0)
+ {
+ mVertices[cur_vertex].mPosition = mesh[i].mPos;
+ mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt);
+
+ mVertices[cur_vertex].mNormal = LLVector3(0,0,0);
+ mVertices[cur_vertex].mBinormal = LLVector3(0,0,0);
+ cur_vertex++;
+ }
+ }
+
+ if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2)
+ {
+ if (mTypeMask & OPEN_MASK)
+ {
+ s = num_s-1;
+ }
+ else
+ {
+ s = 0;
+ }
+
+ i = mBeginS + s + max_s*t;
+ ss = profile[mBeginS + s].mV[2] - begin_stex;
+ mVertices[cur_vertex].mPosition = mesh[i].mPos;
+ mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt);
+
+ mVertices[cur_vertex].mNormal = LLVector3(0,0,0);
+ mVertices[cur_vertex].mBinormal = LLVector3(0,0,0);
+
+ cur_vertex++;
+ }
+ }
+
+
+ //get bounding box for this side
+ LLVector3& face_min = mExtents[0];
+ LLVector3& face_max = mExtents[1];
+ mCenter.clearVec();
+
+ face_min = face_max = mVertices[0].mPosition;
+ for (U32 i = 1; i < mVertices.size(); ++i)
+ {
+ update_min_max(face_min, face_max, mVertices[i].mPosition);
+ }
+
+ mCenter = (face_min + face_max) * 0.5f;
+
+ S32 cur_index = 0;
+ S32 cur_edge = 0;
+ BOOL flat_face = mTypeMask & FLAT_MASK;
+
+ if (!partial_build)
+ {
+#if GEN_TRI_STRIP
+ mTriStrip.clear();
+#endif
+
+ // Now we generate the indices.
+ for (t = 0; t < (mNumT-1); t++)
+ {
+#if GEN_TRI_STRIP
+ //prepend terminating index to strip
+ mTriStrip.push_back(mNumS*t);
+#endif
+
+ for (s = 0; s < (mNumS-1); s++)
+ {
+ mIndices[cur_index++] = s + mNumS*t; //bottom left
+ mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
+ mIndices[cur_index++] = s + mNumS*(t+1); //top left
+ mIndices[cur_index++] = s + mNumS*t; //bottom left
+ mIndices[cur_index++] = s+1 + mNumS*t; //bottom right
+ mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
+
+#if GEN_TRI_STRIP
+ if (s == 0)
+ {
+ mTriStrip.push_back(s+mNumS*t);
+ mTriStrip.push_back(s+mNumS*(t+1));
+ }
+ mTriStrip.push_back(s+1+mNumS*t);
+ mTriStrip.push_back(s+1+mNumS*(t+1));
+#endif
+
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1; //bottom left/top right neighbor face
+ if (t < mNumT-2) { //top right/top left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1;
+ }
+ else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on T
+ mEdge[cur_edge++] = s*2+1;
+ }
+ if (s > 0) { //top left/bottom left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1;
+ }
+ else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on S
+ mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1;
+ }
+
+ if (t > 0) { //bottom left/bottom right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2;
+ }
+ else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on T
+ mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2;
+ }
+ if (s < mNumS-2) { //bottom right/top right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2;
+ }
+ else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on S
+ mEdge[cur_edge++] = (mNumS-1)*2*t;
+ }
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2; //top right/bottom left neighbor face
+ }
+#if GEN_TRI_STRIP
+ //append terminating vertex to strip
+ mTriStrip.push_back(mNumS-1+mNumS*(t+1));
+#endif
+ }
+
+#if GEN_TRI_STRIP
+ if (mTriStrip.size()%2 == 1)
+ {
+ mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]);
+ }
+#endif
+ }
+
+ //generate normals
+ for (U32 i = 0; i < mIndices.size()/3; i++) //for each triangle
+ {
+ const U16* idx = &(mIndices[i*3]);
+
+ VertexData* v[] =
+ { &mVertices[idx[0]], &mVertices[idx[1]], &mVertices[idx[2]] };
+
+ //calculate triangle normal
+ LLVector3 norm = (v[0]->mPosition-v[1]->mPosition) % (v[0]->mPosition-v[2]->mPosition);
+
+ v[0]->mNormal += norm;
+ v[1]->mNormal += norm;
+ v[2]->mNormal += norm;
+
+ //even out quad contributions
+ v[i%2+1]->mNormal += norm;
+ }
+
+ // adjust normals based on wrapping and stitching
+
+ BOOL s_bottom_converges = ((mVertices[0].mPosition - mVertices[mNumS*(mNumT-2)].mPosition).magVecSquared() < 0.000001f);
+ BOOL s_top_converges = ((mVertices[mNumS-1].mPosition - mVertices[mNumS*(mNumT-2)+mNumS-1].mPosition).magVecSquared() < 0.000001f);
+ if (sculpt_stitching == LL_SCULPT_TYPE_NONE) // logic for non-sculpt volumes
+ {
+ if (volume->getPath().isOpen() == FALSE)
+ { //wrap normals on T
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ LLVector3 norm = mVertices[i].mNormal + mVertices[mNumS*(mNumT-1)+i].mNormal;
+ mVertices[i].mNormal = norm;
+ mVertices[mNumS*(mNumT-1)+i].mNormal = norm;
+ }
+ }
+
+ if ((volume->getProfile().isOpen() == FALSE) && !(s_bottom_converges))
+ { //wrap normals on S
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ LLVector3 norm = mVertices[mNumS*i].mNormal + mVertices[mNumS*i+mNumS-1].mNormal;
+ mVertices[mNumS * i].mNormal = norm;
+ mVertices[mNumS * i+mNumS-1].mNormal = norm;
+ }
+ }
+
+ if (volume->getPathType() == LL_PCODE_PATH_CIRCLE &&
+ ((volume->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF))
+ {
+ if (s_bottom_converges)
+ { //all lower S have same normal
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ mVertices[mNumS*i].mNormal = LLVector3(1,0,0);
+ }
+ }
+
+ if (s_top_converges)
+ { //all upper S have same normal
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ mVertices[mNumS*i+mNumS-1].mNormal = LLVector3(-1,0,0);
+ }
+ }
+ }
+ }
+
+ else // logic for sculpt volumes
+ {
+ BOOL average_poles = FALSE;
+ BOOL wrap_s = FALSE;
+ BOOL wrap_t = FALSE;
+
+ if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
+ average_poles = TRUE;
+
+ if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
+ wrap_s = TRUE;
+
+ if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
+ wrap_t = TRUE;
+
+
+ if (average_poles)
+ {
+ // average normals for north pole
+
+ LLVector3 average(0.0, 0.0, 0.0);
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ average += mVertices[i].mNormal;
+ }
+
+ // set average
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ mVertices[i].mNormal = average;
+ }
+
+ // average normals for south pole
+
+ average = LLVector3(0.0, 0.0, 0.0);
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ average += mVertices[i + mNumS * (mNumT - 1)].mNormal;
+ }
+
+ // set average
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ mVertices[i + mNumS * (mNumT - 1)].mNormal = average;
+ }
+
+ }
+
+
+ if (wrap_s)
+ {
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ LLVector3 norm = mVertices[mNumS*i].mNormal + mVertices[mNumS*i+mNumS-1].mNormal;
+ mVertices[mNumS * i].mNormal = norm;
+ mVertices[mNumS * i+mNumS-1].mNormal = norm;
+ }
+ }
+
+
+
+ if (wrap_t)
+ {
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ LLVector3 norm = mVertices[i].mNormal + mVertices[mNumS*(mNumT-1)+i].mNormal;
+ mVertices[i].mNormal = norm;
+ mVertices[mNumS*(mNumT-1)+i].mNormal = norm;
+ }
+
+ }
+
+ }
+
+ return TRUE;
+}
+
+// Finds binormal based on three vertices with texture coordinates.
+// Fills in dummy values if the triangle has degenerate texture coordinates.
+LLVector3 calc_binormal_from_triangle(
+ const LLVector3& pos0,
+ const LLVector2& tex0,
+ const LLVector3& pos1,
+ const LLVector2& tex1,
+ const LLVector3& pos2,
+ const LLVector2& tex2)
+{
+ LLVector3 rx0( pos0.mV[VX], tex0.mV[VX], tex0.mV[VY] );
+ LLVector3 rx1( pos1.mV[VX], tex1.mV[VX], tex1.mV[VY] );
+ LLVector3 rx2( pos2.mV[VX], tex2.mV[VX], tex2.mV[VY] );
+
+ LLVector3 ry0( pos0.mV[VY], tex0.mV[VX], tex0.mV[VY] );
+ LLVector3 ry1( pos1.mV[VY], tex1.mV[VX], tex1.mV[VY] );
+ LLVector3 ry2( pos2.mV[VY], tex2.mV[VX], tex2.mV[VY] );
+
+ LLVector3 rz0( pos0.mV[VZ], tex0.mV[VX], tex0.mV[VY] );
+ LLVector3 rz1( pos1.mV[VZ], tex1.mV[VX], tex1.mV[VY] );
+ LLVector3 rz2( pos2.mV[VZ], tex2.mV[VX], tex2.mV[VY] );
+
+ LLVector3 r0 = (rx0 - rx1) % (rx0 - rx2);
+ LLVector3 r1 = (ry0 - ry1) % (ry0 - ry2);
+ LLVector3 r2 = (rz0 - rz1) % (rz0 - rz2);
+
+ if( r0.mV[VX] && r1.mV[VX] && r2.mV[VX] )
+ {
+ LLVector3 binormal(
+ -r0.mV[VZ] / r0.mV[VX],
+ -r1.mV[VZ] / r1.mV[VX],
+ -r2.mV[VZ] / r2.mV[VX]);
+ // binormal.normVec();
+ return binormal;
+ }
+ else
+ {
+ return LLVector3( 0, 1 , 0 );
+ }
}
- -BOOL LLVolume::createVolumeFacesFromFile(const std::string& file_name) -{ - std::ifstream is; - - is.open(file_name.c_str(), std::ifstream::in | std::ifstream::binary); - - BOOL success = createVolumeFacesFromStream(is); - - is.close(); - - return success; -} - -BOOL LLVolume::createVolumeFacesFromStream(std::istream& is) -{ - mSculptLevel = -1; // default is an error occured - - LLSD header; - { - if (!LLSDSerialize::deserialize(header, is, 1024*1024*1024)) - { - llwarns << "Mesh header parse error. Not a valid mesh asset!" << llendl; - return FALSE; - } - } - - std::string nm[] = - { - "lowest_lod", - "low_lod", - "medium_lod", - "high_lod" - }; - - S32 lod = llclamp((S32) mDetail, 0, 3); - - while (lod < 4 && - (header[nm[lod]]["offset"].asInteger() == -1 || - header[nm[lod]]["size"].asInteger() == 0 )) - { - ++lod; - } - - if (lod >= 4) - { - lod = llclamp((S32) mDetail, 0, 3); - - while (lod >= 0 && - (header[nm[lod]]["offset"].asInteger() == -1 || - header[nm[lod]]["size"].asInteger() == 0) ) - { - --lod; - } - - if (lod < 0) - { - llwarns << "Mesh header missing LOD offsets. Not a valid mesh asset!" << llendl; - return FALSE; - } - } - - is.seekg(header[nm[lod]]["offset"].asInteger(), std::ios_base::cur); - - return unpackVolumeFaces(is, header[nm[lod]]["size"].asInteger()); -} - -bool LLVolume::unpackVolumeFaces(std::istream& is, S32 size) -{ - //input stream is now pointing at a zlib compressed block of LLSD - //decompress block - LLSD mdl; - if (!unzip_llsd(mdl, is, size)) - { - llwarns << "not a valid mesh asset!" << llendl; - return false; - } - - { - U32 face_count = mdl.size(); - - if (face_count == 0) - { - llerrs << "WTF?" << llendl; - } - - mVolumeFaces.resize(face_count); - - for (U32 i = 0; i < face_count; ++i) - { - LLSD::Binary pos = mdl[i]["Position"]; - LLSD::Binary norm = mdl[i]["Normal"]; - LLSD::Binary tc = mdl[i]["TexCoord0"]; - LLSD::Binary idx = mdl[i]["TriangleList"]; - - LLVolumeFace& face = mVolumeFaces[i]; - - //copy out indices - face.resizeIndices(idx.size()/2); - - if (idx.empty() || face.mNumIndices < 3) - { //why is there an empty index list? - llerrs <<"WTF?" << llendl; - continue; - } - - U16* indices = (U16*) &(idx[0]); - for (U32 j = 0; j < idx.size()/2; ++j) - { - face.mIndices[j] = indices[j]; - } - - //copy out vertices - U32 num_verts = pos.size()/(3*2); - face.resizeVertices(num_verts); - - if (mdl[i].has("Weights")) - { - face.allocateWeights(num_verts); - - LLSD::Binary weights = mdl[i]["Weights"]; - - U32 idx = 0; - - U32 cur_vertex = 0; - while (idx < weights.size() && cur_vertex < num_verts) - { - const U8 END_INFLUENCES = 0xFF; - U8 joint = weights[idx++]; - - U32 cur_influence = 0; - LLVector4 wght(0,0,0,0); - - while (joint != END_INFLUENCES && idx < weights.size()) - { - U16 influence = weights[idx++]; - influence |= ((U16) weights[idx++] << 8); - - F32 w = llclamp((F32) influence / 65535.f, 0.f, 0.99999f); - wght.mV[cur_influence++] = (F32) joint + w; - - if (cur_influence >= 4) - { - joint = END_INFLUENCES; - } - else - { - joint = weights[idx++]; - } - } - - face.mWeights[cur_vertex].loadua(wght.mV); - - cur_vertex++; - } - - if (cur_vertex != num_verts || idx != weights.size()) - { - llwarns << "Vertex weight count does not match vertex count!" << llendl; - } - - } - - LLVector3 minp; - LLVector3 maxp; - LLVector2 min_tc; - LLVector2 max_tc; - - minp.setValue(mdl[i]["PositionDomain"]["Min"]); - maxp.setValue(mdl[i]["PositionDomain"]["Max"]); - LLVector4a min_pos, max_pos; - min_pos.load3(minp.mV); - max_pos.load3(maxp.mV); - - min_tc.setValue(mdl[i]["TexCoord0Domain"]["Min"]); - max_tc.setValue(mdl[i]["TexCoord0Domain"]["Max"]); - - LLVector4a pos_range; - pos_range.setSub(max_pos, min_pos); - LLVector2 tc_range = max_tc - min_tc; - - LLVector4a* pos_out = face.mPositions; - LLVector4a* norm_out = face.mNormals; - LLVector2* tc_out = face.mTexCoords; - - for (U32 j = 0; j < num_verts; ++j) - { - U16* v = (U16*) &(pos[j*3*2]); - - pos_out->set((F32) v[0], (F32) v[1], (F32) v[2]); - pos_out->div(65535.f); - pos_out->mul(pos_range); - pos_out->add(min_pos); - - pos_out++; - - U16* n = (U16*) &(norm[j*3*2]); - - norm_out->set((F32) n[0], (F32) n[1], (F32) n[2]); - norm_out->div(65535.f); - norm_out->mul(2.f); - norm_out->sub(1.f); - norm_out++; - - U16* t = (U16*) &(tc[j*2*2]); - - tc_out->mV[0] = (F32) t[0] / 65535.f * tc_range.mV[0] + min_tc.mV[0]; - tc_out->mV[1] = (F32) t[1] / 65535.f * tc_range.mV[1] + min_tc.mV[1]; - - tc_out++; - } - - - // modifier flags? - bool do_mirror = (mParams.getSculptType() & LL_SCULPT_FLAG_MIRROR); - bool do_invert = (mParams.getSculptType() &LL_SCULPT_FLAG_INVERT); - - - // translate to actions: - bool do_reflect_x = false; - bool do_reverse_triangles = false; - bool do_invert_normals = false; - - if (do_mirror) - { - do_reflect_x = true; - do_reverse_triangles = !do_reverse_triangles; - } - - if (do_invert) - { - do_invert_normals = true; - do_reverse_triangles = !do_reverse_triangles; - } - - // now do the work - - if (do_reflect_x) - { - LLVector4a* p = (LLVector4a*) face.mPositions; - LLVector4a* n = (LLVector4a*) face.mNormals; - - for (S32 i = 0; i < face.mNumVertices; i++) - { - p[i].mul(-1.0f); - n[i].mul(-1.0f); - } - } - - if (do_invert_normals) - { - LLVector4a* n = (LLVector4a*) face.mNormals; - - for (S32 i = 0; i < face.mNumVertices; i++) - { - n[i].mul(-1.0f); - } - } - - if (do_reverse_triangles) - { - for (U32 j = 0; j < face.mNumIndices; j += 3) - { - // swap the 2nd and 3rd index - S32 swap = face.mIndices[j+1]; - face.mIndices[j+1] = face.mIndices[j+2]; - face.mIndices[j+2] = swap; - } - } - - //calculate bounding box - LLVector4a& min = face.mExtents[0]; - LLVector4a& max = face.mExtents[1]; - - min.clear(); - max.clear(); - min = max = face.mPositions[0]; - - for (S32 i = 1; i < face.mNumVertices; ++i) - { - min.setMin(min, face.mPositions[i]); - max.setMax(max, face.mPositions[i]); - } - } - } - - mSculptLevel = 0; // success! - - cacheOptimize(); - - return true; -} - -void tetrahedron_set_normal(LLVolumeFace::VertexData* cv) -{ - LLVector4a v0; - v0.setSub(cv[1].getPosition(), cv[0].getNormal()); - LLVector4a v1; - v1.setSub(cv[2].getNormal(), cv[0].getPosition()); - - cv[0].getNormal().setCross3(v0,v1); - cv[0].getNormal().normalize3fast(); - cv[1].setNormal(cv[0].getNormal()); - cv[2].setNormal(cv[1].getNormal()); -} - -BOOL LLVolume::isTetrahedron() -{ - return mIsTetrahedron; -} - -void LLVolume::makeTetrahedron() -{ - mVolumeFaces.clear(); - - LLVolumeFace face; - - F32 x = 0.25f; - LLVector4a p[] = - { //unit tetrahedron corners - LLVector4a(x,x,x), - LLVector4a(-x,-x,x), - LLVector4a(-x,x,-x), - LLVector4a(x,-x,-x) - }; - - face.mExtents[0].splat(-x); - face.mExtents[1].splat(x); - - LLVolumeFace::VertexData cv[3]; - - //set texture coordinates - cv[0].mTexCoord = LLVector2(0,0); - cv[1].mTexCoord = LLVector2(1,0); - cv[2].mTexCoord = LLVector2(0.5f, 0.5f*F_SQRT3); - - - //side 1 - cv[0].setPosition(p[1]); - cv[1].setPosition(p[0]); - cv[2].setPosition(p[2]); - - tetrahedron_set_normal(cv); - - face.resizeVertices(12); - face.resizeIndices(12); - - LLVector4a* v = (LLVector4a*) face.mPositions; - LLVector4a* n = (LLVector4a*) face.mNormals; - LLVector2* tc = (LLVector2*) face.mTexCoords; - - v[0] = cv[0].getPosition(); - v[1] = cv[1].getPosition(); - v[2] = cv[2].getPosition(); - v += 3; - - n[0] = cv[0].getNormal(); - n[1] = cv[1].getNormal(); - n[2] = cv[2].getNormal(); - n += 3; - - tc[0] = cv[0].mTexCoord; - tc[1] = cv[1].mTexCoord; - tc[2] = cv[2].mTexCoord; - tc += 3; - - - //side 2 - cv[0].setPosition(p[3]); - cv[1].setPosition(p[0]); - cv[2].setPosition(p[1]); - - tetrahedron_set_normal(cv); - - v[0] = cv[0].getPosition(); - v[1] = cv[1].getPosition(); - v[2] = cv[2].getPosition(); - v += 3; - - n[0] = cv[0].getNormal(); - n[1] = cv[1].getNormal(); - n[2] = cv[2].getNormal(); - n += 3; - - tc[0] = cv[0].mTexCoord; - tc[1] = cv[1].mTexCoord; - tc[2] = cv[2].mTexCoord; - tc += 3; - - //side 3 - cv[0].setPosition(p[3]); - cv[1].setPosition(p[1]); - cv[2].setPosition(p[2]); - - tetrahedron_set_normal(cv); - - v[0] = cv[0].getPosition(); - v[1] = cv[1].getPosition(); - v[2] = cv[2].getPosition(); - v += 3; - - n[0] = cv[0].getNormal(); - n[1] = cv[1].getNormal(); - n[2] = cv[2].getNormal(); - n += 3; - - tc[0] = cv[0].mTexCoord; - tc[1] = cv[1].mTexCoord; - tc[2] = cv[2].mTexCoord; - tc += 3; - - //side 4 - cv[0].setPosition(p[2]); - cv[1].setPosition(p[0]); - cv[2].setPosition(p[3]); - - tetrahedron_set_normal(cv); - - v[0] = cv[0].getPosition(); - v[1] = cv[1].getPosition(); - v[2] = cv[2].getPosition(); - v += 3; - - n[0] = cv[0].getNormal(); - n[1] = cv[1].getNormal(); - n[2] = cv[2].getNormal(); - n += 3; - - tc[0] = cv[0].mTexCoord; - tc[1] = cv[1].mTexCoord; - tc[2] = cv[2].mTexCoord; - tc += 3; - - //set index buffer - for (U16 i = 0; i < 12; i++) - { - face.mIndices[i] = i; - } - - mVolumeFaces.push_back(face); - mSculptLevel = 0; - mIsTetrahedron = TRUE; -} - -void LLVolume::copyVolumeFaces(const LLVolume* volume) -{ - mVolumeFaces = volume->mVolumeFaces; - mSculptLevel = 0; - mIsTetrahedron = FALSE; -} - -void LLVolume::cacheOptimize() -{ - for (S32 i = 0; i < mVolumeFaces.size(); ++i) - { - mVolumeFaces[i].cacheOptimize(); - } -} - - -S32 LLVolume::getNumFaces() const -{ - U8 sculpt_type = (mParams.getSculptType() & LL_SCULPT_TYPE_MASK); - - if (sculpt_type == LL_SCULPT_TYPE_MESH) - { - return LL_SCULPT_MESH_MAX_FACES; - } - - return (S32)mProfilep->mFaces.size(); -} - - -void LLVolume::createVolumeFaces() -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if (mGenerateSingleFace) - { - // do nothing - } - else - { - S32 num_faces = getNumFaces(); - BOOL partial_build = TRUE; - if (num_faces != mVolumeFaces.size()) - { - partial_build = FALSE; - mVolumeFaces.resize(num_faces); - } - // Initialize volume faces with parameter data - for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++) - { - LLVolumeFace& vf = mVolumeFaces[i]; - LLProfile::Face& face = mProfilep->mFaces[i]; - vf.mBeginS = face.mIndex; - vf.mNumS = face.mCount; - if (vf.mNumS < 0) - { - llerrs << "Volume face corruption detected." << llendl; - } - - vf.mBeginT = 0; - vf.mNumT= getPath().mPath.size(); - vf.mID = i; - - // Set the type mask bits correctly - if (mParams.getProfileParams().getHollow() > 0) - { - vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK; - } - if (mProfilep->isOpen()) - { - vf.mTypeMask |= LLVolumeFace::OPEN_MASK; - } - if (face.mCap) - { - vf.mTypeMask |= LLVolumeFace::CAP_MASK; - if (face.mFaceID == LL_FACE_PATH_BEGIN) - { - vf.mTypeMask |= LLVolumeFace::TOP_MASK; - } - else - { - llassert(face.mFaceID == LL_FACE_PATH_END); - vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK; - } - } - else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END)) - { - vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK; - } - else - { - vf.mTypeMask |= LLVolumeFace::SIDE_MASK; - if (face.mFlat) - { - vf.mTypeMask |= LLVolumeFace::FLAT_MASK; - } - if (face.mFaceID & LL_FACE_INNER_SIDE) - { - vf.mTypeMask |= LLVolumeFace::INNER_MASK; - if (face.mFlat && vf.mNumS > 2) - { //flat inner faces have to copy vert normals - vf.mNumS = vf.mNumS*2; - if (vf.mNumS < 0) - { - llerrs << "Volume face corruption detected." << llendl; - } - } - } - else - { - vf.mTypeMask |= LLVolumeFace::OUTER_MASK; - } - } - } - - for (face_list_t::iterator iter = mVolumeFaces.begin(); - iter != mVolumeFaces.end(); ++iter) - { - (*iter).create(this, partial_build); - } - } -} - - -inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b) -{ - // maps RGB values to vector values [0..255] -> [-0.5..0.5] - LLVector3 value; - value.mV[VX] = r / 255.f - 0.5f; - value.mV[VY] = g / 255.f - 0.5f; - value.mV[VZ] = b / 255.f - 0.5f; - - return value; -} - -inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) -{ - U32 index = (x + y * sculpt_width) * sculpt_components; - return index; -} - - -inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) -{ - U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width); - U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height); - - return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); -} - - -inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data) -{ - LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]); - - return v; -} - -inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) -{ - U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components); - - return sculpt_index_to_vector(index, sculpt_data); -} - -inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) -{ - U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); - - return sculpt_index_to_vector(index, sculpt_data); -} - - -F32 LLVolume::sculptGetSurfaceArea() -{ - // test to see if image has enough variation to create non-degenerate geometry - - F32 area = 0; - - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - for (S32 s = 0; s < sizeS-1; s++) - { - for (S32 t = 0; t < sizeT-1; t++) - { - // get four corners of quad - LLVector3 p1 = mMesh[(s )*sizeT + (t )].mPos; - LLVector3 p2 = mMesh[(s+1)*sizeT + (t )].mPos; - LLVector3 p3 = mMesh[(s )*sizeT + (t+1)].mPos; - LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos; - - // compute the area of the quad by taking the length of the cross product of the two triangles - LLVector3 cross1 = (p1 - p2) % (p1 - p3); - LLVector3 cross2 = (p4 - p2) % (p4 - p3); - area += (cross1.magVec() + cross2.magVec()) / 2.0; - } - } - - return area; -} - -// create placeholder shape -void LLVolume::sculptGeneratePlaceholder() -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - S32 line = 0; - - // for now, this is a sphere. - for (S32 s = 0; s < sizeS; s++) - { - for (S32 t = 0; t < sizeT; t++) - { - S32 i = t + line; - Point& pt = mMesh[i]; - - - F32 u = (F32)s/(sizeS-1); - F32 v = (F32)t/(sizeT-1); - - const F32 RADIUS = (F32) 0.3; - - pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS); - pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS); - pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS); - - } - line += sizeT; - } -} - -// create the vertices from the map -void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type) -{ - U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK; - BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT; - BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR; - BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR - - - LLMemType m1(LLMemType::MTYPE_VOLUME); - - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - S32 line = 0; - for (S32 s = 0; s < sizeS; s++) - { - // Run along the profile. - for (S32 t = 0; t < sizeT; t++) - { - S32 i = t + line; - Point& pt = mMesh[i]; - - S32 reversed_t = t; - - if (reverse_horizontal) - { - reversed_t = sizeT - t - 1; - } - - U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width); - U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height); - - - if (y == 0) // top row stitching - { - // pinch? - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - { - x = sculpt_width / 2; - } - } - - if (y == sculpt_height) // bottom row stitching - { - // wrap? - if (sculpt_stitching == LL_SCULPT_TYPE_TORUS) - { - y = 0; - } - else - { - y = sculpt_height - 1; - } - - // pinch? - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - { - x = sculpt_width / 2; - } - } - - if (x == sculpt_width) // side stitching - { - // wrap? - if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) || - (sculpt_stitching == LL_SCULPT_TYPE_TORUS) || - (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER)) - { - x = 0; - } - - else - { - x = sculpt_width - 1; - } - } - - pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data); - - if (sculpt_mirror) - { - pt.mPos.mV[VX] *= -1.f; - } - } - - line += sizeT; - } -} - - -const S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square -const S32 SCULPT_REZ_2 = 8; -const S32 SCULPT_REZ_3 = 16; -const S32 SCULPT_REZ_4 = 32; - -S32 sculpt_sides(F32 detail) -{ - - // detail is usually one of: 1, 1.5, 2.5, 4.0. - - if (detail <= 1.0) - { - return SCULPT_REZ_1; - } - if (detail <= 2.0) - { - return SCULPT_REZ_2; - } - if (detail <= 3.0) - { - return SCULPT_REZ_3; - } - else - { - return SCULPT_REZ_4; - } -} - - - -// determine the number of vertices in both s and t direction for this sculpt -void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t) -{ - // this code has the following properties: - // 1) the aspect ratio of the mesh is as close as possible to the ratio of the map - // while still using all available verts - // 2) the mesh cannot have more verts than is allowed by LOD - // 3) the mesh cannot have more verts than is allowed by the map - - S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0); - S32 max_vertices_map = width * height / 4; - - S32 vertices; - if (max_vertices_map > 0) - vertices = llmin(max_vertices_lod, max_vertices_map); - else - vertices = max_vertices_lod; - - - F32 ratio; - if ((width == 0) || (height == 0)) - ratio = 1.f; - else - ratio = (F32) width / (F32) height; - - - s = (S32)(F32) sqrt(((F32)vertices / ratio)); - - s = llmax(s, 4); // no degenerate sizes, please - t = vertices / s; - - t = llmax(t, 4); // no degenerate sizes, please - s = vertices / t; -} - -// sculpt replaces generate() for sculpted surfaces -void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - U8 sculpt_type = mParams.getSculptType(); - - BOOL data_is_empty = FALSE; - - if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL) - { - sculpt_level = -1; - data_is_empty = TRUE; - } - - S32 requested_sizeS = 0; - S32 requested_sizeT = 0; - - sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT); - - mPathp->generate(mParams.getPathParams(), mDetail, 0, TRUE, requested_sizeS); - mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, TRUE, requested_sizeT); - - S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got - S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got - - // weird crash bug - DEV-11158 - trying to collect more data: - if ((sizeS == 0) || (sizeT == 0)) - { - llwarns << "sculpt bad mesh size " << sizeS << " " << sizeT << llendl; - } - - sNumMeshPoints -= mMesh.size(); - mMesh.resize(sizeS * sizeT); - sNumMeshPoints += mMesh.size(); - - //generate vertex positions - if (!data_is_empty) - { - sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type); - - // don't test lowest LOD to support legacy content DEV-33670 - if (mDetail > SCULPT_MIN_AREA_DETAIL) - { - if (sculptGetSurfaceArea() < SCULPT_MIN_AREA) - { - data_is_empty = TRUE; - } - } - } - - if (data_is_empty) - { - sculptGeneratePlaceholder(); - } - - - - for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++) - { - mFaceMask |= mProfilep->mFaces[i].mFaceID; - } - - mSculptLevel = sculpt_level; - - // Delete any existing faces so that they get regenerated - mVolumeFaces.clear(); - - createVolumeFaces(); -} - - - - -BOOL LLVolume::isCap(S32 face) -{ - return mProfilep->mFaces[face].mCap; -} - -BOOL LLVolume::isFlat(S32 face) -{ - return mProfilep->mFaces[face].mFlat; -} - - -bool LLVolumeParams::isSculpt() const -{ - return mSculptID.notNull(); -} - -bool LLVolumeParams::isMeshSculpt() const -{ - return isSculpt() && ((mSculptType & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH); -} - -bool LLVolumeParams::operator==(const LLVolumeParams ¶ms) const -{ - return ( (getPathParams() == params.getPathParams()) && - (getProfileParams() == params.getProfileParams()) && - (mSculptID == params.mSculptID) && - (mSculptType == params.mSculptType) ); -} - -bool LLVolumeParams::operator!=(const LLVolumeParams ¶ms) const -{ - return ( (getPathParams() != params.getPathParams()) || - (getProfileParams() != params.getProfileParams()) || - (mSculptID != params.mSculptID) || - (mSculptType != params.mSculptType) ); -} - -bool LLVolumeParams::operator<(const LLVolumeParams ¶ms) const -{ - if( getPathParams() != params.getPathParams() ) - { - return getPathParams() < params.getPathParams(); - } - - if (getProfileParams() != params.getProfileParams()) - { - return getProfileParams() < params.getProfileParams(); - } - - if (mSculptID != params.mSculptID) - { - return mSculptID < params.mSculptID; - } - - return mSculptType < params.mSculptType; - - -} - -void LLVolumeParams::copyParams(const LLVolumeParams ¶ms) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - mProfileParams.copyParams(params.mProfileParams); - mPathParams.copyParams(params.mPathParams); - mSculptID = params.getSculptID(); - mSculptType = params.getSculptType(); -} - -// Less restricitve approx 0 for volumes -const F32 APPROXIMATELY_ZERO = 0.001f; -bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO) -{ - return (f >= -tolerance) && (f <= tolerance); -} - -// return true if in range (or nearly so) -static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO) -{ - F32 min_delta = v - min; - if (min_delta < 0.f) - { - v = min; - if (!approx_zero(min_delta, tolerance)) - return false; - } - F32 max_delta = max - v; - if (max_delta < 0.f) - { - v = max; - if (!approx_zero(max_delta, tolerance)) - return false; - } - return true; -} - -bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e) -{ - bool valid = true; - - // First, clamp to valid ranges. - F32 begin = b; - valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); - - F32 end = e; - if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error - valid &= limit_range(end, MIN_CUT_DELTA, 1.f); - - valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); - - // Now set them. - mProfileParams.setBegin(begin); - mProfileParams.setEnd(end); - - return valid; -} - -bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e) -{ - bool valid = true; - - // First, clamp to valid ranges. - F32 begin = b; - valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); - - F32 end = e; - valid &= limit_range(end, MIN_CUT_DELTA, 1.f); - - valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); - - // Now set them. - mPathParams.setBegin(begin); - mPathParams.setEnd(end); - - return valid; -} - -bool LLVolumeParams::setHollow(const F32 h) -{ - // Validate the hollow based on path and profile. - U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK; - - F32 max_hollow = HOLLOW_MAX; - - // Only square holes have trouble. - if (LL_PCODE_HOLE_SQUARE == hole_type) - { - switch(profile) - { - case LL_PCODE_PROFILE_CIRCLE: - case LL_PCODE_PROFILE_CIRCLE_HALF: - case LL_PCODE_PROFILE_EQUALTRI: - max_hollow = HOLLOW_MAX_SQUARE; - } - } - - F32 hollow = h; - bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow); - mProfileParams.setHollow(hollow); - - return valid; -} - -bool LLVolumeParams::setTwistBegin(const F32 b) -{ - F32 twist_begin = b; - bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX); - mPathParams.setTwistBegin(twist_begin); - return valid; -} - -bool LLVolumeParams::setTwistEnd(const F32 e) -{ - F32 twist_end = e; - bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX); - mPathParams.setTwistEnd(twist_end); - return valid; -} - -bool LLVolumeParams::setRatio(const F32 x, const F32 y) -{ - F32 min_x = RATIO_MIN; - F32 max_x = RATIO_MAX; - F32 min_y = RATIO_MIN; - F32 max_y = RATIO_MAX; - // If this is a circular path (and not a sphere) then 'ratio' is actually hole size. - U8 path_type = mPathParams.getCurveType(); - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PATH_CIRCLE == path_type && - LL_PCODE_PROFILE_CIRCLE_HALF != profile_type) - { - // Holes are more restricted... - min_x = HOLE_X_MIN; - max_x = HOLE_X_MAX; - min_y = HOLE_Y_MIN; - max_y = HOLE_Y_MAX; - } - - F32 ratio_x = x; - bool valid = limit_range(ratio_x, min_x, max_x); - F32 ratio_y = y; - valid &= limit_range(ratio_y, min_y, max_y); - - mPathParams.setScale(ratio_x, ratio_y); - - return valid; -} - -bool LLVolumeParams::setShear(const F32 x, const F32 y) -{ - F32 shear_x = x; - bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX); - F32 shear_y = y; - valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX); - mPathParams.setShear(shear_x, shear_y); - return valid; -} - -bool LLVolumeParams::setTaperX(const F32 v) -{ - F32 taper = v; - bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); - mPathParams.setTaperX(taper); - return valid; -} - -bool LLVolumeParams::setTaperY(const F32 v) -{ - F32 taper = v; - bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); - mPathParams.setTaperY(taper); - return valid; -} - -bool LLVolumeParams::setRevolutions(const F32 r) -{ - F32 revolutions = r; - bool valid = limit_range(revolutions, REV_MIN, REV_MAX); - mPathParams.setRevolutions(revolutions); - return valid; -} - -bool LLVolumeParams::setRadiusOffset(const F32 offset) -{ - bool valid = true; - - // If this is a sphere, just set it to 0 and get out. - U8 path_type = mPathParams.getCurveType(); - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type || - LL_PCODE_PATH_CIRCLE != path_type ) - { - mPathParams.setRadiusOffset(0.f); - return true; - } - - // Limit radius offset, based on taper and hole size y. - F32 radius_offset = offset; - F32 taper_y = getTaperY(); - F32 radius_mag = fabs(radius_offset); - F32 hole_y_mag = fabs(getRatioY()); - F32 taper_y_mag = fabs(taper_y); - // Check to see if the taper effects us. - if ( (radius_offset > 0.f && taper_y < 0.f) || - (radius_offset < 0.f && taper_y > 0.f) ) - { - // The taper does not help increase the radius offset range. - taper_y_mag = 0.f; - } - F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag); - - // Enforce the maximum magnitude. - F32 delta = max_radius_mag - radius_mag; - if (delta < 0.f) - { - // Check radius offset sign. - if (radius_offset < 0.f) - { - radius_offset = -max_radius_mag; - } - else - { - radius_offset = max_radius_mag; - } - valid = approx_zero(delta, .1f); - } - - mPathParams.setRadiusOffset(radius_offset); - return valid; -} - -bool LLVolumeParams::setSkew(const F32 skew_value) -{ - bool valid = true; - - // Check the skew value against the revolutions. - F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX); - F32 skew_mag = fabs(skew); - F32 revolutions = getRevolutions(); - F32 scale_x = getRatioX(); - F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f); - // Discontinuity; A revolution of 1 allows skews below 0.5. - if ( fabs(revolutions - 1.0f) < 0.001) - min_skew_mag = 0.0f; - - // Clip skew. - F32 delta = skew_mag - min_skew_mag; - if (delta < 0.f) - { - // Check skew sign. - if (skew < 0.0f) - { - skew = -min_skew_mag; - } - else - { - skew = min_skew_mag; - } - valid = approx_zero(delta, .01f); - } - - mPathParams.setSkew(skew); - return valid; -} - -bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type) -{ - mSculptID = sculpt_id; - mSculptType = sculpt_type; - return true; -} - -bool LLVolumeParams::setType(U8 profile, U8 path) -{ - bool result = true; - // First, check profile and path for validity. - U8 profile_type = profile & LL_PCODE_PROFILE_MASK; - U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4; - U8 path_type = path >> 4; - - if (profile_type > LL_PCODE_PROFILE_MAX) - { - // Bad profile. Make it square. - profile = LL_PCODE_PROFILE_SQUARE; - result = false; - llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type - << ") to be LL_PCODE_PROFILE_SQUARE" << llendl; - } - else if (hole_type > LL_PCODE_HOLE_MAX) - { - // Bad hole. Make it the same. - profile = profile_type; - result = false; - llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type - << ") to be LL_PCODE_HOLE_SAME" << llendl; - } - - if (path_type < LL_PCODE_PATH_MIN || - path_type > LL_PCODE_PATH_MAX) - { - // Bad path. Make it linear. - result = false; - llwarns << "LLVolumeParams::setType changing bad path (" << path - << ") to be LL_PCODE_PATH_LINE" << llendl; - path = LL_PCODE_PATH_LINE; - } - - mProfileParams.setCurveType(profile); - mPathParams.setCurveType(path); - return result; -} - -// static -bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, - U8 path_curve, F32 path_begin, F32 path_end, - F32 scx, F32 scy, F32 shx, F32 shy, - F32 twistend, F32 twistbegin, F32 radiusoffset, - F32 tx, F32 ty, F32 revolutions, F32 skew) -{ - LLVolumeParams test_params; - if (!test_params.setType (prof_curve, path_curve)) - { - return false; - } - if (!test_params.setBeginAndEndS (prof_begin, prof_end)) - { - return false; - } - if (!test_params.setBeginAndEndT (path_begin, path_end)) - { - return false; - } - if (!test_params.setHollow (hollow)) - { - return false; - } - if (!test_params.setTwistBegin (twistbegin)) - { - return false; - } - if (!test_params.setTwistEnd (twistend)) - { - return false; - } - if (!test_params.setRatio (scx, scy)) - { - return false; - } - if (!test_params.setShear (shx, shy)) - { - return false; - } - if (!test_params.setTaper (tx, ty)) - { - return false; - } - if (!test_params.setRevolutions (revolutions)) - { - return false; - } - if (!test_params.setRadiusOffset (radiusoffset)) - { - return false; - } - if (!test_params.setSkew (skew)) - { - return false; - } - return true; -} - -S32 *LLVolume::getTriangleIndices(U32 &num_indices) const -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - S32 expected_num_triangle_indices = getNumTriangleIndices(); - if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES) - { - // we don't allow LLVolumes with this many vertices - llwarns << "Couldn't allocate triangle indices" << llendl; - num_indices = 0; - return NULL; - } - - S32* index = new S32[expected_num_triangle_indices]; - S32 count = 0; - - // Let's do this totally diffently, as we don't care about faces... - // Counter-clockwise triangles are forward facing... - - BOOL open = getProfile().isOpen(); - BOOL hollow = (mParams.getProfileParams().getHollow() > 0); - BOOL path_open = getPath().isOpen(); - S32 size_s, size_s_out, size_t; - S32 s, t, i; - size_s = getProfile().getTotal(); - size_s_out = getProfile().getTotalOut(); - size_t = getPath().mPath.size(); - - // NOTE -- if the construction of the triangles below ever changes - // then getNumTriangleIndices() method may also have to be updated. - - if (open) /* Flawfinder: ignore */ - { - if (hollow) - { - // Open hollow -- much like the closed solid, except we - // we need to stitch up the gap between s=0 and s=size_s-1 - - for (t = 0; t < size_t - 1; t++) - { - // The outer face, first cut, and inner face - for (s = 0; s < size_s - 1; s++) - { - i = s + t*size_s; - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - - // The other cut face - index[count++] = s + t*size_s; // x,y - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = s + (t+1)*size_s; // x,y+1 - - index[count++] = s + (t+1)*size_s; // x,y+1 - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = 0 + (t+1)*size_s; // x+1,y+1 - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - // Top cap - S32 pt1 = 0; - S32 pt2 = size_s-1; - S32 i = (size_t - 1)*size_s; - - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1 + i; - index[count++] = pt1 + 1 + i; - index[count++] = pt2 + i; - pt1++; - } - else - { - index[count++] = pt1 + i; - index[count++] = pt2 - 1 + i; - index[count++] = pt2 + i; - pt2--; - } - } - - // Bottom cap - pt1 = 0; - pt2 = size_s-1; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt1 + 1; - pt1++; - } - else - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt2 - 1; - pt2--; - } - } - } - } - else - { - // Open solid - - for (t = 0; t < size_t - 1; t++) - { - // Outer face + 1 cut face - for (s = 0; s < size_s - 1; s++) - { - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - - // The other cut face - index[count++] = (size_s - 1) + (t*size_s); // x,y - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 - - index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 - index[count++] = 0 + (t*size_s); // x+1,y - index[count++] = 0 + (t+1)*size_s; // x+1,y+1 - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - for (s = 0; s < size_s - 2; s++) - { - index[count++] = s+1; - index[count++] = s; - index[count++] = size_s - 1; - } - - // We've got a top cap - S32 offset = (size_t - 1)*size_s; - for (s = 0; s < size_s - 2; s++) - { - // Inverted ordering from bottom cap. - index[count++] = offset + size_s - 1; - index[count++] = offset + s; - index[count++] = offset + s + 1; - } - } - } - } - else if (hollow) - { - // Closed hollow - // Outer face - - for (t = 0; t < size_t - 1; t++) - { - for (s = 0; s < size_s_out - 1; s++) - { - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + 1 + size_s; // x+1,y+1 - } - } - - // Inner face - // Invert facing from outer face - for (t = 0; t < size_t - 1; t++) - { - for (s = size_s_out; s < size_s - 1; s++) - { - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + 1 + size_s; // x+1,y+1 - } - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - // Top cap - S32 pt1 = 0; - S32 pt2 = size_s-1; - S32 i = (size_t - 1)*size_s; - - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1 + i; - index[count++] = pt1 + 1 + i; - index[count++] = pt2 + i; - pt1++; - } - else - { - index[count++] = pt1 + i; - index[count++] = pt2 - 1 + i; - index[count++] = pt2 + i; - pt2--; - } - } - - // Bottom cap - pt1 = 0; - pt2 = size_s-1; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt1 + 1; - pt1++; - } - else - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt2 - 1; - pt2--; - } - } - } - } - else - { - // Closed solid. Easy case. - for (t = 0; t < size_t - 1; t++) - { - for (s = 0; s < size_s - 1; s++) - { - // Should wrap properly, but for now... - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - // bottom cap - for (s = 1; s < size_s - 2; s++) - { - index[count++] = s+1; - index[count++] = s; - index[count++] = 0; - } - - // top cap - S32 offset = (size_t - 1)*size_s; - for (s = 1; s < size_s - 2; s++) - { - // Inverted ordering from bottom cap. - index[count++] = offset; - index[count++] = offset + s; - index[count++] = offset + s + 1; - } - } - } - -#ifdef LL_DEBUG - // assert that we computed the correct number of indices - if (count != expected_num_triangle_indices ) - { - llerrs << "bad index count prediciton:" - << " expected=" << expected_num_triangle_indices - << " actual=" << count << llendl; - } -#endif - -#if 0 - // verify that each index does not point beyond the size of the mesh - S32 num_vertices = mMesh.size(); - for (i = 0; i < count; i+=3) - { - llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl; - llassert(index[i] < num_vertices); - llassert(index[i+1] < num_vertices); - llassert(index[i+2] < num_vertices); - } -#endif - - num_indices = count; - return index; -} - -S32 LLVolume::getNumTriangleIndices() const -{ - BOOL profile_open = getProfile().isOpen(); - BOOL hollow = (mParams.getProfileParams().getHollow() > 0); - BOOL path_open = getPath().isOpen(); - - S32 size_s, size_s_out, size_t; - size_s = getProfile().getTotal(); - size_s_out = getProfile().getTotalOut(); - size_t = getPath().mPath.size(); - - S32 count = 0; - if (profile_open) /* Flawfinder: ignore */ - { - if (hollow) - { - // Open hollow -- much like the closed solid, except we - // we need to stitch up the gap between s=0 and s=size_s-1 - count = (size_t - 1) * (((size_s -1) * 6) + 6); - } - else - { - count = (size_t - 1) * (((size_s -1) * 6) + 6); - } - } - else if (hollow) - { - // Closed hollow - // Outer face - count = (size_t - 1) * (size_s_out - 1) * 6; - - // Inner face - count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6; - } - else - { - // Closed solid. Easy case. - count = (size_t - 1) * (size_s - 1) * 6; - } - - if (path_open) - { - S32 cap_triangle_count = size_s - 3; - if ( profile_open - || hollow ) - { - cap_triangle_count = size_s - 2; - } - if ( cap_triangle_count > 0 ) - { - // top and bottom caps - count += cap_triangle_count * 2 * 3; - } - } - return count; -} - - -S32 LLVolume::getNumTriangles() const -{ - U32 triangle_count = 0; - - for (S32 i = 0; i < getNumVolumeFaces(); ++i) - { - triangle_count += getVolumeFace(i).mNumIndices/3; - } - - return triangle_count; -} - - -//----------------------------------------------------------------------------- -// generateSilhouetteVertices() -//----------------------------------------------------------------------------- -void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices, - std::vector<LLVector3> &normals, - std::vector<S32> &segments, - const LLVector3& obj_cam_vec_in, - const LLMatrix4& mat_in, - const LLMatrix3& norm_mat_in, - S32 face_mask) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - LLMatrix4a mat; - mat.loadu(mat_in); - - LLMatrix4a norm_mat; - norm_mat.loadu(norm_mat_in); - - LLVector4a obj_cam_vec; - obj_cam_vec.load3(obj_cam_vec_in.mV); - - vertices.clear(); - normals.clear(); - segments.clear(); - - if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH) - { - return; - } - - S32 cur_index = 0; - //for each face - for (face_list_t::iterator iter = mVolumeFaces.begin(); - iter != mVolumeFaces.end(); ++iter) - { - LLVolumeFace& face = *iter; - - if (!(face_mask & (0x1 << cur_index++)) || - face.mNumIndices == 0 || face.mEdge.empty()) - { - continue; - } - - if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) { - - } - else { - - //============================================== - //DEBUG draw edge map instead of silhouette edge - //============================================== - -#if DEBUG_SILHOUETTE_EDGE_MAP - - //for each triangle - U32 count = face.mNumIndices; - for (U32 j = 0; j < count/3; j++) { - //get vertices - S32 v1 = face.mIndices[j*3+0]; - S32 v2 = face.mIndices[j*3+1]; - S32 v3 = face.mIndices[j*3+2]; - - //get current face center - LLVector3 cCenter = (face.mVertices[v1].getPosition() + - face.mVertices[v2].getPosition() + - face.mVertices[v3].getPosition()) / 3.0f; - - //for each edge - for (S32 k = 0; k < 3; k++) { - S32 nIndex = face.mEdge[j*3+k]; - if (nIndex <= -1) { - continue; - } - - if (nIndex >= (S32) count/3) { - continue; - } - //get neighbor vertices - v1 = face.mIndices[nIndex*3+0]; - v2 = face.mIndices[nIndex*3+1]; - v3 = face.mIndices[nIndex*3+2]; - - //get neighbor face center - LLVector3 nCenter = (face.mVertices[v1].getPosition() + - face.mVertices[v2].getPosition() + - face.mVertices[v3].getPosition()) / 3.0f; - - //draw line - vertices.push_back(cCenter); - vertices.push_back(nCenter); - normals.push_back(LLVector3(1,1,1)); - normals.push_back(LLVector3(1,1,1)); - segments.push_back(vertices.size()); - } - } - - continue; - - //============================================== - //DEBUG - //============================================== - - //============================================== - //DEBUG draw normals instead of silhouette edge - //============================================== -#elif DEBUG_SILHOUETTE_NORMALS - - //for each vertex - for (U32 j = 0; j < face.mNumVertices; j++) { - vertices.push_back(face.mVertices[j].getPosition()); - vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].getNormal()*0.1f); - normals.push_back(LLVector3(0,0,1)); - normals.push_back(LLVector3(0,0,1)); - segments.push_back(vertices.size()); -#if DEBUG_SILHOUETTE_BINORMALS - vertices.push_back(face.mVertices[j].getPosition()); - vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].mBinormal*0.1f); - normals.push_back(LLVector3(0,0,1)); - normals.push_back(LLVector3(0,0,1)); - segments.push_back(vertices.size()); -#endif - } - - continue; -#else - //============================================== - //DEBUG - //============================================== - - static const U8 AWAY = 0x01, - TOWARDS = 0x02; - - //for each triangle - std::vector<U8> fFacing; - vector_append(fFacing, face.mNumIndices/3); - - LLVector4a* v = (LLVector4a*) face.mPositions; - LLVector4a* n = (LLVector4a*) face.mNormals; - - for (U32 j = 0; j < face.mNumIndices/3; j++) - { - //approximate normal - S32 v1 = face.mIndices[j*3+0]; - S32 v2 = face.mIndices[j*3+1]; - S32 v3 = face.mIndices[j*3+2]; - - LLVector4a c1,c2; - c1.setSub(v[v1], v[v2]); - c2.setSub(v[v2], v[v3]); - - LLVector4a norm; - - norm.setCross3(c1, c2); - - if (norm.dot3(norm) < 0.00000001f) - { - fFacing[j] = AWAY | TOWARDS; - } - else - { - //get view vector - LLVector4a view; - view.setSub(obj_cam_vec, v[v1]); - bool away = view.dot3(norm) > 0.0f; - if (away) - { - fFacing[j] = AWAY; - } - else - { - fFacing[j] = TOWARDS; - } - } - } - - //for each triangle - for (U32 j = 0; j < face.mNumIndices/3; j++) - { - if (fFacing[j] == (AWAY | TOWARDS)) - { //this is a degenerate triangle - //take neighbor facing (degenerate faces get facing of one of their neighbors) - // *FIX IF NEEDED: this does not deal with neighboring degenerate faces - for (S32 k = 0; k < 3; k++) - { - S32 index = face.mEdge[j*3+k]; - if (index != -1) - { - fFacing[j] = fFacing[index]; - break; - } - } - continue; //skip degenerate face - } - - //for each edge - for (S32 k = 0; k < 3; k++) { - S32 index = face.mEdge[j*3+k]; - if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) { - //our neighbor is degenerate, make him face our direction - fFacing[face.mEdge[j*3+k]] = fFacing[j]; - continue; - } - - if (index == -1 || //edge has no neighbor, MUST be a silhouette edge - (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge - - S32 v1 = face.mIndices[j*3+k]; - S32 v2 = face.mIndices[j*3+((k+1)%3)]; - - LLVector4a t; - mat.affineTransform(v[v1], t); - vertices.push_back(LLVector3(t[0], t[1], t[2])); - - norm_mat.rotate(n[v1], t); - - t.normalize3fast(); - normals.push_back(LLVector3(t[0], t[1], t[2])); - - mat.affineTransform(v[v2], t); - vertices.push_back(LLVector3(t[0], t[1], t[2])); - - norm_mat.rotate(n[v2], t); - t.normalize3fast(); - normals.push_back(LLVector3(t[0], t[1], t[2])); - - segments.push_back(vertices.size()); - } - } - } -#endif - } - } -} - -S32 LLVolume::lineSegmentIntersect(const LLVector3& start, const LLVector3& end, - S32 face, - LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal) -{ - LLVector4a starta, enda; - starta.load3(start.mV); - enda.load3(end.mV); - - return lineSegmentIntersect(starta, enda, face, intersection, tex_coord, normal, bi_normal); - -} - - -S32 LLVolume::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, - S32 face, - LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal) -{ - S32 hit_face = -1; - - S32 start_face; - S32 end_face; - - if (face == -1) // ALL_SIDES - { - start_face = 0; - end_face = getNumVolumeFaces() - 1; - } - else - { - start_face = face; - end_face = face; - } - - LLVector4a dir; - dir.setSub(end, start); - - F32 closest_t = 2.f; // must be larger than 1 - - end_face = llmin(end_face, getNumVolumeFaces()-1); - - for (S32 i = start_face; i <= end_face; i++) - { - LLVolumeFace &face = mVolumeFaces[i]; - - LLVector4a box_center; - box_center.setAdd(face.mExtents[0], face.mExtents[1]); - box_center.mul(0.5f); - - LLVector4a box_size; - box_size.setSub(face.mExtents[1], face.mExtents[0]); - - if (LLLineSegmentBoxIntersect(start, end, box_center, box_size)) - { - if (bi_normal != NULL) // if the caller wants binormals, we may need to generate them - { - genBinormals(i); - } - - if (!face.mOctree) - { - face.createOctree(); - } - - //LLVector4a* p = (LLVector4a*) face.mPositions; - - LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, bi_normal); - intersect.traverse(face.mOctree); - if (intersect.mHitFace) - { - hit_face = i; - } - } - } - - - return hit_face; -} - -class LLVertexIndexPair -{ -public: - LLVertexIndexPair(const LLVector3 &vertex, const S32 index); - - LLVector3 mVertex; - S32 mIndex; -}; - -LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index) -{ - mVertex = vertex; - mIndex = index; -} - -const F32 VERTEX_SLOP = 0.00001f; -const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP; - -struct lessVertex -{ - bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b) - { - const F32 slop = VERTEX_SLOP; - - if (a->mVertex.mV[0] + slop < b->mVertex.mV[0]) - { - return TRUE; - } - else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0]) - { - return FALSE; - } - - if (a->mVertex.mV[1] + slop < b->mVertex.mV[1]) - { - return TRUE; - } - else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1]) - { - return FALSE; - } - - if (a->mVertex.mV[2] + slop < b->mVertex.mV[2]) - { - return TRUE; - } - else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2]) - { - return FALSE; - } - - return FALSE; - } -}; - -struct lessTriangle -{ - bool operator()(const S32 *a, const S32 *b) - { - if (*a < *b) - { - return TRUE; - } - else if (*a > *b) - { - return FALSE; - } - - if (*(a+1) < *(b+1)) - { - return TRUE; - } - else if (*(a+1) > *(b+1)) - { - return FALSE; - } - - if (*(a+2) < *(b+2)) - { - return TRUE; - } - else if (*(a+2) > *(b+2)) - { - return FALSE; - } - - return FALSE; - } -}; - -BOOL equalTriangle(const S32 *a, const S32 *b) -{ - if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2))) - { - return TRUE; - } - return FALSE; -} - -BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices, - const std::vector<Point>& input_vertices, - const S32 num_input_triangles, - S32 *input_triangles, - S32 &num_output_vertices, - LLVector3 **output_vertices, - S32 &num_output_triangles, - S32 **output_triangles) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - /* Testing: avoid any cleanup - static BOOL skip_cleanup = TRUE; - if ( skip_cleanup ) - { - num_output_vertices = num_input_vertices; - num_output_triangles = num_input_triangles; - - *output_vertices = new LLVector3[num_input_vertices]; - for (S32 index = 0; index < num_input_vertices; index++) - { - (*output_vertices)[index] = input_vertices[index].mPos; - } - - *output_triangles = new S32[num_input_triangles*3]; - memcpy(*output_triangles, input_triangles, 3*num_input_triangles*sizeof(S32)); // Flawfinder: ignore - return TRUE; - } - */ - - // Here's how we do this: - // Create a structure which contains the original vertex index and the - // LLVector3 data. - // "Sort" the data by the vectors - // Create an array the size of the old vertex list, with a mapping of - // old indices to new indices. - // Go through triangles, shift so the lowest index is first - // Sort triangles by first index - // Remove duplicate triangles - // Allocate and pack new triangle data. - - //LLTimer cleanupTimer; - //llinfos << "In vertices: " << num_input_vertices << llendl; - //llinfos << "In triangles: " << num_input_triangles << llendl; - - S32 i; - typedef std::multiset<LLVertexIndexPair*, lessVertex> vertex_set_t; - vertex_set_t vertex_list; - - LLVertexIndexPair *pairp = NULL; - for (i = 0; i < num_input_vertices; i++) - { - LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i); - vertex_list.insert(new_pairp); - } - - // Generate the vertex mapping and the list of vertices without - // duplicates. This will crash if there are no vertices. - llassert(num_input_vertices > 0); // check for no vertices! - S32 *vertex_mapping = new S32[num_input_vertices]; - LLVector3 *new_vertices = new LLVector3[num_input_vertices]; - LLVertexIndexPair *prev_pairp = NULL; - - S32 new_num_vertices; - - new_num_vertices = 0; - for (vertex_set_t::iterator iter = vertex_list.begin(), - end = vertex_list.end(); - iter != end; iter++) - { - pairp = *iter; - if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD)) - { - new_vertices[new_num_vertices] = pairp->mVertex; - //llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl; - new_num_vertices++; - // Update the previous - prev_pairp = pairp; - } - else - { - //llinfos << "Removed duplicate vertex " << pairp->mVertex << ", distance magVecSquared() is " << (pairp->mVertex - prev_pairp->mVertex).magVecSquared() << llendl; - } - vertex_mapping[pairp->mIndex] = new_num_vertices - 1; - } - - // Iterate through triangles and remove degenerates, re-ordering vertices - // along the way. - S32 *new_triangles = new S32[num_input_triangles * 3]; - S32 new_num_triangles = 0; - - for (i = 0; i < num_input_triangles; i++) - { - S32 v1 = i*3; - S32 v2 = v1 + 1; - S32 v3 = v1 + 2; - - //llinfos << "Checking triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl; - input_triangles[v1] = vertex_mapping[input_triangles[v1]]; - input_triangles[v2] = vertex_mapping[input_triangles[v2]]; - input_triangles[v3] = vertex_mapping[input_triangles[v3]]; - - if ((input_triangles[v1] == input_triangles[v2]) - || (input_triangles[v1] == input_triangles[v3]) - || (input_triangles[v2] == input_triangles[v3])) - { - //llinfos << "Removing degenerate triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl; - // Degenerate triangle, skip - continue; - } - - if (input_triangles[v1] < input_triangles[v2]) - { - if (input_triangles[v1] < input_triangles[v3]) - { - // (0 < 1) && (0 < 2) - new_triangles[new_num_triangles*3] = input_triangles[v1]; - new_triangles[new_num_triangles*3+1] = input_triangles[v2]; - new_triangles[new_num_triangles*3+2] = input_triangles[v3]; - } - else - { - // (0 < 1) && (2 < 0) - new_triangles[new_num_triangles*3] = input_triangles[v3]; - new_triangles[new_num_triangles*3+1] = input_triangles[v1]; - new_triangles[new_num_triangles*3+2] = input_triangles[v2]; - } - } - else if (input_triangles[v2] < input_triangles[v3]) - { - // (1 < 0) && (1 < 2) - new_triangles[new_num_triangles*3] = input_triangles[v2]; - new_triangles[new_num_triangles*3+1] = input_triangles[v3]; - new_triangles[new_num_triangles*3+2] = input_triangles[v1]; - } - else - { - // (1 < 0) && (2 < 1) - new_triangles[new_num_triangles*3] = input_triangles[v3]; - new_triangles[new_num_triangles*3+1] = input_triangles[v1]; - new_triangles[new_num_triangles*3+2] = input_triangles[v2]; - } - new_num_triangles++; - } - - if (new_num_triangles == 0) - { - llwarns << "Created volume object with 0 faces." << llendl; - delete[] new_triangles; - delete[] vertex_mapping; - delete[] new_vertices; - return FALSE; - } - - typedef std::set<S32*, lessTriangle> triangle_set_t; - triangle_set_t triangle_list; - - for (i = 0; i < new_num_triangles; i++) - { - triangle_list.insert(&new_triangles[i*3]); - } - - // Sort through the triangle list, and delete duplicates - - S32 *prevp = NULL; - S32 *curp = NULL; - - S32 *sorted_tris = new S32[new_num_triangles*3]; - S32 cur_tri = 0; - for (triangle_set_t::iterator iter = triangle_list.begin(), - end = triangle_list.end(); - iter != end; iter++) - { - curp = *iter; - if (!prevp || !equalTriangle(prevp, curp)) - { - //llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl; - sorted_tris[cur_tri*3] = *curp; - sorted_tris[cur_tri*3+1] = *(curp+1); - sorted_tris[cur_tri*3+2] = *(curp+2); - cur_tri++; - prevp = curp; - } - else - { - //llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl; - } - } - - *output_vertices = new LLVector3[new_num_vertices]; - num_output_vertices = new_num_vertices; - for (i = 0; i < new_num_vertices; i++) - { - (*output_vertices)[i] = new_vertices[i]; - } - - *output_triangles = new S32[cur_tri*3]; - num_output_triangles = cur_tri; - memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32)); /* Flawfinder: ignore */ - - /* - llinfos << "Out vertices: " << num_output_vertices << llendl; - llinfos << "Out triangles: " << num_output_triangles << llendl; - for (i = 0; i < num_output_vertices; i++) - { - llinfos << i << ":" << (*output_vertices)[i] << llendl; - } - for (i = 0; i < num_output_triangles; i++) - { - llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl; - } - */ - - //llinfos << "Out vertices: " << num_output_vertices << llendl; - //llinfos << "Out triangles: " << num_output_triangles << llendl; - delete[] vertex_mapping; - vertex_mapping = NULL; - delete[] new_vertices; - new_vertices = NULL; - delete[] new_triangles; - new_triangles = NULL; - delete[] sorted_tris; - sorted_tris = NULL; - triangle_list.clear(); - std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer()); - vertex_list.clear(); - - return TRUE; -} - - -BOOL LLVolumeParams::importFile(LLFILE *fp) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - //llinfos << "importing volume" << llendl; - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of this buffer will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - - while (!feof(fp)) - { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */ - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("profile", keyword)) - { - mProfileParams.importFile(fp); - } - else if (!strcmp("path",keyword)) - { - mPathParams.importFile(fp); - } - else - { - llwarns << "unknown keyword " << keyword << " in volume import" << llendl; - } - } - - return TRUE; -} - -BOOL LLVolumeParams::exportFile(LLFILE *fp) const -{ - fprintf(fp,"\tshape 0\n"); - fprintf(fp,"\t{\n"); - mPathParams.exportFile(fp); - mProfileParams.exportFile(fp); - fprintf(fp, "\t}\n"); - return TRUE; -} - - -BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - //llinfos << "importing volume" << llendl; - const S32 BUFSIZE = 16384; - // *NOTE: changing the size or type of this buffer will require - // changing the sscanf below. - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - char keyword[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - - while (input_stream.good()) - { - input_stream.getline(buffer, BUFSIZE); - sscanf(buffer, " %255s", keyword); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("profile", keyword)) - { - mProfileParams.importLegacyStream(input_stream); - } - else if (!strcmp("path",keyword)) - { - mPathParams.importLegacyStream(input_stream); - } - else - { - llwarns << "unknown keyword " << keyword << " in volume import" << llendl; - } - } - - return TRUE; -} - -BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - output_stream <<"\tshape 0\n"; - output_stream <<"\t{\n"; - mPathParams.exportLegacyStream(output_stream); - mProfileParams.exportLegacyStream(output_stream); - output_stream << "\t}\n"; - return TRUE; -} - -LLSD LLVolumeParams::sculptAsLLSD() const -{ - LLSD sd = LLSD(); - sd["id"] = getSculptID(); - sd["type"] = getSculptType(); - - return sd; -} - -bool LLVolumeParams::sculptFromLLSD(LLSD& sd) -{ - setSculptID(sd["id"].asUUID(), (U8)sd["type"].asInteger()); - return true; -} - -LLSD LLVolumeParams::asLLSD() const -{ - LLSD sd = LLSD(); - sd["path"] = mPathParams; - sd["profile"] = mProfileParams; - sd["sculpt"] = sculptAsLLSD(); - - return sd; -} - -bool LLVolumeParams::fromLLSD(LLSD& sd) -{ - mPathParams.fromLLSD(sd["path"]); - mProfileParams.fromLLSD(sd["profile"]); - sculptFromLLSD(sd["sculpt"]); - - return true; -} - -void LLVolumeParams::reduceS(F32 begin, F32 end) -{ - begin = llclampf(begin); - end = llclampf(end); - if (begin > end) - { - F32 temp = begin; - begin = end; - end = temp; - } - F32 a = mProfileParams.getBegin(); - F32 b = mProfileParams.getEnd(); - mProfileParams.setBegin(a + begin * (b - a)); - mProfileParams.setEnd(a + end * (b - a)); -} - -void LLVolumeParams::reduceT(F32 begin, F32 end) -{ - begin = llclampf(begin); - end = llclampf(end); - if (begin > end) - { - F32 temp = begin; - begin = end; - end = temp; - } - F32 a = mPathParams.getBegin(); - F32 b = mPathParams.getEnd(); - mPathParams.setBegin(a + begin * (b - a)); - mPathParams.setEnd(a + end * (b - a)); -} - -const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity -const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity - -// returns TRUE if the shape can be approximated with a convex shape -// for collison purposes -BOOL LLVolumeParams::isConvex() const -{ - if (!getSculptID().isNull()) - { - // can't determine, be safe and say no: - return FALSE; - } - - F32 path_length = mPathParams.getEnd() - mPathParams.getBegin(); - F32 hollow = mProfileParams.getHollow(); - - U8 path_type = mPathParams.getCurveType(); - if ( path_length > MIN_CONCAVE_PATH_WEDGE - && ( mPathParams.getTwist() != mPathParams.getTwistBegin() - || (hollow > 0.f - && LL_PCODE_PATH_LINE != path_type) ) ) - { - // twist along a "not too short" path is concave - return FALSE; - } - - F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin(); - BOOL same_hole = hollow == 0.f - || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME; - - F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE; - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) - { - // it is a sphere and spheres get twice the minimum profile wedge - min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE; - } - - BOOL convex_profile = ( ( profile_length == 1.f - || profile_length <= 0.5f ) - && hollow == 0.f ) // trivially convex - || ( profile_length <= min_profile_wedge - && same_hole ); // effectvely convex (even when hollow) - - if (!convex_profile) - { - // profile is concave - return FALSE; - } - - if ( LL_PCODE_PATH_LINE == path_type ) - { - // straight paths with convex profile - return TRUE; - } - - BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f); - if (concave_path) - { - return FALSE; - } - - // we're left with spheres, toroids and tubes - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) - { - // at this stage all spheres must be convex - return TRUE; - } - - // it's a toroid or tube - if ( path_length <= MIN_CONCAVE_PATH_WEDGE ) - { - // effectively convex - return TRUE; - } - - return FALSE; -} - -// debug -void LLVolumeParams::setCube() -{ - mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE); - mProfileParams.setBegin(0.f); - mProfileParams.setEnd(1.f); - mProfileParams.setHollow(0.f); - - mPathParams.setBegin(0.f); - mPathParams.setEnd(1.f); - mPathParams.setScale(1.f, 1.f); - mPathParams.setShear(0.f, 0.f); - mPathParams.setCurveType(LL_PCODE_PATH_LINE); - mPathParams.setTwistBegin(0.f); - mPathParams.setTwistEnd(0.f); - mPathParams.setRadiusOffset(0.f); - mPathParams.setTaper(0.f, 0.f); - mPathParams.setRevolutions(0.f); - mPathParams.setSkew(0.f); -} - -LLFaceID LLVolume::generateFaceMask() -{ - LLFaceID new_mask = 0x0000; - - switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK) - { - case LL_PCODE_PROFILE_CIRCLE: - case LL_PCODE_PROFILE_CIRCLE_HALF: - new_mask |= LL_FACE_OUTER_SIDE_0; - break; - case LL_PCODE_PROFILE_SQUARE: - { - for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++) - { - new_mask |= LL_FACE_OUTER_SIDE_0 << side; - } - } - break; - case LL_PCODE_PROFILE_ISOTRI: - case LL_PCODE_PROFILE_EQUALTRI: - case LL_PCODE_PROFILE_RIGHTTRI: - { - for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++) - { - new_mask |= LL_FACE_OUTER_SIDE_0 << side; - } - } - break; - default: - llerrs << "Unknown profile!" << llendl; - break; - } - - // handle hollow objects - if (mParams.getProfileParams().getHollow() > 0) - { - new_mask |= LL_FACE_INNER_SIDE; - } - - // handle open profile curves - if (mProfilep->isOpen()) - { - new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END; - } - - // handle open path curves - if (mPathp->isOpen()) - { - new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END; - } - - return new_mask; -} - -BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask) -{ - LLFaceID test_mask = 0; - for(S32 i = 0; i < getNumFaces(); i++) - { - test_mask |= mProfilep->mFaces[i].mFaceID; - } - - return test_mask == face_mask; -} - -BOOL LLVolume::isConvex() const -{ - // mParams.isConvex() may return FALSE even though the final - // geometry is actually convex due to LOD approximations. - // TODO -- provide LLPath and LLProfile with isConvex() methods - // that correctly determine convexity. -- Leviathan - return mParams.isConvex(); -} - - -std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params) -{ - s << "{type=" << (U32) profile_params.mCurveType; - s << ", begin=" << profile_params.mBegin; - s << ", end=" << profile_params.mEnd; - s << ", hollow=" << profile_params.mHollow; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params) -{ - s << "{type=" << (U32) path_params.mCurveType; - s << ", begin=" << path_params.mBegin; - s << ", end=" << path_params.mEnd; - s << ", twist=" << path_params.mTwistEnd; - s << ", scale=" << path_params.mScale; - s << ", shear=" << path_params.mShear; - s << ", twist_begin=" << path_params.mTwistBegin; - s << ", radius_offset=" << path_params.mRadiusOffset; - s << ", taper=" << path_params.mTaper; - s << ", revolutions=" << path_params.mRevolutions; - s << ", skew=" << path_params.mSkew; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params) -{ - s << "{profileparams = " << volume_params.mProfileParams; - s << ", pathparams = " << volume_params.mPathParams; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLProfile &profile) -{ - s << " {open=" << (U32) profile.mOpen; - s << ", dirty=" << profile.mDirty; - s << ", totalout=" << profile.mTotalOut; - s << ", total=" << profile.mTotal; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLPath &path) -{ - s << "{open=" << (U32) path.mOpen; - s << ", dirty=" << path.mDirty; - s << ", step=" << path.mStep; - s << ", total=" << path.mTotal; - s << "}"; - return s; -} - -std::ostream& operator<<(std::ostream &s, const LLVolume &volume) -{ - s << "{params = " << volume.getParams(); - s << ", path = " << *volume.mPathp; - s << ", profile = " << *volume.mProfilep; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLVolume *volumep) -{ - s << "{params = " << volumep->getParams(); - s << ", path = " << *(volumep->mPathp); - s << ", profile = " << *(volumep->mProfilep); - s << "}"; - return s; -} - -LLVolumeFace::LLVolumeFace() : - mID(0), - mTypeMask(0), - mBeginS(0), - mBeginT(0), - mNumS(0), - mNumT(0), - mNumVertices(0), - mNumIndices(0), - mPositions(NULL), - mNormals(NULL), - mBinormals(NULL), - mTexCoords(NULL), - mIndices(NULL), - mWeights(NULL), - mOctree(NULL) -{ - mExtents = (LLVector4a*) malloc(sizeof(LLVector4a)*3); - mCenter = mExtents+2; -} - -LLVolumeFace::LLVolumeFace(const LLVolumeFace& src) -: mID(0), - mTypeMask(0), - mBeginS(0), - mBeginT(0), - mNumS(0), - mNumT(0), - mNumVertices(0), - mNumIndices(0), - mPositions(NULL), - mNormals(NULL), - mBinormals(NULL), - mTexCoords(NULL), - mIndices(NULL), - mWeights(NULL), - mOctree(NULL) -{ - mExtents = (LLVector4a*) malloc(sizeof(LLVector4a)*3); - mCenter = mExtents+2; - *this = src; -} - -LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src) -{ - if (&src == this) - { //self assignment, do nothing - return *this; - } - - mID = src.mID; - mTypeMask = src.mTypeMask; - mBeginS = src.mBeginS; - mBeginT = src.mBeginT; - mNumS = src.mNumS; - mNumT = src.mNumT; - - mExtents[0] = src.mExtents[0]; - mExtents[1] = src.mExtents[1]; - *mCenter = *src.mCenter; - - mNumVertices = 0; - mNumIndices = 0; - - freeData(); - - LLVector4a::memcpyNonAliased16((F32*) mExtents, (F32*) src.mExtents, 3*sizeof(LLVector4a)); - - resizeVertices(src.mNumVertices); - resizeIndices(src.mNumIndices); - - if (mNumVertices) - { - S32 vert_size = mNumVertices*sizeof(LLVector4a); - S32 tc_size = (mNumVertices*sizeof(LLVector2)+0xF) & ~0xF; - - LLVector4a::memcpyNonAliased16((F32*) mPositions, (F32*) src.mPositions, vert_size); - LLVector4a::memcpyNonAliased16((F32*) mNormals, (F32*) src.mNormals, vert_size); - LLVector4a::memcpyNonAliased16((F32*) mTexCoords, (F32*) src.mTexCoords, tc_size); - - - if (src.mBinormals) - { - allocateBinormals(src.mNumVertices); - LLVector4a::memcpyNonAliased16((F32*) mBinormals, (F32*) src.mBinormals, vert_size); - } - else - { - free(mBinormals); - mBinormals = NULL; - } - - if (src.mWeights) - { - allocateWeights(src.mNumVertices); - LLVector4a::memcpyNonAliased16((F32*) mWeights, (F32*) src.mWeights, vert_size); - } - else - { - free(mWeights); - mWeights = NULL; - } - } - - if (mNumIndices) - { - S32 idx_size = (mNumIndices*sizeof(U16)+0xF) & ~0xF; - - LLVector4a::memcpyNonAliased16((F32*) mIndices, (F32*) src.mIndices, idx_size); - } - - //delete - return *this; -} - -LLVolumeFace::~LLVolumeFace() -{ - free(mExtents); - mExtents = NULL; - - freeData(); -} - -void LLVolumeFace::freeData() -{ - free(mPositions); - mPositions = NULL; - free( mNormals); - mNormals = NULL; - free(mTexCoords); - mTexCoords = NULL; - free(mIndices); - mIndices = NULL; - free(mBinormals); - mBinormals = NULL; - free(mWeights); - mWeights = NULL; - - delete mOctree; - mOctree = NULL; -} - -BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build) -{ - //tree for this face is no longer valid - delete mOctree; - mOctree = NULL; - - if (mTypeMask & CAP_MASK) - { - return createCap(volume, partial_build); - } - else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK)) - { - return createSide(volume, partial_build); - } - else - { - llerrs << "Unknown/uninitialized face type!" << llendl; - return FALSE; - } -} - -void LLVolumeFace::getVertexData(U16 index, LLVolumeFace::VertexData& cv) -{ - cv.setPosition(mPositions[index]); - cv.setNormal(mNormals[index]); - cv.mTexCoord = mTexCoords[index]; -} - -bool LLVolumeFace::VertexMapData::operator==(const LLVolumeFace::VertexData& rhs) const -{ - return getPosition().equals3(rhs.getPosition()) && - mTexCoord == rhs.mTexCoord && - getNormal().equals3(rhs.getNormal()); -} - -bool LLVolumeFace::VertexMapData::ComparePosition::operator()(const LLVector3& a, const LLVector3& b) const -{ - if (a.mV[0] != b.mV[0]) - { - return a.mV[0] < b.mV[0]; - } - - if (a.mV[1] != b.mV[1]) - { - return a.mV[1] < b.mV[1]; - } - - return a.mV[2] < b.mV[2]; -} - -void LLVolumeFace::optimize(F32 angle_cutoff) -{ - LLVolumeFace new_face; - - //map of points to vector of vertices at that point - VertexMapData::PointMap point_map; - - //remove redundant vertices - for (U32 i = 0; i < mNumIndices; ++i) - { - U16 index = mIndices[i]; - - LLVolumeFace::VertexData cv; - getVertexData(index, cv); - - BOOL found = FALSE; - VertexMapData::PointMap::iterator point_iter = point_map.find(LLVector3(cv.getPosition().getF32ptr())); - if (point_iter != point_map.end()) - { //duplicate point might exist - for (U32 j = 0; j < point_iter->second.size(); ++j) - { - LLVolumeFace::VertexData& tv = (point_iter->second)[j]; - if (tv.compareNormal(cv, angle_cutoff)) - { - found = TRUE; - new_face.pushIndex((point_iter->second)[j].mIndex); - break; - } - } - } - - if (!found) - { - new_face.pushVertex(cv); - U16 index = (U16) new_face.mNumVertices-1; - new_face.pushIndex(index); - - VertexMapData d; - d.setPosition(cv.getPosition()); - d.mTexCoord = cv.mTexCoord; - d.setNormal(cv.getNormal()); - d.mIndex = index; - if (point_iter != point_map.end()) - { - point_iter->second.push_back(d); - } - else - { - point_map[LLVector3(d.getPosition().getF32ptr())].push_back(d); - } - } - } - - swapData(new_face); -} - -class LLVCacheTriangleData; - -class LLVCacheVertexData -{ -public: - S32 mIdx; - S32 mCacheTag; - F32 mScore; - U32 mActiveTriangles; - std::vector<LLVCacheTriangleData*> mTriangles; - - LLVCacheVertexData() - { - mCacheTag = -1; - mScore = 0.f; - mActiveTriangles = 0; - mIdx = -1; - } -}; - -class LLVCacheTriangleData -{ -public: - bool mActive; - F32 mScore; - LLVCacheVertexData* mVertex[3]; - - LLVCacheTriangleData() - { - mActive = true; - mScore = 0.f; - mVertex[0] = mVertex[1] = mVertex[2] = NULL; - } - - void complete() - { - mActive = false; - for (S32 i = 0; i < 3; ++i) - { - if (mVertex[i]) - { - llassert_always(mVertex[i]->mActiveTriangles > 0); - mVertex[i]->mActiveTriangles--; - } - } - } - - bool operator<(const LLVCacheTriangleData& rhs) const - { //highest score first - return rhs.mScore < mScore; - } -}; - -const F32 FindVertexScore_CacheDecayPower = 1.5f;
-const F32 FindVertexScore_LastTriScore = 0.75f;
-const F32 FindVertexScore_ValenceBoostScale = 2.0f;
-const F32 FindVertexScore_ValenceBoostPower = 0.5f; -const U32 MaxSizeVertexCache = 32; - -F32 find_vertex_score(LLVCacheVertexData& data) -{ - if (data.mActiveTriangles == 0) - { //no triangle references this vertex - return -1.f; - } - - F32 score = 0.f; - - S32 cache_idx = data.mCacheTag; - - if (cache_idx < 0) - { - //not in cache - } - else - { - if (cache_idx < 3) - { //vertex was in the last triangle - score = FindVertexScore_LastTriScore; - } - else - { //more points for being higher in the cache - F32 scaler = 1.f/(MaxSizeVertexCache-3); - score = 1.f-((cache_idx-3)*scaler); - score = powf(score, FindVertexScore_CacheDecayPower); - } - } - - //bonus points for having low valence - F32 valence_boost = powf(data.mActiveTriangles, -FindVertexScore_ValenceBoostPower); - score += FindVertexScore_ValenceBoostScale * valence_boost; - - return score; -} - -class LLVCacheFIFO -{ -public: - LLVCacheVertexData* mCache[MaxSizeVertexCache]; - U32 mMisses; - - LLVCacheFIFO() - { - mMisses = 0; - for (U32 i = 0; i < MaxSizeVertexCache; ++i) - { - mCache[i] = NULL; - } - } - - void addVertex(LLVCacheVertexData* data) - { - if (data->mCacheTag == -1) - { - mMisses++; - - S32 end = MaxSizeVertexCache-1; - - if (mCache[end]) - { - mCache[end]->mCacheTag = -1; - } - - for (S32 i = end; i > 0; --i) - { - mCache[i] = mCache[i-1]; - if (mCache[i]) - { - mCache[i]->mCacheTag = i; - } - } - - mCache[0] = data; - data->mCacheTag = 0; - } - } -}; - -class LLVCacheLRU -{ -public: - LLVCacheVertexData* mCache[MaxSizeVertexCache+3]; - - LLVCacheTriangleData* mBestTriangle; - - U32 mMisses; - - LLVCacheLRU() - { - for (U32 i = 0; i < MaxSizeVertexCache+3; ++i) - { - mCache[i] = NULL; - } - - mBestTriangle = NULL; - mMisses = 0; - } - - void addVertex(LLVCacheVertexData* data) - { - S32 end = MaxSizeVertexCache+2; - if (data->mCacheTag != -1) - { //just moving a vertex to the front of the cache - end = data->mCacheTag; - } - else - { - mMisses++; - if (mCache[end]) - { //adding a new vertex, vertex at end of cache falls off - mCache[end]->mCacheTag = -1; - } - } - - for (S32 i = end; i > 0; --i) - { //adjust cache pointers and tags - mCache[i] = mCache[i-1]; - - if (mCache[i]) - { - mCache[i]->mCacheTag = i; - } - } - - mCache[0] = data; - mCache[0]->mCacheTag = 0; - } - - void addTriangle(LLVCacheTriangleData* data) - { - addVertex(data->mVertex[0]); - addVertex(data->mVertex[1]); - addVertex(data->mVertex[2]); - } - - void updateScores() - { - for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i) - { //trailing 3 vertices aren't actually in the cache for scoring purposes - if (mCache[i]) - { - mCache[i]->mCacheTag = -1; - } - } - - for (U32 i = 0; i < MaxSizeVertexCache; ++i) - { //update scores of vertices in cache - if (mCache[i]) - { - mCache[i]->mScore = find_vertex_score(*(mCache[i])); - llassert_always(mCache[i]->mCacheTag == i); - } - } - - mBestTriangle = NULL; - //update triangle scores - for (U32 i = 0; i < MaxSizeVertexCache+3; ++i) - { - if (mCache[i]) - { - for (U32 j = 0; j < mCache[i]->mTriangles.size(); ++j) - { - LLVCacheTriangleData* tri = mCache[i]->mTriangles[j]; - if (tri->mActive) - { - tri->mScore = tri->mVertex[0]->mScore; - tri->mScore += tri->mVertex[1]->mScore; - tri->mScore += tri->mVertex[2]->mScore; - - if (!mBestTriangle || mBestTriangle->mScore < tri->mScore) - { - mBestTriangle = tri; - } - } - } - } - } - - //knock trailing 3 vertices off the cache - for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i) - { - if (mCache[i]) - { - llassert_always(mCache[i]->mCacheTag == -1); - mCache[i] = NULL; - } - } - } -}; - - -void LLVolumeFace::cacheOptimize() -{ //optimize for vertex cache according to Forsyth method: - // http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html - - LLVCacheLRU cache; - - //mapping of vertices to triangles and indices - std::vector<LLVCacheVertexData> vertex_data; - - //mapping of triangles do vertices - std::vector<LLVCacheTriangleData> triangle_data; - - triangle_data.resize(mNumIndices/3); - vertex_data.resize(mNumVertices); - - for (U32 i = 0; i < mNumIndices; i++) - { //populate vertex data and triangle data arrays - U16 idx = mIndices[i]; - U32 tri_idx = i/3; - - vertex_data[idx].mTriangles.push_back(&(triangle_data[tri_idx])); - vertex_data[idx].mIdx = idx; - triangle_data[tri_idx].mVertex[i%3] = &(vertex_data[idx]); - } - - /*F32 pre_acmr = 1.f; - //measure cache misses from before rebuild - { - LLVCacheFIFO test_cache; - for (U32 i = 0; i < mNumIndices; ++i) - { - test_cache.addVertex(&vertex_data[mIndices[i]]); - } - - for (U32 i = 0; i < mNumVertices; i++) - { - vertex_data[i].mCacheTag = -1; - } - - pre_acmr = (F32) test_cache.mMisses/(mNumIndices/3); - }*/ - - for (U32 i = 0; i < mNumVertices; i++) - { //initialize score values (no cache -- might try a fifo cache here) - vertex_data[i].mScore = find_vertex_score(vertex_data[i]); - vertex_data[i].mActiveTriangles = vertex_data[i].mTriangles.size(); - - for (U32 j = 0; j < vertex_data[i].mTriangles.size(); ++j) - { - vertex_data[i].mTriangles[j]->mScore += vertex_data[i].mScore; - } - } - - //sort triangle data by score - std::sort(triangle_data.begin(), triangle_data.end()); - - std::vector<U16> new_indices; - - LLVCacheTriangleData* tri; - - //prime pump by adding first triangle to cache; - tri = &(triangle_data[0]); - cache.addTriangle(tri); - new_indices.push_back(tri->mVertex[0]->mIdx); - new_indices.push_back(tri->mVertex[1]->mIdx); - new_indices.push_back(tri->mVertex[2]->mIdx); - tri->complete(); - - U32 breaks = 0; - for (U32 i = 1; i < mNumIndices/3; ++i) - { - cache.updateScores(); - tri = cache.mBestTriangle; - if (!tri) - { - breaks++; - for (U32 j = 0; j < triangle_data.size(); ++j) - { - if (triangle_data[j].mActive) - { - tri = &(triangle_data[j]); - break; - } - } - } - - cache.addTriangle(tri); - new_indices.push_back(tri->mVertex[0]->mIdx); - new_indices.push_back(tri->mVertex[1]->mIdx); - new_indices.push_back(tri->mVertex[2]->mIdx); - tri->complete(); - } - - for (U32 i = 0; i < mNumIndices; ++i) - { - mIndices[i] = new_indices[i]; - } - - /*F32 post_acmr = 1.f; - //measure cache misses from after rebuild - { - LLVCacheFIFO test_cache; - for (U32 i = 0; i < mNumVertices; i++) - { - vertex_data[i].mCacheTag = -1; - } - - for (U32 i = 0; i < mNumIndices; ++i) - { - test_cache.addVertex(&vertex_data[mIndices[i]]); - } - - post_acmr = (F32) test_cache.mMisses/(mNumIndices/3); - }*/ - - //optimize for pre-TnL cache - - //allocate space for new buffer - S32 num_verts = mNumVertices; - LLVector4a* pos = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); - LLVector4a* norm = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); - S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF; - LLVector2* tc = (LLVector2*) malloc(size); - - LLVector4a* wght = NULL; - if (mWeights) - { - wght = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); - } - - LLVector4a* binorm = NULL; - if (mBinormals) - { - binorm = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); - } - - //allocate mapping of old indices to new indices - std::vector<S32> new_idx; - new_idx.resize(mNumVertices, -1); - - S32 cur_idx = 0; - for (U32 i = 0; i < mNumIndices; ++i) - { - U16 idx = mIndices[i]; - if (new_idx[idx] == -1) - { //this vertex hasn't been added yet - new_idx[idx] = cur_idx; - - //copy vertex data - pos[cur_idx] = mPositions[idx]; - norm[cur_idx] = mNormals[idx]; - tc[cur_idx] = mTexCoords[idx]; - if (mWeights) - { - wght[cur_idx] = mWeights[idx]; - } - if (mBinormals) - { - binorm[cur_idx] = mBinormals[idx]; - } - - cur_idx++; - } - } - - for (U32 i = 0; i < mNumIndices; ++i) - { - mIndices[i] = new_idx[mIndices[i]]; - } - - free(mPositions); - free(mNormals); - free(mTexCoords); - free(mWeights); - free(mBinormals); - - mPositions = pos; - mNormals = norm; - mTexCoords = tc; - mWeights = wght; - mBinormals = binorm; - - //std::string result = llformat("ACMR pre/post: %.3f/%.3f -- %d triangles %d breaks", pre_acmr, post_acmr, mNumIndices/3, breaks); - //llinfos << result << llendl; - -} - -void LLVolumeFace::createOctree(F32 scaler, const LLVector4a& center, const LLVector4a& size) -{ - if (mOctree) - { - return; - } - - mOctree = new LLOctreeRoot<LLVolumeTriangle>(center, size, NULL); - new LLVolumeOctreeListener(mOctree); - - for (U32 i = 0; i < mNumIndices; i+= 3) - { //for each triangle - LLPointer<LLVolumeTriangle> tri = new LLVolumeTriangle(); - - const LLVector4a& v0 = mPositions[mIndices[i]]; - const LLVector4a& v1 = mPositions[mIndices[i+1]]; - const LLVector4a& v2 = mPositions[mIndices[i+2]]; - - //store pointers to vertex data - tri->mV[0] = &v0; - tri->mV[1] = &v1; - tri->mV[2] = &v2; - - //store indices - tri->mIndex[0] = mIndices[i]; - tri->mIndex[1] = mIndices[i+1]; - tri->mIndex[2] = mIndices[i+2]; - - //get minimum point - LLVector4a min = v0; - min.setMin(min, v1); - min.setMin(min, v2); - - //get maximum point - LLVector4a max = v0; - max.setMax(max, v1); - max.setMax(max, v2); - - //compute center - LLVector4a center; - center.setAdd(min, max); - center.mul(0.5f); - - tri->mPositionGroup = center; - - //compute "radius" - LLVector4a size; - size.setSub(max,min); - - tri->mRadius = size.getLength3().getF32() * scaler; - - //insert - mOctree->insert(tri); - } - - //remove unneeded octree layers - while (!mOctree->balance()) { } - - //calculate AABB for each node - LLVolumeOctreeRebound rebound(this); - rebound.traverse(mOctree); - - if (gDebugGL) - { - LLVolumeOctreeValidate validate; - validate.traverse(mOctree); - } -} - - -void LLVolumeFace::swapData(LLVolumeFace& rhs) -{ - llswap(rhs.mPositions, mPositions); - llswap(rhs.mNormals, mNormals); - llswap(rhs.mBinormals, mBinormals); - llswap(rhs.mTexCoords, mTexCoords); - llswap(rhs.mIndices,mIndices); - llswap(rhs.mNumVertices, mNumVertices); - llswap(rhs.mNumIndices, mNumIndices); -} - -void LerpPlanarVertex(LLVolumeFace::VertexData& v0, - LLVolumeFace::VertexData& v1, - LLVolumeFace::VertexData& v2, - LLVolumeFace::VertexData& vout, - F32 coef01, - F32 coef02) -{ - - LLVector4a lhs; - lhs.setSub(v1.getPosition(), v0.getPosition()); - lhs.mul(coef01); - LLVector4a rhs; - rhs.setSub(v2.getPosition(), v0.getPosition()); - rhs.mul(coef02); - - rhs.add(lhs); - rhs.add(v0.getPosition()); - - vout.setPosition(rhs); - - vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02); - vout.setNormal(v0.getNormal()); -} - -BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - const std::vector<LLVolume::Point>& mesh = volume->getMesh(); - const std::vector<LLVector3>& profile = volume->getProfile().mProfile; - S32 max_s = volume->getProfile().getTotal(); - S32 max_t = volume->getPath().mPath.size(); - - // S32 i; - S32 num_vertices = 0, num_indices = 0; - S32 grid_size = (profile.size()-1)/4; - S32 quad_count = (grid_size * grid_size); - - num_vertices = (grid_size+1)*(grid_size+1); - num_indices = quad_count * 4; - - LLVector4a& min = mExtents[0]; - LLVector4a& max = mExtents[1]; - - S32 offset = 0; - if (mTypeMask & TOP_MASK) - { - offset = (max_t-1) * max_s; - } - else - { - offset = mBeginS; - } - - { - VertexData corners[4]; - VertexData baseVert; - for(S32 t = 0; t < 4; t++) - { - corners[t].getPosition().load3( mesh[offset + (grid_size*t)].mPos.mV); - corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f; - corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1]; - } - - { - LLVector4a lhs; - lhs.setSub(corners[1].getPosition(), corners[0].getPosition()); - LLVector4a rhs; - rhs.setSub(corners[2].getPosition(), corners[1].getPosition()); - baseVert.getNormal().setCross3(lhs, rhs); - baseVert.getNormal().normalize3fast(); - } - - if(!(mTypeMask & TOP_MASK)) - { - baseVert.getNormal().mul(-1.0f); - } - else - { - //Swap the UVs on the U(X) axis for top face - LLVector2 swap; - swap = corners[0].mTexCoord; - corners[0].mTexCoord=corners[3].mTexCoord; - corners[3].mTexCoord=swap; - swap = corners[1].mTexCoord; - corners[1].mTexCoord=corners[2].mTexCoord; - corners[2].mTexCoord=swap; - } - - LLVector4a binormal; - - calc_binormal_from_triangle( binormal, - corners[0].getPosition(), corners[0].mTexCoord, - corners[1].getPosition(), corners[1].mTexCoord, - corners[2].getPosition(), corners[2].mTexCoord); - - binormal.normalize3fast(); - - S32 size = (grid_size+1)*(grid_size+1); - resizeVertices(size); - allocateBinormals(size); - - LLVector4a* pos = (LLVector4a*) mPositions; - LLVector4a* norm = (LLVector4a*) mNormals; - LLVector4a* binorm = (LLVector4a*) mBinormals; - LLVector2* tc = (LLVector2*) mTexCoords; - - for(int gx = 0;gx<grid_size+1;gx++) - { - for(int gy = 0;gy<grid_size+1;gy++) - { - VertexData newVert; - LerpPlanarVertex( - corners[0], - corners[1], - corners[3], - newVert, - (F32)gx/(F32)grid_size, - (F32)gy/(F32)grid_size); - - *pos++ = newVert.getPosition(); - *norm++ = baseVert.getNormal(); - *tc++ = newVert.mTexCoord; - *binorm++ = binormal; - - if (gx == 0 && gy == 0) - { - min = newVert.getPosition(); - max = min; - } - else - { - min.setMin(min, newVert.getPosition()); - max.setMax(max, newVert.getPosition()); - } - } - } - - mCenter->setAdd(min, max); - mCenter->mul(0.5f); - } - - if (!partial_build) - { - resizeIndices(grid_size*grid_size*6); - - U16* out = mIndices; - - S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0}; - for(S32 gx = 0;gx<grid_size;gx++) - { - - for(S32 gy = 0;gy<grid_size;gy++) - { - if (mTypeMask & TOP_MASK) - { - for(S32 i=5;i>=0;i--) - { - *out++ = ((gy*(grid_size+1))+gx+idxs[i]); - } - } - else - { - for(S32 i=0;i<6;i++) - { - *out++ = ((gy*(grid_size+1))+gx+idxs[i]); - } - } - } - } - } - - return TRUE; -} - - -BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if (!(mTypeMask & HOLLOW_MASK) && - !(mTypeMask & OPEN_MASK) && - ((volume->getParams().getPathParams().getBegin()==0.0f)&& - (volume->getParams().getPathParams().getEnd()==1.0f))&& - (volume->getParams().getProfileParams().getCurveType()==LL_PCODE_PROFILE_SQUARE && - volume->getParams().getPathParams().getCurveType()==LL_PCODE_PATH_LINE) - ){ - return createUnCutCubeCap(volume, partial_build); - } - - S32 num_vertices = 0, num_indices = 0; - - const std::vector<LLVolume::Point>& mesh = volume->getMesh(); - const std::vector<LLVector3>& profile = volume->getProfile().mProfile; - - // All types of caps have the same number of vertices and indices - num_vertices = profile.size(); - num_indices = (profile.size() - 2)*3; - - if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) - { - resizeVertices(num_vertices+1); - allocateBinormals(num_vertices+1); - - if (!partial_build) - { - resizeIndices(num_indices+3); - } - } - else - { - resizeVertices(num_vertices); - allocateBinormals(num_vertices); - - if (!partial_build) - { - resizeIndices(num_indices); - } - } - - S32 max_s = volume->getProfile().getTotal(); - S32 max_t = volume->getPath().mPath.size(); - - mCenter->clear(); - - S32 offset = 0; - if (mTypeMask & TOP_MASK) - { - offset = (max_t-1) * max_s; - } - else - { - offset = mBeginS; - } - - // Figure out the normal, assume all caps are flat faces. - // Cross product to get normals. - - LLVector2 cuv; - LLVector2 min_uv, max_uv; - - LLVector4a& min = mExtents[0]; - LLVector4a& max = mExtents[1]; - - LLVector2* tc = (LLVector2*) mTexCoords; - LLVector4a* pos = (LLVector4a*) mPositions; - LLVector4a* norm = (LLVector4a*) mNormals; - LLVector4a* binorm = (LLVector4a*) mBinormals; - - // Copy the vertices into the array - for (S32 i = 0; i < num_vertices; i++) - { - if (mTypeMask & TOP_MASK) - { - tc[i].mV[0] = profile[i].mV[0]+0.5f; - tc[i].mV[1] = profile[i].mV[1]+0.5f; - } - else - { - // Mirror for underside. - tc[i].mV[0] = profile[i].mV[0]+0.5f; - tc[i].mV[1] = 0.5f - profile[i].mV[1]; - } - - pos[i].load3(mesh[i + offset].mPos.mV); - - if (i == 0) - { - max = pos[i]; - min = max; - min_uv = max_uv = tc[i]; - } - else - { - update_min_max(min,max,pos[i]); - update_min_max(min_uv, max_uv, tc[i]); - } - } - - mCenter->setAdd(min, max); - mCenter->mul(0.5f); - - cuv = (min_uv + max_uv)*0.5f; - - LLVector4a binormal; - calc_binormal_from_triangle(binormal, - *mCenter, cuv, - pos[0], tc[0], - pos[1], tc[1]); - binormal.normalize3fast(); - - LLVector4a normal; - LLVector4a d0, d1; - - - d0.setSub(*mCenter, pos[0]); - d1.setSub(*mCenter, pos[1]); - - if (mTypeMask & TOP_MASK) - { - normal.setCross3(d0, d1); - } - else - { - normal.setCross3(d1, d0); - } - - normal.normalize3fast(); - - VertexData vd; - vd.setPosition(*mCenter); - vd.mTexCoord = cuv; - - if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) - { - pos[num_vertices] = *mCenter; - tc[num_vertices] = cuv; - num_vertices++; - } - - for (S32 i = 0; i < num_vertices; i++) - { - binorm[i].load4a(binormal.getF32ptr()); - norm[i].load4a(normal.getF32ptr()); - } - - if (partial_build) - { - return TRUE; - } - - if (mTypeMask & HOLLOW_MASK) - { - if (mTypeMask & TOP_MASK) - { - // HOLLOW TOP - // Does it matter if it's open or closed? - djs - - S32 pt1 = 0, pt2 = num_vertices - 1; - S32 i = 0; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = profile[pt1]; - LLVector3 p2 = profile[pt2]; - LLVector3 pa = profile[pt1+1]; - LLVector3 pb = profile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - mIndices[i++] = pt1; - mIndices[i++] = pt1 + 1; - mIndices[i++] = pt2; - pt1++; - } - else - { - mIndices[i++] = pt1; - mIndices[i++] = pt2 - 1; - mIndices[i++] = pt2; - pt2--; - } - } - } - else - { - // HOLLOW BOTTOM - // Does it matter if it's open or closed? - djs - - llassert(mTypeMask & BOTTOM_MASK); - S32 pt1 = 0, pt2 = num_vertices - 1; - - S32 i = 0; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = profile[pt1]; - LLVector3 p2 = profile[pt2]; - LLVector3 pa = profile[pt1+1]; - LLVector3 pb = profile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - // Flipped backfacing from top - if (use_tri1a2) - { - mIndices[i++] = pt1; - mIndices[i++] = pt2; - mIndices[i++] = pt1 + 1; - pt1++; - } - else - { - mIndices[i++] = pt1; - mIndices[i++] = pt2; - mIndices[i++] = pt2 - 1; - pt2--; - } - } - } - } - else - { - // Not hollow, generate the triangle fan. - U16 v1 = 2; - U16 v2 = 1; - - if (mTypeMask & TOP_MASK) - { - v1 = 1; - v2 = 2; - } - - for (S32 i = 0; i < (num_vertices - 2); i++) - { - mIndices[3*i] = num_vertices - 1; - mIndices[3*i+v1] = i; - mIndices[3*i+v2] = i + 1; - } - - - } - - return TRUE; -} - -void LLVolumeFace::createBinormals() -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if (!mBinormals) - { - allocateBinormals(mNumVertices); - - //generate binormals - LLVector4a* pos = mPositions; - LLVector2* tc = (LLVector2*) mTexCoords; - LLVector4a* binorm = (LLVector4a*) mBinormals; - - LLVector4a* end = mBinormals+mNumVertices; - while (binorm < end) - { - (*binorm++).clear(); - } - - binorm = mBinormals; - - for (U32 i = 0; i < mNumIndices/3; i++) - { //for each triangle - const U16& i0 = mIndices[i*3+0]; - const U16& i1 = mIndices[i*3+1]; - const U16& i2 = mIndices[i*3+2]; - - //calculate binormal - LLVector4a binormal; - calc_binormal_from_triangle(binormal, - pos[i0], tc[i0], - pos[i1], tc[i1], - pos[i2], tc[i2]); - - - //add triangle normal to vertices - binorm[i0].add(binormal); - binorm[i1].add(binormal); - binorm[i2].add(binormal); - - //even out quad contributions - if (i % 2 == 0) - { - binorm[i2].add(binormal); - } - else - { - binorm[i1].add(binormal); - } - } - - //normalize binormals - for (U32 i = 0; i < mNumVertices; i++) - { - binorm[i].normalize3fast(); - //bump map/planar projection code requires normals to be normalized - mNormals[i].normalize3fast(); - } - } -} - -void LLVolumeFace::resizeVertices(S32 num_verts) -{ - free(mPositions); - free(mNormals); - free(mBinormals); - free(mTexCoords); - - mBinormals = NULL; - - if (num_verts) - { - mPositions = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); - assert_aligned(mPositions, 16); - mNormals = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); - assert_aligned(mNormals, 16); - - //pad texture coordinate block end to allow for QWORD reads - S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF; - mTexCoords = (LLVector2*) malloc(size); - assert_aligned(mTexCoords, 16); - } - else - { - mPositions = NULL; - mNormals = NULL; - mTexCoords = NULL; - } - - mNumVertices = num_verts; -} - -void LLVolumeFace::pushVertex(const LLVolumeFace::VertexData& cv) -{ - pushVertex(cv.getPosition(), cv.getNormal(), cv.mTexCoord); -} - -void LLVolumeFace::pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc) -{ - S32 new_verts = mNumVertices+1; - S32 new_size = new_verts*16; -// S32 old_size = mNumVertices*16; - - //positions - mPositions = (LLVector4a*) realloc(mPositions, new_size); - - //normals - mNormals = (LLVector4a*) realloc(mNormals, new_size); - - //tex coords - new_size = ((new_verts*8)+0xF) & ~0xF; - mTexCoords = (LLVector2*) realloc(mTexCoords, new_size); - - - //just clear binormals - free(mBinormals); - mBinormals = NULL; - - mPositions[mNumVertices] = pos; - mNormals[mNumVertices] = norm; - mTexCoords[mNumVertices] = tc; - - mNumVertices++; -} - -void LLVolumeFace::allocateBinormals(S32 num_verts) -{ - free(mBinormals); - mBinormals = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); -} - -void LLVolumeFace::allocateWeights(S32 num_verts) -{ - free(mWeights); - mWeights = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); -} - -void LLVolumeFace::resizeIndices(S32 num_indices) -{ - free(mIndices); - - if (num_indices) - { - //pad index block end to allow for QWORD reads - S32 size = ((num_indices*sizeof(U16)) + 0xF) & ~0xF; - - mIndices = (U16*) malloc(size); - } - else - { - mIndices = NULL; - } - - mNumIndices = num_indices; -} - -void LLVolumeFace::pushIndex(const U16& idx) -{ - S32 new_count = mNumIndices + 1; - S32 new_size = ((new_count*2)+0xF) & ~0xF; - - S32 old_size = ((mNumIndices*2)+0xF) & ~0xF; - if (new_size != old_size) - { - mIndices = (U16*) realloc(mIndices, new_size); - } - - mIndices[mNumIndices++] = idx; -} - -void LLVolumeFace::fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx) -{ - resizeVertices(v.size()); - resizeIndices(idx.size()); - - for (U32 i = 0; i < v.size(); ++i) - { - mPositions[i] = v[i].getPosition(); - mNormals[i] = v[i].getNormal(); - mTexCoords[i] = v[i].mTexCoord; - } - - for (U32 i = 0; i < idx.size(); ++i) - { - mIndices[i] = idx[i]; - } -} - -void LLVolumeFace::appendFace(const LLVolumeFace& face, LLMatrix4& mat_in, LLMatrix4& norm_mat_in) -{ - U16 offset = mNumVertices; - - S32 new_count = face.mNumVertices + mNumVertices; - - if (new_count > 65536) - { - llerrs << "Cannot append face -- 16-bit overflow will occur." << llendl; - } - - if (face.mNumVertices == 0) - { - llerrs << "Cannot append empty face." << llendl; - } - - //allocate new buffer space - mPositions = (LLVector4a*) realloc(mPositions, new_count*sizeof(LLVector4a)); - assert_aligned(mPositions, 16); - mNormals = (LLVector4a*) realloc(mNormals, new_count*sizeof(LLVector4a)); - assert_aligned(mNormals, 16); - mTexCoords = (LLVector2*) realloc(mTexCoords, (new_count*sizeof(LLVector2)+0xF) & ~0xF); - assert_aligned(mTexCoords, 16); - - mNumVertices = new_count; - - //get destination address of appended face - LLVector4a* dst_pos = mPositions+offset; - LLVector2* dst_tc = mTexCoords+offset; - LLVector4a* dst_norm = mNormals+offset; - - //get source addresses of appended face - const LLVector4a* src_pos = face.mPositions; - const LLVector2* src_tc = face.mTexCoords; - const LLVector4a* src_norm = face.mNormals; - - //load aligned matrices - LLMatrix4a mat, norm_mat; - mat.loadu(mat_in); - norm_mat.loadu(norm_mat_in); - - for (U32 i = 0; i < face.mNumVertices; ++i) - { - //transform appended face position and store - mat.affineTransform(src_pos[i], dst_pos[i]); - - //transform appended face normal and store - norm_mat.rotate(src_norm[i], dst_norm[i]); - dst_norm[i].normalize3fast(); - - //copy appended face texture coordinate - dst_tc[i] = src_tc[i]; - - if (offset == 0 && i == 0) - { //initialize bounding box - mExtents[0] = mExtents[1] = dst_pos[i]; - } - else - { - //stretch bounding box - update_min_max(mExtents[0], mExtents[1], dst_pos[i]); - } - } - - - new_count = mNumIndices + face.mNumIndices; - - //allocate new index buffer - mIndices = (U16*) realloc(mIndices, (new_count*sizeof(U16)+0xF) & ~0xF); - - //get destination address into new index buffer - U16* dst_idx = mIndices+mNumIndices; - mNumIndices = new_count; - - for (U32 i = 0; i < face.mNumIndices; ++i) - { //copy indices, offsetting by old vertex count - dst_idx[i] = face.mIndices[i]+offset; - } -} - -BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - BOOL flat = mTypeMask & FLAT_MASK; - - U8 sculpt_type = volume->getParams().getSculptType(); - U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK; - BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT; - BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR; - BOOL sculpt_reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR - - S32 num_vertices, num_indices; - - const std::vector<LLVolume::Point>& mesh = volume->getMesh(); - const std::vector<LLVector3>& profile = volume->getProfile().mProfile; - const std::vector<LLPath::PathPt>& path_data = volume->getPath().mPath; - - S32 max_s = volume->getProfile().getTotal(); - - S32 s, t, i; - F32 ss, tt; - - num_vertices = mNumS*mNumT; - num_indices = (mNumS-1)*(mNumT-1)*6; - - if (!partial_build) - { - resizeVertices(num_vertices); - resizeIndices(num_indices); - - if ((volume->getParams().getSculptType() & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_MESH) - { - mEdge.resize(num_indices); - } - } - - LLVector4a* pos = (LLVector4a*) mPositions; - LLVector4a* norm = (LLVector4a*) mNormals; - LLVector2* tc = (LLVector2*) mTexCoords; - S32 begin_stex = llfloor( profile[mBeginS].mV[2] ); - S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS; - - S32 cur_vertex = 0; - // Copy the vertices into the array - for (t = mBeginT; t < mBeginT + mNumT; t++) - { - tt = path_data[t].mTexT; - for (s = 0; s < num_s; s++) - { - if (mTypeMask & END_MASK) - { - if (s) - { - ss = 1.f; - } - else - { - ss = 0.f; - } - } - else - { - // Get s value for tex-coord. - if (!flat) - { - ss = profile[mBeginS + s].mV[2]; - } - else - { - ss = profile[mBeginS + s].mV[2] - begin_stex; - } - } - - if (sculpt_reverse_horizontal) - { - ss = 1.f - ss; - } - - // Check to see if this triangle wraps around the array. - if (mBeginS + s >= max_s) - { - // We're wrapping - i = mBeginS + s + max_s*(t-1); - } - else - { - i = mBeginS + s + max_s*t; - } - - pos[cur_vertex].load3(mesh[i].mPos.mV); - tc[cur_vertex] = LLVector2(ss,tt); - - norm[cur_vertex].clear(); - cur_vertex++; - - if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2 && s > 0) - { - - pos[cur_vertex].load3(mesh[i].mPos.mV); - tc[cur_vertex] = LLVector2(ss,tt); - - norm[cur_vertex].clear(); - - cur_vertex++; - } - } - - if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) - { - if (mTypeMask & OPEN_MASK) - { - s = num_s-1; - } - else - { - s = 0; - } - - i = mBeginS + s + max_s*t; - ss = profile[mBeginS + s].mV[2] - begin_stex; - pos[cur_vertex].load3(mesh[i].mPos.mV); - tc[cur_vertex] = LLVector2(ss,tt); - norm[cur_vertex].clear(); - - cur_vertex++; - } - } - - - //get bounding box for this side - LLVector4a& face_min = mExtents[0]; - LLVector4a& face_max = mExtents[1]; - mCenter->clear(); - - face_min = face_max = pos[0]; - - for (U32 i = 1; i < mNumVertices; ++i) - { - update_min_max(face_min, face_max, pos[i]); - } - - mCenter->setAdd(face_min, face_max); - mCenter->mul(0.5f); - - S32 cur_index = 0; - S32 cur_edge = 0; - BOOL flat_face = mTypeMask & FLAT_MASK; - - if (!partial_build) - { - // Now we generate the indices. - for (t = 0; t < (mNumT-1); t++) - { - for (s = 0; s < (mNumS-1); s++) - { - mIndices[cur_index++] = s + mNumS*t; //bottom left - mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right - mIndices[cur_index++] = s + mNumS*(t+1); //top left - mIndices[cur_index++] = s + mNumS*t; //bottom left - mIndices[cur_index++] = s+1 + mNumS*t; //bottom right - mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right - - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1; //bottom left/top right neighbor face - if (t < mNumT-2) { //top right/top left neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1; - } - else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on T - mEdge[cur_edge++] = s*2+1; - } - if (s > 0) { //top left/bottom left neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1; - } - else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on S - mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1; - } - - if (t > 0) { //bottom left/bottom right neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2; - } - else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on T - mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2; - } - if (s < mNumS-2) { //bottom right/top right neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2; - } - else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on S - mEdge[cur_edge++] = (mNumS-1)*2*t; - } - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2; //top right/bottom left neighbor face - } - } - } - - //clear normals - for (U32 i = 0; i < mNumVertices; i++) - { - mNormals[i].clear(); - } - - //generate normals - for (U32 i = 0; i < mNumIndices/3; i++) //for each triangle - { - const U16* idx = &(mIndices[i*3]); - - - LLVector4a* v[] = - { pos+idx[0], pos+idx[1], pos+idx[2] }; - - LLVector4a* n[] = - { norm+idx[0], norm+idx[1], norm+idx[2] }; - - //calculate triangle normal - LLVector4a a, b, c; - - a.setSub(*v[0], *v[1]); - b.setSub(*v[0], *v[2]); - c.setCross3(a,b); - - n[0]->add(c); - n[1]->add(c); - n[2]->add(c); - - //even out quad contributions - n[i%2+1]->add(c); - } - - // adjust normals based on wrapping and stitching - - LLVector4a top; - top.setSub(pos[0], pos[mNumS*(mNumT-2)]); - BOOL s_bottom_converges = (top.dot3(top) < 0.000001f); - - top.setSub(pos[mNumS-1], pos[mNumS*(mNumT-2)+mNumS-1]); - BOOL s_top_converges = (top.dot3(top) < 0.000001f); - - if (sculpt_stitching == LL_SCULPT_TYPE_NONE) // logic for non-sculpt volumes - { - if (volume->getPath().isOpen() == FALSE) - { //wrap normals on T - for (S32 i = 0; i < mNumS; i++) - { - LLVector4a n; - n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]); - norm[i] = n; - norm[mNumS*(mNumT-1)+i] = n; - } - } - - if ((volume->getProfile().isOpen() == FALSE) && !(s_bottom_converges)) - { //wrap normals on S - for (S32 i = 0; i < mNumT; i++) - { - LLVector4a n; - n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]); - norm[mNumS * i] = n; - norm[mNumS * i+mNumS-1] = n; - } - } - - if (volume->getPathType() == LL_PCODE_PATH_CIRCLE && - ((volume->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF)) - { - if (s_bottom_converges) - { //all lower S have same normal - for (S32 i = 0; i < mNumT; i++) - { - norm[mNumS*i].set(1,0,0); - } - } - - if (s_top_converges) - { //all upper S have same normal - for (S32 i = 0; i < mNumT; i++) - { - norm[mNumS*i+mNumS-1].set(-1,0,0); - } - } - } - } - else // logic for sculpt volumes - { - BOOL average_poles = FALSE; - BOOL wrap_s = FALSE; - BOOL wrap_t = FALSE; - - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - average_poles = TRUE; - - if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) || - (sculpt_stitching == LL_SCULPT_TYPE_TORUS) || - (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER)) - wrap_s = TRUE; - - if (sculpt_stitching == LL_SCULPT_TYPE_TORUS) - wrap_t = TRUE; - - - if (average_poles) - { - // average normals for north pole - - LLVector4a average; - average.clear(); - - for (S32 i = 0; i < mNumS; i++) - { - average.add(norm[i]); - } - - // set average - for (S32 i = 0; i < mNumS; i++) - { - norm[i] = average; - } - - // average normals for south pole - - average.clear(); - - for (S32 i = 0; i < mNumS; i++) - { - average.add(norm[i + mNumS * (mNumT - 1)]); - } - - // set average - for (S32 i = 0; i < mNumS; i++) - { - norm[i + mNumS * (mNumT - 1)] = average; - } - - } - - - if (wrap_s) - { - for (S32 i = 0; i < mNumT; i++) - { - LLVector4a n; - n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]); - norm[mNumS * i] = n; - norm[mNumS * i+mNumS-1] = n; - } - } - - if (wrap_t) - { - for (S32 i = 0; i < mNumS; i++) - { - LLVector4a n; - n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]); - norm[i] = n; - norm[mNumS*(mNumT-1)+i] = n; - } - } - - } - - return TRUE; -} - -// Finds binormal based on three vertices with texture coordinates. -// Fills in dummy values if the triangle has degenerate texture coordinates. -void calc_binormal_from_triangle(LLVector4a& binormal, - - const LLVector4a& pos0, - const LLVector2& tex0, - const LLVector4a& pos1, - const LLVector2& tex1, - const LLVector4a& pos2, - const LLVector2& tex2) -{ - LLVector4a rx0( pos0[VX], tex0.mV[VX], tex0.mV[VY] ); - LLVector4a rx1( pos1[VX], tex1.mV[VX], tex1.mV[VY] ); - LLVector4a rx2( pos2[VX], tex2.mV[VX], tex2.mV[VY] ); - - LLVector4a ry0( pos0[VY], tex0.mV[VX], tex0.mV[VY] ); - LLVector4a ry1( pos1[VY], tex1.mV[VX], tex1.mV[VY] ); - LLVector4a ry2( pos2[VY], tex2.mV[VX], tex2.mV[VY] ); - - LLVector4a rz0( pos0[VZ], tex0.mV[VX], tex0.mV[VY] ); - LLVector4a rz1( pos1[VZ], tex1.mV[VX], tex1.mV[VY] ); - LLVector4a rz2( pos2[VZ], tex2.mV[VX], tex2.mV[VY] ); - - LLVector4a lhs, rhs; - - LLVector4a r0; - lhs.setSub(rx0, rx1); rhs.setSub(rx0, rx2); - r0.setCross3(lhs, rhs); - - LLVector4a r1; - lhs.setSub(ry0, ry1); rhs.setSub(ry0, ry2); - r1.setCross3(lhs, rhs); - - LLVector4a r2; - lhs.setSub(rz0, rz1); rhs.setSub(rz0, rz2); - r2.setCross3(lhs, rhs); - - if( r0[VX] && r1[VX] && r2[VX] ) - { - binormal.set( - -r0[VZ] / r0[VX], - -r1[VZ] / r1[VX], - -r2[VZ] / r2[VX]); - // binormal.normVec(); - } - else - { - binormal.set( 0, 1 , 0 ); - } -} diff --git a/indra/llmath/llvolume.h b/indra/llmath/llvolume.h index 32ac531306..4a25f586da 100644 --- a/indra/llmath/llvolume.h +++ b/indra/llmath/llvolume.h @@ -1,797 +1,797 @@ -/** - * @file llvolume.h - * @brief LLVolume base class. - * - * $LicenseInfo:firstyear=2002&license=viewerlgpl$ - * Second Life Viewer Source Code - * Copyright (C) 2010, Linden Research, Inc. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; - * version 2.1 of the License only. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * - * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA - * $/LicenseInfo$ - */ - -#ifndef LL_LLVOLUME_H -#define LL_LLVOLUME_H - -#include <iostream> - -class LLProfileParams; -class LLPathParams; -class LLVolumeParams; -class LLProfile; -class LLPath; - -template <class T> class LLOctreeNode; - -class LLVector4a; -class LLVolumeFace; -class LLVolume; -class LLVolumeTriangle; - -#include "lldarray.h" -#include "lluuid.h" -#include "v4color.h" -//#include "vmath.h" -#include "v2math.h" -#include "v3math.h" -#include "v3dmath.h" -#include "v4math.h" -#include "llquaternion.h" -#include "llstrider.h" -#include "v4coloru.h" -#include "llrefcount.h" -#include "llfile.h" - -//============================================================================ - -const S32 MIN_DETAIL_FACES = 6; -const S32 MIN_LOD = 0; -const S32 MAX_LOD = 3; - -// These are defined here but are not enforced at this level, -// rather they are here for the convenience of code that uses -// the LLVolume class. -const F32 MIN_VOLUME_PROFILE_WIDTH = 0.05f; -const F32 MIN_VOLUME_PATH_WIDTH = 0.05f; - -const F32 CUT_QUANTA = 0.00002f; -const F32 SCALE_QUANTA = 0.01f; -const F32 SHEAR_QUANTA = 0.01f; -const F32 TAPER_QUANTA = 0.01f; -const F32 REV_QUANTA = 0.015f; -const F32 HOLLOW_QUANTA = 0.00002f; - -const S32 MAX_VOLUME_TRIANGLE_INDICES = 10000; - -//============================================================================ - -// useful masks -const LLPCode LL_PCODE_HOLLOW_MASK = 0x80; // has a thickness -const LLPCode LL_PCODE_SEGMENT_MASK = 0x40; // segments (1 angle) -const LLPCode LL_PCODE_PATCH_MASK = 0x20; // segmented segments (2 angles) -const LLPCode LL_PCODE_HEMI_MASK = 0x10; // half-primitives get their own type per PR's dictum -const LLPCode LL_PCODE_BASE_MASK = 0x0F; - - // primitive shapes -const LLPCode LL_PCODE_CUBE = 1; -const LLPCode LL_PCODE_PRISM = 2; -const LLPCode LL_PCODE_TETRAHEDRON = 3; -const LLPCode LL_PCODE_PYRAMID = 4; -const LLPCode LL_PCODE_CYLINDER = 5; -const LLPCode LL_PCODE_CONE = 6; -const LLPCode LL_PCODE_SPHERE = 7; -const LLPCode LL_PCODE_TORUS = 8; -const LLPCode LL_PCODE_VOLUME = 9; - - // surfaces -//const LLPCode LL_PCODE_SURFACE_TRIANGLE = 10; -//const LLPCode LL_PCODE_SURFACE_SQUARE = 11; -//const LLPCode LL_PCODE_SURFACE_DISC = 12; - -const LLPCode LL_PCODE_APP = 14; // App specific pcode (for viewer/sim side only objects) -const LLPCode LL_PCODE_LEGACY = 15; - -// Pcodes for legacy objects -//const LLPCode LL_PCODE_LEGACY_ATOR = 0x10 | LL_PCODE_LEGACY; // ATOR -const LLPCode LL_PCODE_LEGACY_AVATAR = 0x20 | LL_PCODE_LEGACY; // PLAYER -//const LLPCode LL_PCODE_LEGACY_BIRD = 0x30 | LL_PCODE_LEGACY; // BIRD -//const LLPCode LL_PCODE_LEGACY_DEMON = 0x40 | LL_PCODE_LEGACY; // DEMON -const LLPCode LL_PCODE_LEGACY_GRASS = 0x50 | LL_PCODE_LEGACY; // GRASS -const LLPCode LL_PCODE_TREE_NEW = 0x60 | LL_PCODE_LEGACY; // new trees -//const LLPCode LL_PCODE_LEGACY_ORACLE = 0x70 | LL_PCODE_LEGACY; // ORACLE -const LLPCode LL_PCODE_LEGACY_PART_SYS = 0x80 | LL_PCODE_LEGACY; // PART_SYS -const LLPCode LL_PCODE_LEGACY_ROCK = 0x90 | LL_PCODE_LEGACY; // ROCK -//const LLPCode LL_PCODE_LEGACY_SHOT = 0xA0 | LL_PCODE_LEGACY; // BASIC_SHOT -//const LLPCode LL_PCODE_LEGACY_SHOT_BIG = 0xB0 | LL_PCODE_LEGACY; -//const LLPCode LL_PCODE_LEGACY_SMOKE = 0xC0 | LL_PCODE_LEGACY; // SMOKE -//const LLPCode LL_PCODE_LEGACY_SPARK = 0xD0 | LL_PCODE_LEGACY;// SPARK -const LLPCode LL_PCODE_LEGACY_TEXT_BUBBLE = 0xE0 | LL_PCODE_LEGACY; // TEXTBUBBLE -const LLPCode LL_PCODE_LEGACY_TREE = 0xF0 | LL_PCODE_LEGACY; // TREE - - // hemis -const LLPCode LL_PCODE_CYLINDER_HEMI = LL_PCODE_CYLINDER | LL_PCODE_HEMI_MASK; -const LLPCode LL_PCODE_CONE_HEMI = LL_PCODE_CONE | LL_PCODE_HEMI_MASK; -const LLPCode LL_PCODE_SPHERE_HEMI = LL_PCODE_SPHERE | LL_PCODE_HEMI_MASK; -const LLPCode LL_PCODE_TORUS_HEMI = LL_PCODE_TORUS | LL_PCODE_HEMI_MASK; - - -// Volumes consist of a profile at the base that is swept around -// a path to make a volume. -// The profile code -const U8 LL_PCODE_PROFILE_MASK = 0x0f; -const U8 LL_PCODE_PROFILE_MIN = 0x00; -const U8 LL_PCODE_PROFILE_CIRCLE = 0x00; -const U8 LL_PCODE_PROFILE_SQUARE = 0x01; -const U8 LL_PCODE_PROFILE_ISOTRI = 0x02; -const U8 LL_PCODE_PROFILE_EQUALTRI = 0x03; -const U8 LL_PCODE_PROFILE_RIGHTTRI = 0x04; -const U8 LL_PCODE_PROFILE_CIRCLE_HALF = 0x05; -const U8 LL_PCODE_PROFILE_MAX = 0x05; - -// Stored in the profile byte -const U8 LL_PCODE_HOLE_MASK = 0xf0; -const U8 LL_PCODE_HOLE_MIN = 0x00; -const U8 LL_PCODE_HOLE_SAME = 0x00; // same as outside profile -const U8 LL_PCODE_HOLE_CIRCLE = 0x10; -const U8 LL_PCODE_HOLE_SQUARE = 0x20; -const U8 LL_PCODE_HOLE_TRIANGLE = 0x30; -const U8 LL_PCODE_HOLE_MAX = 0x03; // min/max needs to be >> 4 of real min/max - -const U8 LL_PCODE_PATH_IGNORE = 0x00; -const U8 LL_PCODE_PATH_MIN = 0x01; // min/max needs to be >> 4 of real min/max -const U8 LL_PCODE_PATH_LINE = 0x10; -const U8 LL_PCODE_PATH_CIRCLE = 0x20; -const U8 LL_PCODE_PATH_CIRCLE2 = 0x30; -const U8 LL_PCODE_PATH_TEST = 0x40; -const U8 LL_PCODE_PATH_FLEXIBLE = 0x80; -const U8 LL_PCODE_PATH_MAX = 0x08; - -//============================================================================ - -// face identifiers -typedef U16 LLFaceID; - -const LLFaceID LL_FACE_PATH_BEGIN = 0x1 << 0; -const LLFaceID LL_FACE_PATH_END = 0x1 << 1; -const LLFaceID LL_FACE_INNER_SIDE = 0x1 << 2; -const LLFaceID LL_FACE_PROFILE_BEGIN = 0x1 << 3; -const LLFaceID LL_FACE_PROFILE_END = 0x1 << 4; -const LLFaceID LL_FACE_OUTER_SIDE_0 = 0x1 << 5; -const LLFaceID LL_FACE_OUTER_SIDE_1 = 0x1 << 6; -const LLFaceID LL_FACE_OUTER_SIDE_2 = 0x1 << 7; -const LLFaceID LL_FACE_OUTER_SIDE_3 = 0x1 << 8; - -//============================================================================ - -// sculpt types + flags - -const U8 LL_SCULPT_TYPE_NONE = 0; -const U8 LL_SCULPT_TYPE_SPHERE = 1; -const U8 LL_SCULPT_TYPE_TORUS = 2; -const U8 LL_SCULPT_TYPE_PLANE = 3; -const U8 LL_SCULPT_TYPE_CYLINDER = 4; -const U8 LL_SCULPT_TYPE_MESH = 5; -const U8 LL_SCULPT_TYPE_MASK = LL_SCULPT_TYPE_SPHERE | LL_SCULPT_TYPE_TORUS | LL_SCULPT_TYPE_PLANE | - LL_SCULPT_TYPE_CYLINDER | LL_SCULPT_TYPE_MESH; - -const U8 LL_SCULPT_FLAG_INVERT = 64; -const U8 LL_SCULPT_FLAG_MIRROR = 128; - -const S32 LL_SCULPT_MESH_MAX_FACES = 8; - -class LLProfileParams -{ -public: - LLProfileParams() - : mCurveType(LL_PCODE_PROFILE_SQUARE), - mBegin(0.f), - mEnd(1.f), - mHollow(0.f), - mCRC(0) - { - } - - LLProfileParams(U8 curve, F32 begin, F32 end, F32 hollow) - : mCurveType(curve), - mBegin(begin), - mEnd(end), - mHollow(hollow), - mCRC(0) - { - } - - LLProfileParams(U8 curve, U16 begin, U16 end, U16 hollow) - { - mCurveType = curve; - F32 temp_f32 = begin * CUT_QUANTA; - if (temp_f32 > 1.f) - { - temp_f32 = 1.f; - } - mBegin = temp_f32; - temp_f32 = end * CUT_QUANTA; - if (temp_f32 > 1.f) - { - temp_f32 = 1.f; - } - mEnd = 1.f - temp_f32; - temp_f32 = hollow * HOLLOW_QUANTA; - if (temp_f32 > 1.f) - { - temp_f32 = 1.f; - } - mHollow = temp_f32; - mCRC = 0; - } - - bool operator==(const LLProfileParams ¶ms) const; - bool operator!=(const LLProfileParams ¶ms) const; - bool operator<(const LLProfileParams ¶ms) const; - - void copyParams(const LLProfileParams ¶ms); - - BOOL importFile(LLFILE *fp); - BOOL exportFile(LLFILE *fp) const; - - BOOL importLegacyStream(std::istream& input_stream); - BOOL exportLegacyStream(std::ostream& output_stream) const; - - LLSD asLLSD() const; - operator LLSD() const { return asLLSD(); } - bool fromLLSD(LLSD& sd); - - const F32& getBegin () const { return mBegin; } - const F32& getEnd () const { return mEnd; } - const F32& getHollow() const { return mHollow; } - const U8& getCurveType () const { return mCurveType; } - - void setCurveType(const U32 type) { mCurveType = type;} - void setBegin(const F32 begin) { mBegin = (begin >= 1.0f) ? 0.0f : ((int) (begin * 100000))/100000.0f;} - void setEnd(const F32 end) { mEnd = (end <= 0.0f) ? 1.0f : ((int) (end * 100000))/100000.0f;} - void setHollow(const F32 hollow) { mHollow = ((int) (hollow * 100000))/100000.0f;} - - friend std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params); - -protected: - // Profile params - U8 mCurveType; - F32 mBegin; - F32 mEnd; - F32 mHollow; - - U32 mCRC; -}; - -inline bool LLProfileParams::operator==(const LLProfileParams ¶ms) const -{ - return - (getCurveType() == params.getCurveType()) && - (getBegin() == params.getBegin()) && - (getEnd() == params.getEnd()) && - (getHollow() == params.getHollow()); -} - -inline bool LLProfileParams::operator!=(const LLProfileParams ¶ms) const -{ - return - (getCurveType() != params.getCurveType()) || - (getBegin() != params.getBegin()) || - (getEnd() != params.getEnd()) || - (getHollow() != params.getHollow()); -} - - -inline bool LLProfileParams::operator<(const LLProfileParams ¶ms) const -{ - if (getCurveType() != params.getCurveType()) - { - return getCurveType() < params.getCurveType(); - } - else - if (getBegin() != params.getBegin()) - { - return getBegin() < params.getBegin(); - } - else - if (getEnd() != params.getEnd()) - { - return getEnd() < params.getEnd(); - } - else - { - return getHollow() < params.getHollow(); - } -} - -#define U8_TO_F32(x) (F32)(*((S8 *)&x)) - -class LLPathParams -{ -public: - LLPathParams() - : - mCurveType(LL_PCODE_PATH_LINE), - mBegin(0.f), - mEnd(1.f), - mScale(1.f,1.f), - mShear(0.f,0.f), - mTwistBegin(0.f), - mTwistEnd(0.f), - mRadiusOffset(0.f), - mTaper(0.f,0.f), - mRevolutions(1.f), - mSkew(0.f), - mCRC(0) - { - } - - LLPathParams(U8 curve, F32 begin, F32 end, F32 scx, F32 scy, F32 shx, F32 shy, F32 twistend, F32 twistbegin, F32 radiusoffset, F32 tx, F32 ty, F32 revolutions, F32 skew) - : mCurveType(curve), - mBegin(begin), - mEnd(end), - mScale(scx,scy), - mShear(shx,shy), - mTwistBegin(twistbegin), - mTwistEnd(twistend), - mRadiusOffset(radiusoffset), - mTaper(tx,ty), - mRevolutions(revolutions), - mSkew(skew), - mCRC(0) - { - } - - LLPathParams(U8 curve, U16 begin, U16 end, U8 scx, U8 scy, U8 shx, U8 shy, U8 twistend, U8 twistbegin, U8 radiusoffset, U8 tx, U8 ty, U8 revolutions, U8 skew) - { - mCurveType = curve; - mBegin = (F32)(begin * CUT_QUANTA); - mEnd = (F32)(100.f - end) * CUT_QUANTA; - if (mEnd > 1.f) - mEnd = 1.f; - mScale.setVec((F32) (200 - scx) * SCALE_QUANTA,(F32) (200 - scy) * SCALE_QUANTA); - mShear.setVec(U8_TO_F32(shx) * SHEAR_QUANTA,U8_TO_F32(shy) * SHEAR_QUANTA); - mTwistBegin = U8_TO_F32(twistbegin) * SCALE_QUANTA; - mTwistEnd = U8_TO_F32(twistend) * SCALE_QUANTA; - mRadiusOffset = U8_TO_F32(radiusoffset) * SCALE_QUANTA; - mTaper.setVec(U8_TO_F32(tx) * TAPER_QUANTA,U8_TO_F32(ty) * TAPER_QUANTA); - mRevolutions = ((F32)revolutions) * REV_QUANTA + 1.0f; - mSkew = U8_TO_F32(skew) * SCALE_QUANTA; - - mCRC = 0; - } - - bool operator==(const LLPathParams ¶ms) const; - bool operator!=(const LLPathParams ¶ms) const; - bool operator<(const LLPathParams ¶ms) const; - - void copyParams(const LLPathParams ¶ms); - - BOOL importFile(LLFILE *fp); - BOOL exportFile(LLFILE *fp) const; - - BOOL importLegacyStream(std::istream& input_stream); - BOOL exportLegacyStream(std::ostream& output_stream) const; - - LLSD asLLSD() const; - operator LLSD() const { return asLLSD(); } - bool fromLLSD(LLSD& sd); - - const F32& getBegin() const { return mBegin; } - const F32& getEnd() const { return mEnd; } - const LLVector2 &getScale() const { return mScale; } - const F32& getScaleX() const { return mScale.mV[0]; } - const F32& getScaleY() const { return mScale.mV[1]; } - const LLVector2 getBeginScale() const; - const LLVector2 getEndScale() const; - const LLVector2 &getShear() const { return mShear; } - const F32& getShearX() const { return mShear.mV[0]; } - const F32& getShearY() const { return mShear.mV[1]; } - const U8& getCurveType () const { return mCurveType; } - - const F32& getTwistBegin() const { return mTwistBegin; } - const F32& getTwistEnd() const { return mTwistEnd; } - const F32& getTwist() const { return mTwistEnd; } // deprecated - const F32& getRadiusOffset() const { return mRadiusOffset; } - const LLVector2 &getTaper() const { return mTaper; } - const F32& getTaperX() const { return mTaper.mV[0]; } - const F32& getTaperY() const { return mTaper.mV[1]; } - const F32& getRevolutions() const { return mRevolutions; } - const F32& getSkew() const { return mSkew; } - - void setCurveType(const U8 type) { mCurveType = type; } - void setBegin(const F32 begin) { mBegin = begin; } - void setEnd(const F32 end) { mEnd = end; } - - void setScale(const F32 x, const F32 y) { mScale.setVec(x,y); } - void setScaleX(const F32 v) { mScale.mV[VX] = v; } - void setScaleY(const F32 v) { mScale.mV[VY] = v; } - void setShear(const F32 x, const F32 y) { mShear.setVec(x,y); } - void setShearX(const F32 v) { mShear.mV[VX] = v; } - void setShearY(const F32 v) { mShear.mV[VY] = v; } - - void setTwistBegin(const F32 twist_begin) { mTwistBegin = twist_begin; } - void setTwistEnd(const F32 twist_end) { mTwistEnd = twist_end; } - void setTwist(const F32 twist) { setTwistEnd(twist); } // deprecated - void setRadiusOffset(const F32 radius_offset){ mRadiusOffset = radius_offset; } - void setTaper(const F32 x, const F32 y) { mTaper.setVec(x,y); } - void setTaperX(const F32 v) { mTaper.mV[VX] = v; } - void setTaperY(const F32 v) { mTaper.mV[VY] = v; } - void setRevolutions(const F32 revolutions) { mRevolutions = revolutions; } - void setSkew(const F32 skew) { mSkew = skew; } - - friend std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params); - -protected: - // Path params - U8 mCurveType; - F32 mBegin; - F32 mEnd; - LLVector2 mScale; - LLVector2 mShear; - - F32 mTwistBegin; - F32 mTwistEnd; - F32 mRadiusOffset; - LLVector2 mTaper; - F32 mRevolutions; - F32 mSkew; - - U32 mCRC; -}; - -inline bool LLPathParams::operator==(const LLPathParams ¶ms) const -{ - return - (getCurveType() == params.getCurveType()) && - (getScale() == params.getScale()) && - (getBegin() == params.getBegin()) && - (getEnd() == params.getEnd()) && - (getShear() == params.getShear()) && - (getTwist() == params.getTwist()) && - (getTwistBegin() == params.getTwistBegin()) && - (getRadiusOffset() == params.getRadiusOffset()) && - (getTaper() == params.getTaper()) && - (getRevolutions() == params.getRevolutions()) && - (getSkew() == params.getSkew()); -} - -inline bool LLPathParams::operator!=(const LLPathParams ¶ms) const -{ - return - (getCurveType() != params.getCurveType()) || - (getScale() != params.getScale()) || - (getBegin() != params.getBegin()) || - (getEnd() != params.getEnd()) || - (getShear() != params.getShear()) || - (getTwist() != params.getTwist()) || - (getTwistBegin() !=params.getTwistBegin()) || - (getRadiusOffset() != params.getRadiusOffset()) || - (getTaper() != params.getTaper()) || - (getRevolutions() != params.getRevolutions()) || - (getSkew() != params.getSkew()); -} - - -inline bool LLPathParams::operator<(const LLPathParams ¶ms) const -{ - if( getCurveType() != params.getCurveType()) - { - return getCurveType() < params.getCurveType(); - } - else - if( getScale() != params.getScale()) - { - return getScale() < params.getScale(); - } - else - if( getBegin() != params.getBegin()) - { - return getBegin() < params.getBegin(); - } - else - if( getEnd() != params.getEnd()) - { - return getEnd() < params.getEnd(); - } - else - if( getShear() != params.getShear()) - { - return getShear() < params.getShear(); - } - else - if( getTwist() != params.getTwist()) - { - return getTwist() < params.getTwist(); - } - else - if( getTwistBegin() != params.getTwistBegin()) - { - return getTwistBegin() < params.getTwistBegin(); - } - else - if( getRadiusOffset() != params.getRadiusOffset()) - { - return getRadiusOffset() < params.getRadiusOffset(); - } - else - if( getTaper() != params.getTaper()) - { - return getTaper() < params.getTaper(); - } - else - if( getRevolutions() != params.getRevolutions()) - { - return getRevolutions() < params.getRevolutions(); - } - else - { - return getSkew() < params.getSkew(); - } -} - -typedef LLVolumeParams* LLVolumeParamsPtr; -typedef const LLVolumeParams* const_LLVolumeParamsPtr; - -class LLVolumeParams -{ -public: - LLVolumeParams() - : mSculptType(LL_SCULPT_TYPE_NONE) - { - } - - LLVolumeParams(LLProfileParams &profile, LLPathParams &path, - LLUUID sculpt_id = LLUUID::null, U8 sculpt_type = LL_SCULPT_TYPE_NONE) - : mProfileParams(profile), mPathParams(path), mSculptID(sculpt_id), mSculptType(sculpt_type) - { - } - - bool operator==(const LLVolumeParams ¶ms) const; - bool operator!=(const LLVolumeParams ¶ms) const; - bool operator<(const LLVolumeParams ¶ms) const; - - - void copyParams(const LLVolumeParams ¶ms); - - const LLProfileParams &getProfileParams() const {return mProfileParams;} - LLProfileParams &getProfileParams() {return mProfileParams;} - const LLPathParams &getPathParams() const {return mPathParams;} - LLPathParams &getPathParams() {return mPathParams;} - - BOOL importFile(LLFILE *fp); - BOOL exportFile(LLFILE *fp) const; - - BOOL importLegacyStream(std::istream& input_stream); - BOOL exportLegacyStream(std::ostream& output_stream) const; - - LLSD sculptAsLLSD() const; - bool sculptFromLLSD(LLSD& sd); - - LLSD asLLSD() const; - operator LLSD() const { return asLLSD(); } - bool fromLLSD(LLSD& sd); - - bool setType(U8 profile, U8 path); - - //void setBeginS(const F32 beginS) { mProfileParams.setBegin(beginS); } // range 0 to 1 - //void setBeginT(const F32 beginT) { mPathParams.setBegin(beginT); } // range 0 to 1 - //void setEndS(const F32 endS) { mProfileParams.setEnd(endS); } // range 0 to 1, must be greater than begin - //void setEndT(const F32 endT) { mPathParams.setEnd(endT); } // range 0 to 1, must be greater than begin - - bool setBeginAndEndS(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end - bool setBeginAndEndT(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end - - bool setHollow(const F32 hollow); // range 0 to 1 - bool setRatio(const F32 x) { return setRatio(x,x); } // 0 = point, 1 = same as base - bool setShear(const F32 x) { return setShear(x,x); } // 0 = no movement, - bool setRatio(const F32 x, const F32 y); // 0 = point, 1 = same as base - bool setShear(const F32 x, const F32 y); // 0 = no movement - - bool setTwistBegin(const F32 twist_begin); // range -1 to 1 - bool setTwistEnd(const F32 twist_end); // range -1 to 1 - bool setTwist(const F32 twist) { return setTwistEnd(twist); } // deprecated - bool setTaper(const F32 x, const F32 y) { bool pass_x = setTaperX(x); bool pass_y = setTaperY(y); return pass_x && pass_y; } - bool setTaperX(const F32 v); // -1 to 1 - bool setTaperY(const F32 v); // -1 to 1 - bool setRevolutions(const F32 revolutions); // 1 to 4 - bool setRadiusOffset(const F32 radius_offset); - bool setSkew(const F32 skew); - bool setSculptID(const LLUUID sculpt_id, U8 sculpt_type); - - static bool validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, - U8 path_curve, F32 path_begin, F32 path_end, - F32 scx, F32 scy, F32 shx, F32 shy, - F32 twistend, F32 twistbegin, F32 radiusoffset, - F32 tx, F32 ty, F32 revolutions, F32 skew); - - const F32& getBeginS() const { return mProfileParams.getBegin(); } - const F32& getBeginT() const { return mPathParams.getBegin(); } - const F32& getEndS() const { return mProfileParams.getEnd(); } - const F32& getEndT() const { return mPathParams.getEnd(); } - - const F32& getHollow() const { return mProfileParams.getHollow(); } - const F32& getTwist() const { return mPathParams.getTwist(); } - const F32& getRatio() const { return mPathParams.getScaleX(); } - const F32& getRatioX() const { return mPathParams.getScaleX(); } - const F32& getRatioY() const { return mPathParams.getScaleY(); } - const F32& getShearX() const { return mPathParams.getShearX(); } - const F32& getShearY() const { return mPathParams.getShearY(); } - - const F32& getTwistBegin()const { return mPathParams.getTwistBegin(); } - const F32& getRadiusOffset() const { return mPathParams.getRadiusOffset(); } - const F32& getTaper() const { return mPathParams.getTaperX(); } - const F32& getTaperX() const { return mPathParams.getTaperX(); } - const F32& getTaperY() const { return mPathParams.getTaperY(); } - const F32& getRevolutions() const { return mPathParams.getRevolutions(); } - const F32& getSkew() const { return mPathParams.getSkew(); } - const LLUUID& getSculptID() const { return mSculptID; } - const U8& getSculptType() const { return mSculptType; } - bool isSculpt() const; - bool isMeshSculpt() const; - BOOL isConvex() const; - - // 'begin' and 'end' should be in range [0, 1] (they will be clamped) - // (begin, end) = (0, 1) will not change the volume - // (begin, end) = (0, 0.5) will reduce the volume to the first half of its profile/path (S/T) - void reduceS(F32 begin, F32 end); - void reduceT(F32 begin, F32 end); - - struct compare - { - bool operator()( const const_LLVolumeParamsPtr& first, const const_LLVolumeParamsPtr& second) const - { - return (*first < *second); - } - }; - - friend std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params); - - // debug helper functions - void setCube(); - -protected: - LLProfileParams mProfileParams; - LLPathParams mPathParams; - LLUUID mSculptID; - U8 mSculptType; -}; - - -class LLProfile -{ -public: - LLProfile() - : mOpen(FALSE), - mConcave(FALSE), - mDirty(TRUE), - mTotalOut(0), - mTotal(2) - { - } - - ~LLProfile(); - - S32 getTotal() const { return mTotal; } - S32 getTotalOut() const { return mTotalOut; } // Total number of outside points - BOOL isFlat(S32 face) const { return (mFaces[face].mCount == 2); } - BOOL isOpen() const { return mOpen; } - void setDirty() { mDirty = TRUE; } - BOOL generate(const LLProfileParams& params, BOOL path_open, F32 detail = 1.0f, S32 split = 0, - BOOL is_sculpted = FALSE, S32 sculpt_size = 0); - BOOL isConcave() const { return mConcave; } -public: - struct Face - { - S32 mIndex; - S32 mCount; - F32 mScaleU; - BOOL mCap; - BOOL mFlat; - LLFaceID mFaceID; - }; - - std::vector<LLVector3> mProfile; - std::vector<LLVector2> mNormals; - std::vector<Face> mFaces; - std::vector<LLVector3> mEdgeNormals; - std::vector<LLVector3> mEdgeCenters; - - friend std::ostream& operator<<(std::ostream &s, const LLProfile &profile); - -protected: - void genNormals(const LLProfileParams& params); - void genNGon(const LLProfileParams& params, S32 sides, F32 offset=0.0f, F32 bevel = 0.0f, F32 ang_scale = 1.f, S32 split = 0); - - Face* addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split = 0); - Face* addCap (S16 faceID); - Face* addFace(S32 index, S32 count, F32 scaleU, S16 faceID, BOOL flat); - -protected: - BOOL mOpen; - BOOL mConcave; - BOOL mDirty; - - S32 mTotalOut; - S32 mTotal; -}; - -//------------------------------------------------------------------- -// SWEEP/EXTRUDE PATHS -//------------------------------------------------------------------- - -class LLPath -{ -public: - struct PathPt - { - LLVector3 mPos; - LLVector2 mScale; - LLQuaternion mRot; - F32 mTexT; - PathPt() { mPos.setVec(0,0,0); mTexT = 0; mScale.setVec(0,0); mRot.loadIdentity(); } - }; - -public: - LLPath() - : mOpen(FALSE), - mTotal(0), - mDirty(TRUE), - mStep(1) - { - } - - virtual ~LLPath(); - - void genNGon(const LLPathParams& params, S32 sides, F32 offset=0.0f, F32 end_scale = 1.f, F32 twist_scale = 1.f); - virtual BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0, - BOOL is_sculpted = FALSE, S32 sculpt_size = 0); - - BOOL isOpen() const { return mOpen; } - F32 getStep() const { return mStep; } - void setDirty() { mDirty = TRUE; } - - S32 getPathLength() const { return (S32)mPath.size(); } - - void resizePath(S32 length) { mPath.resize(length); } - - friend std::ostream& operator<<(std::ostream &s, const LLPath &path); - -public: - std::vector<PathPt> mPath; - -protected: - BOOL mOpen; - S32 mTotal; - BOOL mDirty; - F32 mStep; -}; - -class LLDynamicPath : public LLPath -{ -public: - LLDynamicPath() : LLPath() { } - /*virtual*/ BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0, - BOOL is_sculpted = FALSE, S32 sculpt_size = 0); -}; - -// Yet another "face" class - caches volume-specific, but not instance-specific data for faces) -class LLVolumeFace -{ -public: +/**
+ * @file llvolume.h
+ * @brief LLVolume base class.
+ *
+ * $LicenseInfo:firstyear=2002&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2010, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#ifndef LL_LLVOLUME_H
+#define LL_LLVOLUME_H
+
+#include <iostream>
+
+class LLProfileParams;
+class LLPathParams;
+class LLVolumeParams;
+class LLProfile;
+class LLPath;
+
+template <class T> class LLOctreeNode;
+
+class LLVector4a;
+class LLVolumeFace;
+class LLVolume;
+class LLVolumeTriangle;
+
+#include "lldarray.h"
+#include "lluuid.h"
+#include "v4color.h"
+//#include "vmath.h"
+#include "v2math.h"
+#include "v3math.h"
+#include "v3dmath.h"
+#include "v4math.h"
+#include "llquaternion.h"
+#include "llstrider.h"
+#include "v4coloru.h"
+#include "llrefcount.h"
+#include "llfile.h"
+
+//============================================================================
+
+const S32 MIN_DETAIL_FACES = 6;
+const S32 MIN_LOD = 0;
+const S32 MAX_LOD = 3;
+
+// These are defined here but are not enforced at this level,
+// rather they are here for the convenience of code that uses
+// the LLVolume class.
+const F32 MIN_VOLUME_PROFILE_WIDTH = 0.05f;
+const F32 MIN_VOLUME_PATH_WIDTH = 0.05f;
+
+const F32 CUT_QUANTA = 0.00002f;
+const F32 SCALE_QUANTA = 0.01f;
+const F32 SHEAR_QUANTA = 0.01f;
+const F32 TAPER_QUANTA = 0.01f;
+const F32 REV_QUANTA = 0.015f;
+const F32 HOLLOW_QUANTA = 0.00002f;
+
+const S32 MAX_VOLUME_TRIANGLE_INDICES = 10000;
+
+//============================================================================
+
+// useful masks
+const LLPCode LL_PCODE_HOLLOW_MASK = 0x80; // has a thickness
+const LLPCode LL_PCODE_SEGMENT_MASK = 0x40; // segments (1 angle)
+const LLPCode LL_PCODE_PATCH_MASK = 0x20; // segmented segments (2 angles)
+const LLPCode LL_PCODE_HEMI_MASK = 0x10; // half-primitives get their own type per PR's dictum
+const LLPCode LL_PCODE_BASE_MASK = 0x0F;
+
+ // primitive shapes
+const LLPCode LL_PCODE_CUBE = 1;
+const LLPCode LL_PCODE_PRISM = 2;
+const LLPCode LL_PCODE_TETRAHEDRON = 3;
+const LLPCode LL_PCODE_PYRAMID = 4;
+const LLPCode LL_PCODE_CYLINDER = 5;
+const LLPCode LL_PCODE_CONE = 6;
+const LLPCode LL_PCODE_SPHERE = 7;
+const LLPCode LL_PCODE_TORUS = 8;
+const LLPCode LL_PCODE_VOLUME = 9;
+
+ // surfaces
+//const LLPCode LL_PCODE_SURFACE_TRIANGLE = 10;
+//const LLPCode LL_PCODE_SURFACE_SQUARE = 11;
+//const LLPCode LL_PCODE_SURFACE_DISC = 12;
+
+const LLPCode LL_PCODE_APP = 14; // App specific pcode (for viewer/sim side only objects)
+const LLPCode LL_PCODE_LEGACY = 15;
+
+// Pcodes for legacy objects
+//const LLPCode LL_PCODE_LEGACY_ATOR = 0x10 | LL_PCODE_LEGACY; // ATOR
+const LLPCode LL_PCODE_LEGACY_AVATAR = 0x20 | LL_PCODE_LEGACY; // PLAYER
+//const LLPCode LL_PCODE_LEGACY_BIRD = 0x30 | LL_PCODE_LEGACY; // BIRD
+//const LLPCode LL_PCODE_LEGACY_DEMON = 0x40 | LL_PCODE_LEGACY; // DEMON
+const LLPCode LL_PCODE_LEGACY_GRASS = 0x50 | LL_PCODE_LEGACY; // GRASS
+const LLPCode LL_PCODE_TREE_NEW = 0x60 | LL_PCODE_LEGACY; // new trees
+//const LLPCode LL_PCODE_LEGACY_ORACLE = 0x70 | LL_PCODE_LEGACY; // ORACLE
+const LLPCode LL_PCODE_LEGACY_PART_SYS = 0x80 | LL_PCODE_LEGACY; // PART_SYS
+const LLPCode LL_PCODE_LEGACY_ROCK = 0x90 | LL_PCODE_LEGACY; // ROCK
+//const LLPCode LL_PCODE_LEGACY_SHOT = 0xA0 | LL_PCODE_LEGACY; // BASIC_SHOT
+//const LLPCode LL_PCODE_LEGACY_SHOT_BIG = 0xB0 | LL_PCODE_LEGACY;
+//const LLPCode LL_PCODE_LEGACY_SMOKE = 0xC0 | LL_PCODE_LEGACY; // SMOKE
+//const LLPCode LL_PCODE_LEGACY_SPARK = 0xD0 | LL_PCODE_LEGACY;// SPARK
+const LLPCode LL_PCODE_LEGACY_TEXT_BUBBLE = 0xE0 | LL_PCODE_LEGACY; // TEXTBUBBLE
+const LLPCode LL_PCODE_LEGACY_TREE = 0xF0 | LL_PCODE_LEGACY; // TREE
+
+ // hemis
+const LLPCode LL_PCODE_CYLINDER_HEMI = LL_PCODE_CYLINDER | LL_PCODE_HEMI_MASK;
+const LLPCode LL_PCODE_CONE_HEMI = LL_PCODE_CONE | LL_PCODE_HEMI_MASK;
+const LLPCode LL_PCODE_SPHERE_HEMI = LL_PCODE_SPHERE | LL_PCODE_HEMI_MASK;
+const LLPCode LL_PCODE_TORUS_HEMI = LL_PCODE_TORUS | LL_PCODE_HEMI_MASK;
+
+
+// Volumes consist of a profile at the base that is swept around
+// a path to make a volume.
+// The profile code
+const U8 LL_PCODE_PROFILE_MASK = 0x0f;
+const U8 LL_PCODE_PROFILE_MIN = 0x00;
+const U8 LL_PCODE_PROFILE_CIRCLE = 0x00;
+const U8 LL_PCODE_PROFILE_SQUARE = 0x01;
+const U8 LL_PCODE_PROFILE_ISOTRI = 0x02;
+const U8 LL_PCODE_PROFILE_EQUALTRI = 0x03;
+const U8 LL_PCODE_PROFILE_RIGHTTRI = 0x04;
+const U8 LL_PCODE_PROFILE_CIRCLE_HALF = 0x05;
+const U8 LL_PCODE_PROFILE_MAX = 0x05;
+
+// Stored in the profile byte
+const U8 LL_PCODE_HOLE_MASK = 0xf0;
+const U8 LL_PCODE_HOLE_MIN = 0x00;
+const U8 LL_PCODE_HOLE_SAME = 0x00; // same as outside profile
+const U8 LL_PCODE_HOLE_CIRCLE = 0x10;
+const U8 LL_PCODE_HOLE_SQUARE = 0x20;
+const U8 LL_PCODE_HOLE_TRIANGLE = 0x30;
+const U8 LL_PCODE_HOLE_MAX = 0x03; // min/max needs to be >> 4 of real min/max
+
+const U8 LL_PCODE_PATH_IGNORE = 0x00;
+const U8 LL_PCODE_PATH_MIN = 0x01; // min/max needs to be >> 4 of real min/max
+const U8 LL_PCODE_PATH_LINE = 0x10;
+const U8 LL_PCODE_PATH_CIRCLE = 0x20;
+const U8 LL_PCODE_PATH_CIRCLE2 = 0x30;
+const U8 LL_PCODE_PATH_TEST = 0x40;
+const U8 LL_PCODE_PATH_FLEXIBLE = 0x80;
+const U8 LL_PCODE_PATH_MAX = 0x08;
+
+//============================================================================
+
+// face identifiers
+typedef U16 LLFaceID;
+
+const LLFaceID LL_FACE_PATH_BEGIN = 0x1 << 0;
+const LLFaceID LL_FACE_PATH_END = 0x1 << 1;
+const LLFaceID LL_FACE_INNER_SIDE = 0x1 << 2;
+const LLFaceID LL_FACE_PROFILE_BEGIN = 0x1 << 3;
+const LLFaceID LL_FACE_PROFILE_END = 0x1 << 4;
+const LLFaceID LL_FACE_OUTER_SIDE_0 = 0x1 << 5;
+const LLFaceID LL_FACE_OUTER_SIDE_1 = 0x1 << 6;
+const LLFaceID LL_FACE_OUTER_SIDE_2 = 0x1 << 7;
+const LLFaceID LL_FACE_OUTER_SIDE_3 = 0x1 << 8;
+
+//============================================================================
+
+// sculpt types + flags
+
+const U8 LL_SCULPT_TYPE_NONE = 0;
+const U8 LL_SCULPT_TYPE_SPHERE = 1;
+const U8 LL_SCULPT_TYPE_TORUS = 2;
+const U8 LL_SCULPT_TYPE_PLANE = 3;
+const U8 LL_SCULPT_TYPE_CYLINDER = 4;
+const U8 LL_SCULPT_TYPE_MESH = 5;
+const U8 LL_SCULPT_TYPE_MASK = LL_SCULPT_TYPE_SPHERE | LL_SCULPT_TYPE_TORUS | LL_SCULPT_TYPE_PLANE |
+ LL_SCULPT_TYPE_CYLINDER | LL_SCULPT_TYPE_MESH;
+
+const U8 LL_SCULPT_FLAG_INVERT = 64;
+const U8 LL_SCULPT_FLAG_MIRROR = 128;
+
+const S32 LL_SCULPT_MESH_MAX_FACES = 8;
+
+class LLProfileParams
+{
+public:
+ LLProfileParams()
+ : mCurveType(LL_PCODE_PROFILE_SQUARE),
+ mBegin(0.f),
+ mEnd(1.f),
+ mHollow(0.f),
+ mCRC(0)
+ {
+ }
+
+ LLProfileParams(U8 curve, F32 begin, F32 end, F32 hollow)
+ : mCurveType(curve),
+ mBegin(begin),
+ mEnd(end),
+ mHollow(hollow),
+ mCRC(0)
+ {
+ }
+
+ LLProfileParams(U8 curve, U16 begin, U16 end, U16 hollow)
+ {
+ mCurveType = curve;
+ F32 temp_f32 = begin * CUT_QUANTA;
+ if (temp_f32 > 1.f)
+ {
+ temp_f32 = 1.f;
+ }
+ mBegin = temp_f32;
+ temp_f32 = end * CUT_QUANTA;
+ if (temp_f32 > 1.f)
+ {
+ temp_f32 = 1.f;
+ }
+ mEnd = 1.f - temp_f32;
+ temp_f32 = hollow * HOLLOW_QUANTA;
+ if (temp_f32 > 1.f)
+ {
+ temp_f32 = 1.f;
+ }
+ mHollow = temp_f32;
+ mCRC = 0;
+ }
+
+ bool operator==(const LLProfileParams ¶ms) const;
+ bool operator!=(const LLProfileParams ¶ms) const;
+ bool operator<(const LLProfileParams ¶ms) const;
+
+ void copyParams(const LLProfileParams ¶ms);
+
+ BOOL importFile(LLFILE *fp);
+ BOOL exportFile(LLFILE *fp) const;
+
+ BOOL importLegacyStream(std::istream& input_stream);
+ BOOL exportLegacyStream(std::ostream& output_stream) const;
+
+ LLSD asLLSD() const;
+ operator LLSD() const { return asLLSD(); }
+ bool fromLLSD(LLSD& sd);
+
+ const F32& getBegin () const { return mBegin; }
+ const F32& getEnd () const { return mEnd; }
+ const F32& getHollow() const { return mHollow; }
+ const U8& getCurveType () const { return mCurveType; }
+
+ void setCurveType(const U32 type) { mCurveType = type;}
+ void setBegin(const F32 begin) { mBegin = (begin >= 1.0f) ? 0.0f : ((int) (begin * 100000))/100000.0f;}
+ void setEnd(const F32 end) { mEnd = (end <= 0.0f) ? 1.0f : ((int) (end * 100000))/100000.0f;}
+ void setHollow(const F32 hollow) { mHollow = ((int) (hollow * 100000))/100000.0f;}
+
+ friend std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params);
+
+protected:
+ // Profile params
+ U8 mCurveType;
+ F32 mBegin;
+ F32 mEnd;
+ F32 mHollow;
+
+ U32 mCRC;
+};
+
+inline bool LLProfileParams::operator==(const LLProfileParams ¶ms) const
+{
+ return
+ (getCurveType() == params.getCurveType()) &&
+ (getBegin() == params.getBegin()) &&
+ (getEnd() == params.getEnd()) &&
+ (getHollow() == params.getHollow());
+}
+
+inline bool LLProfileParams::operator!=(const LLProfileParams ¶ms) const
+{
+ return
+ (getCurveType() != params.getCurveType()) ||
+ (getBegin() != params.getBegin()) ||
+ (getEnd() != params.getEnd()) ||
+ (getHollow() != params.getHollow());
+}
+
+
+inline bool LLProfileParams::operator<(const LLProfileParams ¶ms) const
+{
+ if (getCurveType() != params.getCurveType())
+ {
+ return getCurveType() < params.getCurveType();
+ }
+ else
+ if (getBegin() != params.getBegin())
+ {
+ return getBegin() < params.getBegin();
+ }
+ else
+ if (getEnd() != params.getEnd())
+ {
+ return getEnd() < params.getEnd();
+ }
+ else
+ {
+ return getHollow() < params.getHollow();
+ }
+}
+
+#define U8_TO_F32(x) (F32)(*((S8 *)&x))
+
+class LLPathParams
+{
+public:
+ LLPathParams()
+ :
+ mCurveType(LL_PCODE_PATH_LINE),
+ mBegin(0.f),
+ mEnd(1.f),
+ mScale(1.f,1.f),
+ mShear(0.f,0.f),
+ mTwistBegin(0.f),
+ mTwistEnd(0.f),
+ mRadiusOffset(0.f),
+ mTaper(0.f,0.f),
+ mRevolutions(1.f),
+ mSkew(0.f),
+ mCRC(0)
+ {
+ }
+
+ LLPathParams(U8 curve, F32 begin, F32 end, F32 scx, F32 scy, F32 shx, F32 shy, F32 twistend, F32 twistbegin, F32 radiusoffset, F32 tx, F32 ty, F32 revolutions, F32 skew)
+ : mCurveType(curve),
+ mBegin(begin),
+ mEnd(end),
+ mScale(scx,scy),
+ mShear(shx,shy),
+ mTwistBegin(twistbegin),
+ mTwistEnd(twistend),
+ mRadiusOffset(radiusoffset),
+ mTaper(tx,ty),
+ mRevolutions(revolutions),
+ mSkew(skew),
+ mCRC(0)
+ {
+ }
+
+ LLPathParams(U8 curve, U16 begin, U16 end, U8 scx, U8 scy, U8 shx, U8 shy, U8 twistend, U8 twistbegin, U8 radiusoffset, U8 tx, U8 ty, U8 revolutions, U8 skew)
+ {
+ mCurveType = curve;
+ mBegin = (F32)(begin * CUT_QUANTA);
+ mEnd = (F32)(100.f - end) * CUT_QUANTA;
+ if (mEnd > 1.f)
+ mEnd = 1.f;
+ mScale.setVec((F32) (200 - scx) * SCALE_QUANTA,(F32) (200 - scy) * SCALE_QUANTA);
+ mShear.setVec(U8_TO_F32(shx) * SHEAR_QUANTA,U8_TO_F32(shy) * SHEAR_QUANTA);
+ mTwistBegin = U8_TO_F32(twistbegin) * SCALE_QUANTA;
+ mTwistEnd = U8_TO_F32(twistend) * SCALE_QUANTA;
+ mRadiusOffset = U8_TO_F32(radiusoffset) * SCALE_QUANTA;
+ mTaper.setVec(U8_TO_F32(tx) * TAPER_QUANTA,U8_TO_F32(ty) * TAPER_QUANTA);
+ mRevolutions = ((F32)revolutions) * REV_QUANTA + 1.0f;
+ mSkew = U8_TO_F32(skew) * SCALE_QUANTA;
+
+ mCRC = 0;
+ }
+
+ bool operator==(const LLPathParams ¶ms) const;
+ bool operator!=(const LLPathParams ¶ms) const;
+ bool operator<(const LLPathParams ¶ms) const;
+
+ void copyParams(const LLPathParams ¶ms);
+
+ BOOL importFile(LLFILE *fp);
+ BOOL exportFile(LLFILE *fp) const;
+
+ BOOL importLegacyStream(std::istream& input_stream);
+ BOOL exportLegacyStream(std::ostream& output_stream) const;
+
+ LLSD asLLSD() const;
+ operator LLSD() const { return asLLSD(); }
+ bool fromLLSD(LLSD& sd);
+
+ const F32& getBegin() const { return mBegin; }
+ const F32& getEnd() const { return mEnd; }
+ const LLVector2 &getScale() const { return mScale; }
+ const F32& getScaleX() const { return mScale.mV[0]; }
+ const F32& getScaleY() const { return mScale.mV[1]; }
+ const LLVector2 getBeginScale() const;
+ const LLVector2 getEndScale() const;
+ const LLVector2 &getShear() const { return mShear; }
+ const F32& getShearX() const { return mShear.mV[0]; }
+ const F32& getShearY() const { return mShear.mV[1]; }
+ const U8& getCurveType () const { return mCurveType; }
+
+ const F32& getTwistBegin() const { return mTwistBegin; }
+ const F32& getTwistEnd() const { return mTwistEnd; }
+ const F32& getTwist() const { return mTwistEnd; } // deprecated
+ const F32& getRadiusOffset() const { return mRadiusOffset; }
+ const LLVector2 &getTaper() const { return mTaper; }
+ const F32& getTaperX() const { return mTaper.mV[0]; }
+ const F32& getTaperY() const { return mTaper.mV[1]; }
+ const F32& getRevolutions() const { return mRevolutions; }
+ const F32& getSkew() const { return mSkew; }
+
+ void setCurveType(const U8 type) { mCurveType = type; }
+ void setBegin(const F32 begin) { mBegin = begin; }
+ void setEnd(const F32 end) { mEnd = end; }
+
+ void setScale(const F32 x, const F32 y) { mScale.setVec(x,y); }
+ void setScaleX(const F32 v) { mScale.mV[VX] = v; }
+ void setScaleY(const F32 v) { mScale.mV[VY] = v; }
+ void setShear(const F32 x, const F32 y) { mShear.setVec(x,y); }
+ void setShearX(const F32 v) { mShear.mV[VX] = v; }
+ void setShearY(const F32 v) { mShear.mV[VY] = v; }
+
+ void setTwistBegin(const F32 twist_begin) { mTwistBegin = twist_begin; }
+ void setTwistEnd(const F32 twist_end) { mTwistEnd = twist_end; }
+ void setTwist(const F32 twist) { setTwistEnd(twist); } // deprecated
+ void setRadiusOffset(const F32 radius_offset){ mRadiusOffset = radius_offset; }
+ void setTaper(const F32 x, const F32 y) { mTaper.setVec(x,y); }
+ void setTaperX(const F32 v) { mTaper.mV[VX] = v; }
+ void setTaperY(const F32 v) { mTaper.mV[VY] = v; }
+ void setRevolutions(const F32 revolutions) { mRevolutions = revolutions; }
+ void setSkew(const F32 skew) { mSkew = skew; }
+
+ friend std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params);
+
+protected:
+ // Path params
+ U8 mCurveType;
+ F32 mBegin;
+ F32 mEnd;
+ LLVector2 mScale;
+ LLVector2 mShear;
+
+ F32 mTwistBegin;
+ F32 mTwistEnd;
+ F32 mRadiusOffset;
+ LLVector2 mTaper;
+ F32 mRevolutions;
+ F32 mSkew;
+
+ U32 mCRC;
+};
+
+inline bool LLPathParams::operator==(const LLPathParams ¶ms) const
+{
+ return
+ (getCurveType() == params.getCurveType()) &&
+ (getScale() == params.getScale()) &&
+ (getBegin() == params.getBegin()) &&
+ (getEnd() == params.getEnd()) &&
+ (getShear() == params.getShear()) &&
+ (getTwist() == params.getTwist()) &&
+ (getTwistBegin() == params.getTwistBegin()) &&
+ (getRadiusOffset() == params.getRadiusOffset()) &&
+ (getTaper() == params.getTaper()) &&
+ (getRevolutions() == params.getRevolutions()) &&
+ (getSkew() == params.getSkew());
+}
+
+inline bool LLPathParams::operator!=(const LLPathParams ¶ms) const
+{
+ return
+ (getCurveType() != params.getCurveType()) ||
+ (getScale() != params.getScale()) ||
+ (getBegin() != params.getBegin()) ||
+ (getEnd() != params.getEnd()) ||
+ (getShear() != params.getShear()) ||
+ (getTwist() != params.getTwist()) ||
+ (getTwistBegin() !=params.getTwistBegin()) ||
+ (getRadiusOffset() != params.getRadiusOffset()) ||
+ (getTaper() != params.getTaper()) ||
+ (getRevolutions() != params.getRevolutions()) ||
+ (getSkew() != params.getSkew());
+}
+
+
+inline bool LLPathParams::operator<(const LLPathParams ¶ms) const
+{
+ if( getCurveType() != params.getCurveType())
+ {
+ return getCurveType() < params.getCurveType();
+ }
+ else
+ if( getScale() != params.getScale())
+ {
+ return getScale() < params.getScale();
+ }
+ else
+ if( getBegin() != params.getBegin())
+ {
+ return getBegin() < params.getBegin();
+ }
+ else
+ if( getEnd() != params.getEnd())
+ {
+ return getEnd() < params.getEnd();
+ }
+ else
+ if( getShear() != params.getShear())
+ {
+ return getShear() < params.getShear();
+ }
+ else
+ if( getTwist() != params.getTwist())
+ {
+ return getTwist() < params.getTwist();
+ }
+ else
+ if( getTwistBegin() != params.getTwistBegin())
+ {
+ return getTwistBegin() < params.getTwistBegin();
+ }
+ else
+ if( getRadiusOffset() != params.getRadiusOffset())
+ {
+ return getRadiusOffset() < params.getRadiusOffset();
+ }
+ else
+ if( getTaper() != params.getTaper())
+ {
+ return getTaper() < params.getTaper();
+ }
+ else
+ if( getRevolutions() != params.getRevolutions())
+ {
+ return getRevolutions() < params.getRevolutions();
+ }
+ else
+ {
+ return getSkew() < params.getSkew();
+ }
+}
+
+typedef LLVolumeParams* LLVolumeParamsPtr;
+typedef const LLVolumeParams* const_LLVolumeParamsPtr;
+
+class LLVolumeParams
+{
+public:
+ LLVolumeParams()
+ : mSculptType(LL_SCULPT_TYPE_NONE)
+ {
+ }
+
+ LLVolumeParams(LLProfileParams &profile, LLPathParams &path,
+ LLUUID sculpt_id = LLUUID::null, U8 sculpt_type = LL_SCULPT_TYPE_NONE)
+ : mProfileParams(profile), mPathParams(path), mSculptID(sculpt_id), mSculptType(sculpt_type)
+ {
+ }
+
+ bool operator==(const LLVolumeParams ¶ms) const;
+ bool operator!=(const LLVolumeParams ¶ms) const;
+ bool operator<(const LLVolumeParams ¶ms) const;
+
+
+ void copyParams(const LLVolumeParams ¶ms);
+
+ const LLProfileParams &getProfileParams() const {return mProfileParams;}
+ LLProfileParams &getProfileParams() {return mProfileParams;}
+ const LLPathParams &getPathParams() const {return mPathParams;}
+ LLPathParams &getPathParams() {return mPathParams;}
+
+ BOOL importFile(LLFILE *fp);
+ BOOL exportFile(LLFILE *fp) const;
+
+ BOOL importLegacyStream(std::istream& input_stream);
+ BOOL exportLegacyStream(std::ostream& output_stream) const;
+
+ LLSD sculptAsLLSD() const;
+ bool sculptFromLLSD(LLSD& sd);
+
+ LLSD asLLSD() const;
+ operator LLSD() const { return asLLSD(); }
+ bool fromLLSD(LLSD& sd);
+
+ bool setType(U8 profile, U8 path);
+
+ //void setBeginS(const F32 beginS) { mProfileParams.setBegin(beginS); } // range 0 to 1
+ //void setBeginT(const F32 beginT) { mPathParams.setBegin(beginT); } // range 0 to 1
+ //void setEndS(const F32 endS) { mProfileParams.setEnd(endS); } // range 0 to 1, must be greater than begin
+ //void setEndT(const F32 endT) { mPathParams.setEnd(endT); } // range 0 to 1, must be greater than begin
+
+ bool setBeginAndEndS(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end
+ bool setBeginAndEndT(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end
+
+ bool setHollow(const F32 hollow); // range 0 to 1
+ bool setRatio(const F32 x) { return setRatio(x,x); } // 0 = point, 1 = same as base
+ bool setShear(const F32 x) { return setShear(x,x); } // 0 = no movement,
+ bool setRatio(const F32 x, const F32 y); // 0 = point, 1 = same as base
+ bool setShear(const F32 x, const F32 y); // 0 = no movement
+
+ bool setTwistBegin(const F32 twist_begin); // range -1 to 1
+ bool setTwistEnd(const F32 twist_end); // range -1 to 1
+ bool setTwist(const F32 twist) { return setTwistEnd(twist); } // deprecated
+ bool setTaper(const F32 x, const F32 y) { bool pass_x = setTaperX(x); bool pass_y = setTaperY(y); return pass_x && pass_y; }
+ bool setTaperX(const F32 v); // -1 to 1
+ bool setTaperY(const F32 v); // -1 to 1
+ bool setRevolutions(const F32 revolutions); // 1 to 4
+ bool setRadiusOffset(const F32 radius_offset);
+ bool setSkew(const F32 skew);
+ bool setSculptID(const LLUUID sculpt_id, U8 sculpt_type);
+
+ static bool validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow,
+ U8 path_curve, F32 path_begin, F32 path_end,
+ F32 scx, F32 scy, F32 shx, F32 shy,
+ F32 twistend, F32 twistbegin, F32 radiusoffset,
+ F32 tx, F32 ty, F32 revolutions, F32 skew);
+
+ const F32& getBeginS() const { return mProfileParams.getBegin(); }
+ const F32& getBeginT() const { return mPathParams.getBegin(); }
+ const F32& getEndS() const { return mProfileParams.getEnd(); }
+ const F32& getEndT() const { return mPathParams.getEnd(); }
+
+ const F32& getHollow() const { return mProfileParams.getHollow(); }
+ const F32& getTwist() const { return mPathParams.getTwist(); }
+ const F32& getRatio() const { return mPathParams.getScaleX(); }
+ const F32& getRatioX() const { return mPathParams.getScaleX(); }
+ const F32& getRatioY() const { return mPathParams.getScaleY(); }
+ const F32& getShearX() const { return mPathParams.getShearX(); }
+ const F32& getShearY() const { return mPathParams.getShearY(); }
+
+ const F32& getTwistBegin()const { return mPathParams.getTwistBegin(); }
+ const F32& getRadiusOffset() const { return mPathParams.getRadiusOffset(); }
+ const F32& getTaper() const { return mPathParams.getTaperX(); }
+ const F32& getTaperX() const { return mPathParams.getTaperX(); }
+ const F32& getTaperY() const { return mPathParams.getTaperY(); }
+ const F32& getRevolutions() const { return mPathParams.getRevolutions(); }
+ const F32& getSkew() const { return mPathParams.getSkew(); }
+ const LLUUID& getSculptID() const { return mSculptID; }
+ const U8& getSculptType() const { return mSculptType; }
+ bool isSculpt() const;
+ bool isMeshSculpt() const;
+ BOOL isConvex() const;
+
+ // 'begin' and 'end' should be in range [0, 1] (they will be clamped)
+ // (begin, end) = (0, 1) will not change the volume
+ // (begin, end) = (0, 0.5) will reduce the volume to the first half of its profile/path (S/T)
+ void reduceS(F32 begin, F32 end);
+ void reduceT(F32 begin, F32 end);
+
+ struct compare
+ {
+ bool operator()( const const_LLVolumeParamsPtr& first, const const_LLVolumeParamsPtr& second) const
+ {
+ return (*first < *second);
+ }
+ };
+
+ friend std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params);
+
+ // debug helper functions
+ void setCube();
+
+protected:
+ LLProfileParams mProfileParams;
+ LLPathParams mPathParams;
+ LLUUID mSculptID;
+ U8 mSculptType;
+};
+
+
+class LLProfile
+{
+public:
+ LLProfile()
+ : mOpen(FALSE),
+ mConcave(FALSE),
+ mDirty(TRUE),
+ mTotalOut(0),
+ mTotal(2)
+ {
+ }
+
+ ~LLProfile();
+
+ S32 getTotal() const { return mTotal; }
+ S32 getTotalOut() const { return mTotalOut; } // Total number of outside points
+ BOOL isFlat(S32 face) const { return (mFaces[face].mCount == 2); }
+ BOOL isOpen() const { return mOpen; }
+ void setDirty() { mDirty = TRUE; }
+ BOOL generate(const LLProfileParams& params, BOOL path_open, F32 detail = 1.0f, S32 split = 0,
+ BOOL is_sculpted = FALSE, S32 sculpt_size = 0);
+ BOOL isConcave() const { return mConcave; }
+public:
+ struct Face
+ {
+ S32 mIndex;
+ S32 mCount;
+ F32 mScaleU;
+ BOOL mCap;
+ BOOL mFlat;
+ LLFaceID mFaceID;
+ };
+
+ std::vector<LLVector3> mProfile;
+ std::vector<LLVector2> mNormals;
+ std::vector<Face> mFaces;
+ std::vector<LLVector3> mEdgeNormals;
+ std::vector<LLVector3> mEdgeCenters;
+
+ friend std::ostream& operator<<(std::ostream &s, const LLProfile &profile);
+
+protected:
+ void genNormals(const LLProfileParams& params);
+ void genNGon(const LLProfileParams& params, S32 sides, F32 offset=0.0f, F32 bevel = 0.0f, F32 ang_scale = 1.f, S32 split = 0);
+
+ Face* addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split = 0);
+ Face* addCap (S16 faceID);
+ Face* addFace(S32 index, S32 count, F32 scaleU, S16 faceID, BOOL flat);
+
+protected:
+ BOOL mOpen;
+ BOOL mConcave;
+ BOOL mDirty;
+
+ S32 mTotalOut;
+ S32 mTotal;
+};
+
+//-------------------------------------------------------------------
+// SWEEP/EXTRUDE PATHS
+//-------------------------------------------------------------------
+
+class LLPath
+{
+public:
+ struct PathPt
+ {
+ LLVector3 mPos;
+ LLVector2 mScale;
+ LLQuaternion mRot;
+ F32 mTexT;
+ PathPt() { mPos.setVec(0,0,0); mTexT = 0; mScale.setVec(0,0); mRot.loadIdentity(); }
+ };
+
+public:
+ LLPath()
+ : mOpen(FALSE),
+ mTotal(0),
+ mDirty(TRUE),
+ mStep(1)
+ {
+ }
+
+ virtual ~LLPath();
+
+ void genNGon(const LLPathParams& params, S32 sides, F32 offset=0.0f, F32 end_scale = 1.f, F32 twist_scale = 1.f);
+ virtual BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0,
+ BOOL is_sculpted = FALSE, S32 sculpt_size = 0);
+
+ BOOL isOpen() const { return mOpen; }
+ F32 getStep() const { return mStep; }
+ void setDirty() { mDirty = TRUE; }
+
+ S32 getPathLength() const { return (S32)mPath.size(); }
+
+ void resizePath(S32 length) { mPath.resize(length); }
+
+ friend std::ostream& operator<<(std::ostream &s, const LLPath &path);
+
+public:
+ std::vector<PathPt> mPath;
+
+protected:
+ BOOL mOpen;
+ S32 mTotal;
+ BOOL mDirty;
+ F32 mStep;
+};
+
+class LLDynamicPath : public LLPath
+{
+public:
+ LLDynamicPath() : LLPath() { }
+ /*virtual*/ BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0,
+ BOOL is_sculpted = FALSE, S32 sculpt_size = 0);
+};
+
+// Yet another "face" class - caches volume-specific, but not instance-specific data for faces)
+class LLVolumeFace
+{
+public:
class VertexData
{
enum
@@ -825,281 +825,282 @@ public: private:
LLVector4a* mData;
};
- - LLVolumeFace(); - LLVolumeFace(const LLVolumeFace& src); - LLVolumeFace& operator=(const LLVolumeFace& rhs); - - ~LLVolumeFace(); -private: - void freeData(); -public: - - BOOL create(LLVolume* volume, BOOL partial_build = FALSE); - void createBinormals(); - - void appendFace(const LLVolumeFace& face, LLMatrix4& transform, LLMatrix4& normal_tranform); - - void resizeVertices(S32 num_verts); - void allocateBinormals(S32 num_verts); - void allocateWeights(S32 num_verts); - void resizeIndices(S32 num_indices); - void fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx); - - void pushVertex(const VertexData& cv); - void pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc); - void pushIndex(const U16& idx); - - void swapData(LLVolumeFace& rhs); - - void getVertexData(U16 indx, LLVolumeFace::VertexData& cv); - - class VertexMapData : public LLVolumeFace::VertexData - { - public: - U16 mIndex; - - bool operator==(const LLVolumeFace::VertexData& rhs) const; - - struct ComparePosition - { - bool operator()(const LLVector3& a, const LLVector3& b) const; - }; - - typedef std::map<LLVector3, std::vector<VertexMapData>, VertexMapData::ComparePosition > PointMap; - }; - - void optimize(F32 angle_cutoff = 2.f); - void cacheOptimize(); - - void createOctree(F32 scaler = 0.25f, const LLVector4a& center = LLVector4a(0,0,0), const LLVector4a& size = LLVector4a(0.5f,0.5f,0.5f)); - - enum - { - SINGLE_MASK = 0x0001, - CAP_MASK = 0x0002, - END_MASK = 0x0004, - SIDE_MASK = 0x0008, - INNER_MASK = 0x0010, - OUTER_MASK = 0x0020, - HOLLOW_MASK = 0x0040, - OPEN_MASK = 0x0080, - FLAT_MASK = 0x0100, - TOP_MASK = 0x0200, - BOTTOM_MASK = 0x0400 - }; - -public: - S32 mID; - U32 mTypeMask; - - // Only used for INNER/OUTER faces - S32 mBeginS; - S32 mBeginT; - S32 mNumS; - S32 mNumT; - - LLVector4a* mExtents; //minimum and maximum point of face - LLVector4a* mCenter; - - S32 mNumVertices; - S32 mNumIndices; - - LLVector4a* mPositions; - LLVector4a* mNormals; - LLVector4a* mBinormals; - LLVector2* mTexCoords; - U16* mIndices; - - std::vector<S32> mEdge; - - //list of skin weights for rigged volumes - // format is mWeights[vertex_index].mV[influence] = <joint_index>.<weight> - // mWeights.size() should be empty or match mVertices.size() - LLVector4a* mWeights; - - LLOctreeNode<LLVolumeTriangle>* mOctree; - -private: - BOOL createUnCutCubeCap(LLVolume* volume, BOOL partial_build = FALSE); - BOOL createCap(LLVolume* volume, BOOL partial_build = FALSE); - BOOL createSide(LLVolume* volume, BOOL partial_build = FALSE); -}; - -class LLVolume : public LLRefCount -{ - friend class LLVolumeLODGroup; - -protected: - ~LLVolume(); // use unref - -public: - struct Point - { - LLVector3 mPos; - }; - - struct FaceParams - { - LLFaceID mFaceID; - S32 mBeginS; - S32 mCountS; - S32 mBeginT; - S32 mCountT; - }; - - LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face = FALSE, const BOOL is_unique = FALSE); - - U8 getProfileType() const { return mParams.getProfileParams().getCurveType(); } - U8 getPathType() const { return mParams.getPathParams().getCurveType(); } - S32 getNumFaces() const; - S32 getNumVolumeFaces() const { return mVolumeFaces.size(); } - F32 getDetail() const { return mDetail; } - const LLVolumeParams& getParams() const { return mParams; } - LLVolumeParams getCopyOfParams() const { return mParams; } - const LLProfile& getProfile() const { return *mProfilep; } - LLPath& getPath() const { return *mPathp; } - void resizePath(S32 length); - const std::vector<Point>& getMesh() const { return mMesh; } - const LLVector3& getMeshPt(const U32 i) const { return mMesh[i].mPos; } - - void setDirty() { mPathp->setDirty(); mProfilep->setDirty(); } - - void regen(); - void genBinormals(S32 face); - - BOOL isConvex() const; - BOOL isCap(S32 face); - BOOL isFlat(S32 face); - BOOL isUnique() const { return mUnique; } - - S32 getSculptLevel() const { return mSculptLevel; } - void setSculptLevel(S32 level) { mSculptLevel = level; } - - S32 *getTriangleIndices(U32 &num_indices) const; - - // returns number of triangle indeces required for path/profile mesh - S32 getNumTriangleIndices() const; - - S32 getNumTriangles() const; - - void generateSilhouetteVertices(std::vector<LLVector3> &vertices, - std::vector<LLVector3> &normals, - std::vector<S32> &segments, - const LLVector3& view_vec, - const LLMatrix4& mat, - const LLMatrix3& norm_mat, - S32 face_index); - - //get the face index of the face that intersects with the given line segment at the point - //closest to start. Moves end to the point of intersection. Returns -1 if no intersection. - //Line segment must be in volume space. - S32 lineSegmentIntersect(const LLVector3& start, const LLVector3& end, - S32 face = -1, // which face to check, -1 = ALL_SIDES - LLVector3* intersection = NULL, // return the intersection point - LLVector2* tex_coord = NULL, // return the texture coordinates of the intersection point - LLVector3* normal = NULL, // return the surface normal at the intersection point - LLVector3* bi_normal = NULL // return the surface bi-normal at the intersection point - ); - - S32 lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, - S32 face = 1, - LLVector3* intersection = NULL, - LLVector2* tex_coord = NULL, - LLVector3* normal = NULL, - LLVector3* bi_normal = NULL); - - // The following cleans up vertices and triangles, - // getting rid of degenerate triangles and duplicate vertices, - // and allocates new arrays with the clean data. - static BOOL cleanupTriangleData( const S32 num_input_vertices, - const std::vector<Point> &input_vertices, - const S32 num_input_triangles, - S32 *input_triangles, - S32 &num_output_vertices, - LLVector3 **output_vertices, - S32 &num_output_triangles, - S32 **output_triangles); - LLFaceID generateFaceMask(); - - BOOL isFaceMaskValid(LLFaceID face_mask); - static S32 sNumMeshPoints; - - friend std::ostream& operator<<(std::ostream &s, const LLVolume &volume); - friend std::ostream& operator<<(std::ostream &s, const LLVolume *volumep); // HACK to bypass Windoze confusion over - // conversion if *(LLVolume*) to LLVolume& - const LLVolumeFace &getVolumeFace(const S32 f) const {return mVolumeFaces[f];} // DO NOT DELETE VOLUME WHILE USING THIS REFERENCE, OR HOLD A POINTER TO THIS VOLUMEFACE - - U32 mFaceMask; // bit array of which faces exist in this volume - LLVector3 mLODScaleBias; // vector for biasing LOD based on scale - - void sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level); - void copyVolumeFaces(const LLVolume* volume); - void cacheOptimize(); - -private: - void sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type); - F32 sculptGetSurfaceArea(); - void sculptGeneratePlaceholder(); - void sculptCalcMeshResolution(U16 width, U16 height, U8 type, S32& s, S32& t); - - -protected: - BOOL generate(); - void createVolumeFaces(); -public: - virtual BOOL createVolumeFacesFromFile(const std::string& file_name); - virtual BOOL createVolumeFacesFromStream(std::istream& is); - virtual bool unpackVolumeFaces(std::istream& is, S32 size); - - virtual void makeTetrahedron(); - virtual BOOL isTetrahedron(); - - protected: - BOOL mUnique; - F32 mDetail; - S32 mSculptLevel; - BOOL mIsTetrahedron; - - LLVolumeParams mParams; - LLPath *mPathp; - LLProfile *mProfilep; - std::vector<Point> mMesh; - - BOOL mGenerateSingleFace; - typedef std::vector<LLVolumeFace> face_list_t; - face_list_t mVolumeFaces; - -public: - LLVector4a* mHullPoints; - U16* mHullIndices; - S32 mNumHullPoints; - S32 mNumHullIndices; -}; - -std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params); - -void calc_binormal_from_triangle( - LLVector4a& binormal, - const LLVector4a& pos0, - const LLVector2& tex0, - const LLVector4a& pos1, - const LLVector2& tex1, - const LLVector4a& pos2, - const LLVector2& tex2); - -BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size); -BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size); -BOOL LLLineSegmentBoxIntersect(const LLVector4a& start, const LLVector4a& end, const LLVector4a& center, const LLVector4a& size); - -BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided); - -BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t); -BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t); - - - -#endif +
+ LLVolumeFace();
+ LLVolumeFace(const LLVolumeFace& src);
+ LLVolumeFace& operator=(const LLVolumeFace& rhs);
+
+ ~LLVolumeFace();
+private:
+ void freeData();
+public:
+
+ BOOL create(LLVolume* volume, BOOL partial_build = FALSE);
+ void createBinormals();
+
+ void appendFace(const LLVolumeFace& face, LLMatrix4& transform, LLMatrix4& normal_tranform);
+
+ void resizeVertices(S32 num_verts);
+ void allocateBinormals(S32 num_verts);
+ void allocateWeights(S32 num_verts);
+ void resizeIndices(S32 num_indices);
+ void fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx);
+
+ void pushVertex(const VertexData& cv);
+ void pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc);
+ void pushIndex(const U16& idx);
+
+ void swapData(LLVolumeFace& rhs);
+
+ void getVertexData(U16 indx, LLVolumeFace::VertexData& cv);
+
+ class VertexMapData : public LLVolumeFace::VertexData
+ {
+ public:
+ U16 mIndex;
+
+ bool operator==(const LLVolumeFace::VertexData& rhs) const;
+
+ struct ComparePosition
+ {
+ bool operator()(const LLVector3& a, const LLVector3& b) const;
+ };
+
+ typedef std::map<LLVector3, std::vector<VertexMapData>, VertexMapData::ComparePosition > PointMap;
+ };
+
+ void optimize(F32 angle_cutoff = 2.f);
+ void cacheOptimize();
+
+ void createOctree(F32 scaler = 0.25f, const LLVector4a& center = LLVector4a(0,0,0), const LLVector4a& size = LLVector4a(0.5f,0.5f,0.5f));
+
+ enum
+ {
+ SINGLE_MASK = 0x0001,
+ CAP_MASK = 0x0002,
+ END_MASK = 0x0004,
+ SIDE_MASK = 0x0008,
+ INNER_MASK = 0x0010,
+ OUTER_MASK = 0x0020,
+ HOLLOW_MASK = 0x0040,
+ OPEN_MASK = 0x0080,
+ FLAT_MASK = 0x0100,
+ TOP_MASK = 0x0200,
+ BOTTOM_MASK = 0x0400
+ };
+
+public:
+ S32 mID;
+ U32 mTypeMask;
+
+ // Only used for INNER/OUTER faces
+ S32 mBeginS;
+ S32 mBeginT;
+ S32 mNumS;
+ S32 mNumT;
+
+ LLVector4a* mExtents; //minimum and maximum point of face
+ LLVector4a* mCenter;
+ LLVector2 mTexCoordExtents[2]; //minimum and maximum of texture coordinates of the face.
+
+ S32 mNumVertices;
+ S32 mNumIndices;
+
+ LLVector4a* mPositions;
+ LLVector4a* mNormals;
+ LLVector4a* mBinormals;
+ LLVector2* mTexCoords;
+ U16* mIndices;
+
+ std::vector<S32> mEdge;
+
+ //list of skin weights for rigged volumes
+ // format is mWeights[vertex_index].mV[influence] = <joint_index>.<weight>
+ // mWeights.size() should be empty or match mVertices.size()
+ LLVector4a* mWeights;
+
+ LLOctreeNode<LLVolumeTriangle>* mOctree;
+
+private:
+ BOOL createUnCutCubeCap(LLVolume* volume, BOOL partial_build = FALSE);
+ BOOL createCap(LLVolume* volume, BOOL partial_build = FALSE);
+ BOOL createSide(LLVolume* volume, BOOL partial_build = FALSE);
+};
+
+class LLVolume : public LLRefCount
+{
+ friend class LLVolumeLODGroup;
+
+protected:
+ ~LLVolume(); // use unref
+
+public:
+ struct Point
+ {
+ LLVector3 mPos;
+ };
+
+ struct FaceParams
+ {
+ LLFaceID mFaceID;
+ S32 mBeginS;
+ S32 mCountS;
+ S32 mBeginT;
+ S32 mCountT;
+ };
+
+ LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face = FALSE, const BOOL is_unique = FALSE);
+
+ U8 getProfileType() const { return mParams.getProfileParams().getCurveType(); }
+ U8 getPathType() const { return mParams.getPathParams().getCurveType(); }
+ S32 getNumFaces() const;
+ S32 getNumVolumeFaces() const { return mVolumeFaces.size(); }
+ F32 getDetail() const { return mDetail; }
+ const LLVolumeParams& getParams() const { return mParams; }
+ LLVolumeParams getCopyOfParams() const { return mParams; }
+ const LLProfile& getProfile() const { return *mProfilep; }
+ LLPath& getPath() const { return *mPathp; }
+ void resizePath(S32 length);
+ const std::vector<Point>& getMesh() const { return mMesh; }
+ const LLVector3& getMeshPt(const U32 i) const { return mMesh[i].mPos; }
+
+ void setDirty() { mPathp->setDirty(); mProfilep->setDirty(); }
+
+ void regen();
+ void genBinormals(S32 face);
+
+ BOOL isConvex() const;
+ BOOL isCap(S32 face);
+ BOOL isFlat(S32 face);
+ BOOL isUnique() const { return mUnique; }
+
+ S32 getSculptLevel() const { return mSculptLevel; }
+ void setSculptLevel(S32 level) { mSculptLevel = level; }
+
+ S32 *getTriangleIndices(U32 &num_indices) const;
+
+ // returns number of triangle indeces required for path/profile mesh
+ S32 getNumTriangleIndices() const;
+
+ S32 getNumTriangles() const;
+
+ void generateSilhouetteVertices(std::vector<LLVector3> &vertices,
+ std::vector<LLVector3> &normals,
+ std::vector<S32> &segments,
+ const LLVector3& view_vec,
+ const LLMatrix4& mat,
+ const LLMatrix3& norm_mat,
+ S32 face_index);
+
+ //get the face index of the face that intersects with the given line segment at the point
+ //closest to start. Moves end to the point of intersection. Returns -1 if no intersection.
+ //Line segment must be in volume space.
+ S32 lineSegmentIntersect(const LLVector3& start, const LLVector3& end,
+ S32 face = -1, // which face to check, -1 = ALL_SIDES
+ LLVector3* intersection = NULL, // return the intersection point
+ LLVector2* tex_coord = NULL, // return the texture coordinates of the intersection point
+ LLVector3* normal = NULL, // return the surface normal at the intersection point
+ LLVector3* bi_normal = NULL // return the surface bi-normal at the intersection point
+ );
+
+ S32 lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
+ S32 face = 1,
+ LLVector3* intersection = NULL,
+ LLVector2* tex_coord = NULL,
+ LLVector3* normal = NULL,
+ LLVector3* bi_normal = NULL);
+
+ // The following cleans up vertices and triangles,
+ // getting rid of degenerate triangles and duplicate vertices,
+ // and allocates new arrays with the clean data.
+ static BOOL cleanupTriangleData( const S32 num_input_vertices,
+ const std::vector<Point> &input_vertices,
+ const S32 num_input_triangles,
+ S32 *input_triangles,
+ S32 &num_output_vertices,
+ LLVector3 **output_vertices,
+ S32 &num_output_triangles,
+ S32 **output_triangles);
+ LLFaceID generateFaceMask();
+
+ BOOL isFaceMaskValid(LLFaceID face_mask);
+ static S32 sNumMeshPoints;
+
+ friend std::ostream& operator<<(std::ostream &s, const LLVolume &volume);
+ friend std::ostream& operator<<(std::ostream &s, const LLVolume *volumep); // HACK to bypass Windoze confusion over
+ // conversion if *(LLVolume*) to LLVolume&
+ const LLVolumeFace &getVolumeFace(const S32 f) const {return mVolumeFaces[f];} // DO NOT DELETE VOLUME WHILE USING THIS REFERENCE, OR HOLD A POINTER TO THIS VOLUMEFACE
+
+ U32 mFaceMask; // bit array of which faces exist in this volume
+ LLVector3 mLODScaleBias; // vector for biasing LOD based on scale
+
+ void sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level);
+ void copyVolumeFaces(const LLVolume* volume);
+ void cacheOptimize();
+
+private:
+ void sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type);
+ F32 sculptGetSurfaceArea();
+ void sculptGeneratePlaceholder();
+ void sculptCalcMeshResolution(U16 width, U16 height, U8 type, S32& s, S32& t);
+
+
+protected:
+ BOOL generate();
+ void createVolumeFaces();
+public:
+ virtual BOOL createVolumeFacesFromFile(const std::string& file_name);
+ virtual BOOL createVolumeFacesFromStream(std::istream& is);
+ virtual bool unpackVolumeFaces(std::istream& is, S32 size);
+
+ virtual void makeTetrahedron();
+ virtual BOOL isTetrahedron();
+
+ protected:
+ BOOL mUnique;
+ F32 mDetail;
+ S32 mSculptLevel;
+ BOOL mIsTetrahedron;
+
+ LLVolumeParams mParams;
+ LLPath *mPathp;
+ LLProfile *mProfilep;
+ std::vector<Point> mMesh;
+
+ BOOL mGenerateSingleFace;
+ typedef std::vector<LLVolumeFace> face_list_t;
+ face_list_t mVolumeFaces;
+
+public:
+ LLVector4a* mHullPoints;
+ U16* mHullIndices;
+ S32 mNumHullPoints;
+ S32 mNumHullIndices;
+};
+
+std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params);
+
+void calc_binormal_from_triangle(
+ LLVector4a& binormal,
+ const LLVector4a& pos0,
+ const LLVector2& tex0,
+ const LLVector4a& pos1,
+ const LLVector2& tex1,
+ const LLVector4a& pos2,
+ const LLVector2& tex2);
+
+BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size);
+BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size);
+BOOL LLLineSegmentBoxIntersect(const LLVector4a& start, const LLVector4a& end, const LLVector4a& center, const LLVector4a& size);
+
+BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir,
+ F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided);
+
+BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
+ F32& intersection_a, F32& intersection_b, F32& intersection_t);
+BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
+ F32& intersection_a, F32& intersection_b, F32& intersection_t);
+
+
+
+#endif
|