diff options
author | Ansariel <ansariel.hiller@phoenixviewer.com> | 2024-05-22 21:25:21 +0200 |
---|---|---|
committer | Andrey Lihatskiy <alihatskiy@productengine.com> | 2024-05-22 22:40:26 +0300 |
commit | e2e37cced861b98de8c1a7c9c0d3a50d2d90e433 (patch) | |
tree | 1bb897489ce524986f6196201c10ac0d8861aa5f /indra/llmath/llquaternion.h | |
parent | 069ea06848f766466f1a281144c82a0f2bd79f3a (diff) |
Fix line endlings
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rw-r--r-- | indra/llmath/llquaternion.h | 1234 |
1 files changed, 617 insertions, 617 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h index 7a245475c1..2caa993007 100644 --- a/indra/llmath/llquaternion.h +++ b/indra/llmath/llquaternion.h @@ -1,617 +1,617 @@ -/**
- * @file llquaternion.h
- * @brief LLQuaternion class header file.
- *
- * $LicenseInfo:firstyear=2000&license=viewerlgpl$
- * Second Life Viewer Source Code
- * Copyright (C) 2010, Linden Research, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation;
- * version 2.1 of the License only.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
- * $/LicenseInfo$
- */
-
-#ifndef LLQUATERNION_H
-#define LLQUATERNION_H
-
-#include <iostream>
-#include "llsd.h"
-
-#ifndef LLMATH_H //enforce specific include order to avoid tangling inline dependencies
-#error "Please include llmath.h first."
-#endif
-
-class LLVector4;
-class LLVector3;
-class LLVector3d;
-class LLMatrix4;
-class LLMatrix3;
-
-// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
-// Moreover, it is written assuming that all vectors and matricies
-// passed as arguments are normalized and unitary respectively.
-// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
-
-static const U32 LENGTHOFQUAT = 4;
-
-class LLQuaternion
-{
-public:
- F32 mQ[LENGTHOFQUAT];
-
- static const LLQuaternion DEFAULT;
-
- LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
- explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
- explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
- LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w)
- LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
- LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
- LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w)
- LLQuaternion(const LLVector3 &x_axis,
- const LLVector3 &y_axis,
- const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
- explicit LLQuaternion(const LLSD &sd); // Initializes Quaternion from LLSD array.
-
- LLSD getValue() const;
- void setValue(const LLSD& sd);
-
- bool isIdentity() const;
- bool isNotIdentity() const;
- bool isFinite() const; // checks to see if all values of LLQuaternion are finite
- void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
- void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
- void loadIdentity(); // Loads the quaternion that represents the identity rotation
-
- bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const;
- bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const;
-
- const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
- const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
- const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
- const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
- const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
- const LLQuaternion& setFromAzimuthAndAltitude(F32 azimuth, F32 altitude);
-
- const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
- const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
- const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
- const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
-
- const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated
- const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated
- const LLQuaternion& setQuat(const F32 *q); // deprecated
- const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated
- const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated
- const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated
- const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated
- const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated
- const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated
-
- LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
- LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
- void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
- void getAngleAxis(F32* angle, LLVector3 &vec) const;
- void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
- void getAzimuthAndAltitude(F32 &azimuth, F32 &altitude);
-
- F32 normalize(); // Normalizes Quaternion and returns magnitude
- F32 normQuat(); // deprecated
-
- const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result
- const LLQuaternion& conjQuat(void); // deprecated
-
- // Other useful methods
- const LLQuaternion& transpose(); // transpose (same as conjugate)
- const LLQuaternion& transQuat(); // deprecated
-
- void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
- const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
-
- // Standard operators
- friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
- friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
- friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
- friend LLQuaternion operator-(const LLQuaternion &a); // Negation
- friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
- friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
- friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
- friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
- bool operator==(const LLQuaternion &b) const; // Returns a == b
- bool operator!=(const LLQuaternion &b) const; // Returns a != b
-
- friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
-
- friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
- friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
- friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
-
- // Non-standard operators
- friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
- friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
- friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
- friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
- friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
- friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
- friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
-
- LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
- void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
-
- enum Order {
- XYZ = 0,
- YZX = 1,
- ZXY = 2,
- XZY = 3,
- YXZ = 4,
- ZYX = 5
- };
- // Creates a quaternions from maya's rotation representation,
- // which is 3 rotations (in DEGREES) in the specified order
- friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
-
- // Conversions between Order and strings like "xyz" or "ZYX"
- friend const char *OrderToString( const Order order );
- friend Order StringToOrder( const char *str );
-
- static bool parseQuat(const std::string& buf, LLQuaternion* value);
-
- // For debugging, only
- //static U32 mMultCount;
-};
-
-inline LLSD LLQuaternion::getValue() const
-{
- LLSD ret;
- ret[0] = mQ[0];
- ret[1] = mQ[1];
- ret[2] = mQ[2];
- ret[3] = mQ[3];
- return ret;
-}
-
-inline void LLQuaternion::setValue(const LLSD& sd)
-{
- mQ[0] = sd[0].asReal();
- mQ[1] = sd[1].asReal();
- mQ[2] = sd[2].asReal();
- mQ[3] = sd[3].asReal();
-}
-
-// checker
-inline bool LLQuaternion::isFinite() const
-{
- return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
-}
-
-inline bool LLQuaternion::isIdentity() const
-{
- return
- ( mQ[VX] == 0.f ) &&
- ( mQ[VY] == 0.f ) &&
- ( mQ[VZ] == 0.f ) &&
- ( mQ[VS] == 1.f );
-}
-
-inline bool LLQuaternion::isNotIdentity() const
-{
- return
- ( mQ[VX] != 0.f ) ||
- ( mQ[VY] != 0.f ) ||
- ( mQ[VZ] != 0.f ) ||
- ( mQ[VS] != 1.f );
-}
-
-
-
-inline LLQuaternion::LLQuaternion(void)
-{
- mQ[VX] = 0.f;
- mQ[VY] = 0.f;
- mQ[VZ] = 0.f;
- mQ[VS] = 1.f;
-}
-
-inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w)
-{
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = w;
-
- //RN: don't normalize this case as its used mainly for temporaries during calculations
- //normalize();
- /*
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
- mag -= 1.f;
- mag = fabs(mag);
- llassert(mag < 10.f*FP_MAG_THRESHOLD);
- */
-}
-
-inline LLQuaternion::LLQuaternion(const F32 *q)
-{
- mQ[VX] = q[VX];
- mQ[VY] = q[VY];
- mQ[VZ] = q[VZ];
- mQ[VS] = q[VW];
-
- normalize();
- /*
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
- mag -= 1.f;
- mag = fabs(mag);
- llassert(mag < FP_MAG_THRESHOLD);
- */
-}
-
-
-inline void LLQuaternion::loadIdentity()
-{
- mQ[VX] = 0.0f;
- mQ[VY] = 0.0f;
- mQ[VZ] = 0.0f;
- mQ[VW] = 1.0f;
-}
-
-inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const
-{
- return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon
- && fabs(mQ[VY] - quat.mQ[VY]) < epsilon
- && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon
- && fabs(mQ[VS] - quat.mQ[VS]) < epsilon );
-}
-
-inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const
-{
- return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon
- || fabs(mQ[VY] - quat.mQ[VY]) > epsilon
- || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon
- || fabs(mQ[VS] - quat.mQ[VS]) > epsilon );
-}
-
-inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
-{
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = w;
- normalize();
- return (*this);
-}
-
-inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat)
-{
- mQ[VX] = quat.mQ[VX];
- mQ[VY] = quat.mQ[VY];
- mQ[VZ] = quat.mQ[VZ];
- mQ[VW] = quat.mQ[VW];
- normalize();
- return (*this);
-}
-
-inline const LLQuaternion& LLQuaternion::set(const F32 *q)
-{
- mQ[VX] = q[VX];
- mQ[VY] = q[VY];
- mQ[VZ] = q[VZ];
- mQ[VS] = q[VW];
- normalize();
- return (*this);
-}
-
-
-// deprecated
-inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
-{
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = w;
- normalize();
- return (*this);
-}
-
-// deprecated
-inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
-{
- mQ[VX] = quat.mQ[VX];
- mQ[VY] = quat.mQ[VY];
- mQ[VZ] = quat.mQ[VZ];
- mQ[VW] = quat.mQ[VW];
- normalize();
- return (*this);
-}
-
-// deprecated
-inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
-{
- mQ[VX] = q[VX];
- mQ[VY] = q[VY];
- mQ[VZ] = q[VZ];
- mQ[VS] = q[VW];
- normalize();
- return (*this);
-}
-
-inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
-{
- F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component
- if (v > FP_MAG_THRESHOLD)
- {
- F32 oomag = 1.0f / v;
- F32 w = mQ[VW];
- if (w < 0.0f)
- {
- w = -w; // make VW positive
- oomag = -oomag; // invert the axis
- }
- *x = mQ[VX] * oomag; // normalize the axis
- *y = mQ[VY] * oomag;
- *z = mQ[VZ] * oomag;
- *angle = 2.0f * atan2f(v, w); // get the angle
- }
- else
- {
- *angle = 0.0f; // no rotation
- *x = 0.0f; // around some dummy axis
- *y = 0.0f;
- *z = 1.0f;
- }
-}
-
-inline const LLQuaternion& LLQuaternion::conjugate()
-{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
-}
-
-inline const LLQuaternion& LLQuaternion::conjQuat()
-{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
-}
-
-// Transpose
-inline const LLQuaternion& LLQuaternion::transpose()
-{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
-}
-
-// deprecated
-inline const LLQuaternion& LLQuaternion::transQuat()
-{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
-}
-
-
-inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
-{
- return LLQuaternion(
- a.mQ[VX] + b.mQ[VX],
- a.mQ[VY] + b.mQ[VY],
- a.mQ[VZ] + b.mQ[VZ],
- a.mQ[VW] + b.mQ[VW] );
-}
-
-
-inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
-{
- return LLQuaternion(
- a.mQ[VX] - b.mQ[VX],
- a.mQ[VY] - b.mQ[VY],
- a.mQ[VZ] - b.mQ[VZ],
- a.mQ[VW] - b.mQ[VW] );
-}
-
-
-inline LLQuaternion operator-(const LLQuaternion &a)
-{
- return LLQuaternion(
- -a.mQ[VX],
- -a.mQ[VY],
- -a.mQ[VZ],
- -a.mQ[VW] );
-}
-
-
-inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
-{
- return LLQuaternion(
- a * q.mQ[VX],
- a * q.mQ[VY],
- a * q.mQ[VZ],
- a * q.mQ[VW] );
-}
-
-
-inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
-{
- return LLQuaternion(
- a * q.mQ[VX],
- a * q.mQ[VY],
- a * q.mQ[VZ],
- a * q.mQ[VW] );
-}
-
-inline LLQuaternion operator~(const LLQuaternion &a)
-{
- LLQuaternion q(a);
- q.conjQuat();
- return q;
-}
-
-inline bool LLQuaternion::operator==(const LLQuaternion &b) const
-{
- return ( (mQ[VX] == b.mQ[VX])
- &&(mQ[VY] == b.mQ[VY])
- &&(mQ[VZ] == b.mQ[VZ])
- &&(mQ[VS] == b.mQ[VS]));
-}
-
-inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
-{
- return ( (mQ[VX] != b.mQ[VX])
- ||(mQ[VY] != b.mQ[VY])
- ||(mQ[VZ] != b.mQ[VZ])
- ||(mQ[VS] != b.mQ[VS]));
-}
-
-inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
-{
-#if 1
- LLQuaternion q(
- b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
- b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
- b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
- b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
- );
- a = q;
-#else
- a = a * b;
-#endif
- return a;
-}
-
-const F32 ONE_PART_IN_A_MILLION = 0.000001f;
-
-inline F32 LLQuaternion::normalize()
-{
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
-
- if (mag > FP_MAG_THRESHOLD)
- {
- // Floating point error can prevent some quaternions from achieving
- // exact unity length. When trying to renormalize such quaternions we
- // can oscillate between multiple quantized states. To prevent such
- // drifts we only renomalize if the length is far enough from unity.
- if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
- {
- F32 oomag = 1.f/mag;
- mQ[VX] *= oomag;
- mQ[VY] *= oomag;
- mQ[VZ] *= oomag;
- mQ[VS] *= oomag;
- }
- }
- else
- {
- // we were given a very bad quaternion so we set it to identity
- mQ[VX] = 0.f;
- mQ[VY] = 0.f;
- mQ[VZ] = 0.f;
- mQ[VS] = 1.f;
- }
-
- return mag;
-}
-
-// deprecated
-inline F32 LLQuaternion::normQuat()
-{
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
-
- if (mag > FP_MAG_THRESHOLD)
- {
- if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
- {
- // only renormalize if length not close enough to 1.0 already
- F32 oomag = 1.f/mag;
- mQ[VX] *= oomag;
- mQ[VY] *= oomag;
- mQ[VZ] *= oomag;
- mQ[VS] *= oomag;
- }
- }
- else
- {
- mQ[VX] = 0.f;
- mQ[VY] = 0.f;
- mQ[VZ] = 0.f;
- mQ[VS] = 1.f;
- }
-
- return mag;
-}
-
-LLQuaternion::Order StringToOrder( const char *str );
-
-// Some notes about Quaternions
-
-// What is a Quaternion?
-// ---------------------
-// A quaternion is a point in 4-dimensional complex space.
-// Q = { Qx, Qy, Qz, Qw }
-//
-//
-// Why Quaternions?
-// ----------------
-// The set of quaternions that make up the the 4-D unit sphere
-// can be mapped to the set of all rotations in 3-D space. Sometimes
-// it is easier to describe/manipulate rotations in quaternion space
-// than rotation-matrix space.
-//
-//
-// How Quaternions?
-// ----------------
-// In order to take advantage of quaternions we need to know how to
-// go from rotation-matricies to quaternions and back. We also have
-// to agree what variety of rotations we're generating.
-//
-// Consider the equation... v' = v * R
-//
-// There are two ways to think about rotations of vectors.
-// 1) v' is the same vector in a different reference frame
-// 2) v' is a new vector in the same reference frame
-//
-// bookmark -- which way are we using?
-//
-//
-// Quaternion from Angle-Axis:
-// ---------------------------
-// Suppose we wanted to represent a rotation of some angle (theta)
-// about some axis ({Ax, Ay, Az})...
-//
-// axis of rotation = {Ax, Ay, Az}
-// angle_of_rotation = theta
-//
-// s = sin(0.5 * theta)
-// c = cos(0.5 * theta)
-// Q = { s * Ax, s * Ay, s * Az, c }
-//
-//
-// 3x3 Matrix from Quaternion
-// --------------------------
-//
-// | |
-// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) |
-// | |
-// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) |
-// | |
-// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) |
-// | |
-
-#endif
+/** + * @file llquaternion.h + * @brief LLQuaternion class header file. + * + * $LicenseInfo:firstyear=2000&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2010, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#ifndef LLQUATERNION_H +#define LLQUATERNION_H + +#include <iostream> +#include "llsd.h" + +#ifndef LLMATH_H //enforce specific include order to avoid tangling inline dependencies +#error "Please include llmath.h first." +#endif + +class LLVector4; +class LLVector3; +class LLVector3d; +class LLMatrix4; +class LLMatrix3; + +// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! +// Moreover, it is written assuming that all vectors and matricies +// passed as arguments are normalized and unitary respectively. +// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. + +static const U32 LENGTHOFQUAT = 4; + +class LLQuaternion +{ +public: + F32 mQ[LENGTHOFQUAT]; + + static const LLQuaternion DEFAULT; + + LLQuaternion(); // Initializes Quaternion to (0,0,0,1) + explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 + explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 + LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w) + LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) + LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) + LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w) + LLQuaternion(const LLVector3 &x_axis, + const LLVector3 &y_axis, + const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] + explicit LLQuaternion(const LLSD &sd); // Initializes Quaternion from LLSD array. + + LLSD getValue() const; + void setValue(const LLSD& sd); + + bool isIdentity() const; + bool isNotIdentity() const; + bool isFinite() const; // checks to see if all values of LLQuaternion are finite + void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization + void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization + void loadIdentity(); // Loads the quaternion that represents the identity rotation + + bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const; + bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const; + + const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w) + const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion + const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW]) + const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) + const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) + const LLQuaternion& setFromAzimuthAndAltitude(F32 azimuth, F32 altitude); + + const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) + const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) + const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) + const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) + + const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated + const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated + const LLQuaternion& setQuat(const F32 *q); // deprecated + const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated + const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated + const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated + const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated + const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated + const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated + + LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion + LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion + void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z + void getAngleAxis(F32* angle, LLVector3 &vec) const; + void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; + void getAzimuthAndAltitude(F32 &azimuth, F32 &altitude); + + F32 normalize(); // Normalizes Quaternion and returns magnitude + F32 normQuat(); // deprecated + + const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result + const LLQuaternion& conjQuat(void); // deprecated + + // Other useful methods + const LLQuaternion& transpose(); // transpose (same as conjugate) + const LLQuaternion& transQuat(); // deprecated + + void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b + const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians + + // Standard operators + friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a + friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition + friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction + friend LLQuaternion operator-(const LLQuaternion &a); // Negation + friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale + friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale + friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b + friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) + bool operator==(const LLQuaternion &b) const; // Returns a == b + bool operator!=(const LLQuaternion &b) const; // Returns a != b + + friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b + + friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot + friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot + friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot + + // Non-standard operators + friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); + friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q + friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q + friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q + friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q + friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q + friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q + + LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized + void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized + + enum Order { + XYZ = 0, + YZX = 1, + ZXY = 2, + XZY = 3, + YXZ = 4, + ZYX = 5 + }; + // Creates a quaternions from maya's rotation representation, + // which is 3 rotations (in DEGREES) in the specified order + friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); + + // Conversions between Order and strings like "xyz" or "ZYX" + friend const char *OrderToString( const Order order ); + friend Order StringToOrder( const char *str ); + + static bool parseQuat(const std::string& buf, LLQuaternion* value); + + // For debugging, only + //static U32 mMultCount; +}; + +inline LLSD LLQuaternion::getValue() const +{ + LLSD ret; + ret[0] = mQ[0]; + ret[1] = mQ[1]; + ret[2] = mQ[2]; + ret[3] = mQ[3]; + return ret; +} + +inline void LLQuaternion::setValue(const LLSD& sd) +{ + mQ[0] = sd[0].asReal(); + mQ[1] = sd[1].asReal(); + mQ[2] = sd[2].asReal(); + mQ[3] = sd[3].asReal(); +} + +// checker +inline bool LLQuaternion::isFinite() const +{ + return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); +} + +inline bool LLQuaternion::isIdentity() const +{ + return + ( mQ[VX] == 0.f ) && + ( mQ[VY] == 0.f ) && + ( mQ[VZ] == 0.f ) && + ( mQ[VS] == 1.f ); +} + +inline bool LLQuaternion::isNotIdentity() const +{ + return + ( mQ[VX] != 0.f ) || + ( mQ[VY] != 0.f ) || + ( mQ[VZ] != 0.f ) || + ( mQ[VS] != 1.f ); +} + + + +inline LLQuaternion::LLQuaternion(void) +{ + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; +} + +inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w) +{ + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + + //RN: don't normalize this case as its used mainly for temporaries during calculations + //normalize(); + /* + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + mag -= 1.f; + mag = fabs(mag); + llassert(mag < 10.f*FP_MAG_THRESHOLD); + */ +} + +inline LLQuaternion::LLQuaternion(const F32 *q) +{ + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + + normalize(); + /* + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + mag -= 1.f; + mag = fabs(mag); + llassert(mag < FP_MAG_THRESHOLD); + */ +} + + +inline void LLQuaternion::loadIdentity() +{ + mQ[VX] = 0.0f; + mQ[VY] = 0.0f; + mQ[VZ] = 0.0f; + mQ[VW] = 1.0f; +} + +inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const +{ + return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon + && fabs(mQ[VY] - quat.mQ[VY]) < epsilon + && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon + && fabs(mQ[VS] - quat.mQ[VS]) < epsilon ); +} + +inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const +{ + return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon + || fabs(mQ[VY] - quat.mQ[VY]) > epsilon + || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon + || fabs(mQ[VS] - quat.mQ[VS]) > epsilon ); +} + +inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w) +{ + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + normalize(); + return (*this); +} + +inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat) +{ + mQ[VX] = quat.mQ[VX]; + mQ[VY] = quat.mQ[VY]; + mQ[VZ] = quat.mQ[VZ]; + mQ[VW] = quat.mQ[VW]; + normalize(); + return (*this); +} + +inline const LLQuaternion& LLQuaternion::set(const F32 *q) +{ + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + normalize(); + return (*this); +} + + +// deprecated +inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) +{ + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + normalize(); + return (*this); +} + +// deprecated +inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) +{ + mQ[VX] = quat.mQ[VX]; + mQ[VY] = quat.mQ[VY]; + mQ[VZ] = quat.mQ[VZ]; + mQ[VW] = quat.mQ[VW]; + normalize(); + return (*this); +} + +// deprecated +inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) +{ + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + normalize(); + return (*this); +} + +inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const +{ + F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component + if (v > FP_MAG_THRESHOLD) + { + F32 oomag = 1.0f / v; + F32 w = mQ[VW]; + if (w < 0.0f) + { + w = -w; // make VW positive + oomag = -oomag; // invert the axis + } + *x = mQ[VX] * oomag; // normalize the axis + *y = mQ[VY] * oomag; + *z = mQ[VZ] * oomag; + *angle = 2.0f * atan2f(v, w); // get the angle + } + else + { + *angle = 0.0f; // no rotation + *x = 0.0f; // around some dummy axis + *y = 0.0f; + *z = 1.0f; + } +} + +inline const LLQuaternion& LLQuaternion::conjugate() +{ + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); +} + +inline const LLQuaternion& LLQuaternion::conjQuat() +{ + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); +} + +// Transpose +inline const LLQuaternion& LLQuaternion::transpose() +{ + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); +} + +// deprecated +inline const LLQuaternion& LLQuaternion::transQuat() +{ + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); +} + + +inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) +{ + return LLQuaternion( + a.mQ[VX] + b.mQ[VX], + a.mQ[VY] + b.mQ[VY], + a.mQ[VZ] + b.mQ[VZ], + a.mQ[VW] + b.mQ[VW] ); +} + + +inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) +{ + return LLQuaternion( + a.mQ[VX] - b.mQ[VX], + a.mQ[VY] - b.mQ[VY], + a.mQ[VZ] - b.mQ[VZ], + a.mQ[VW] - b.mQ[VW] ); +} + + +inline LLQuaternion operator-(const LLQuaternion &a) +{ + return LLQuaternion( + -a.mQ[VX], + -a.mQ[VY], + -a.mQ[VZ], + -a.mQ[VW] ); +} + + +inline LLQuaternion operator*(F32 a, const LLQuaternion &q) +{ + return LLQuaternion( + a * q.mQ[VX], + a * q.mQ[VY], + a * q.mQ[VZ], + a * q.mQ[VW] ); +} + + +inline LLQuaternion operator*(const LLQuaternion &q, F32 a) +{ + return LLQuaternion( + a * q.mQ[VX], + a * q.mQ[VY], + a * q.mQ[VZ], + a * q.mQ[VW] ); +} + +inline LLQuaternion operator~(const LLQuaternion &a) +{ + LLQuaternion q(a); + q.conjQuat(); + return q; +} + +inline bool LLQuaternion::operator==(const LLQuaternion &b) const +{ + return ( (mQ[VX] == b.mQ[VX]) + &&(mQ[VY] == b.mQ[VY]) + &&(mQ[VZ] == b.mQ[VZ]) + &&(mQ[VS] == b.mQ[VS])); +} + +inline bool LLQuaternion::operator!=(const LLQuaternion &b) const +{ + return ( (mQ[VX] != b.mQ[VX]) + ||(mQ[VY] != b.mQ[VY]) + ||(mQ[VZ] != b.mQ[VZ]) + ||(mQ[VS] != b.mQ[VS])); +} + +inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) +{ +#if 1 + LLQuaternion q( + b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], + b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], + b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], + b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] + ); + a = q; +#else + a = a * b; +#endif + return a; +} + +const F32 ONE_PART_IN_A_MILLION = 0.000001f; + +inline F32 LLQuaternion::normalize() +{ + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + + if (mag > FP_MAG_THRESHOLD) + { + // Floating point error can prevent some quaternions from achieving + // exact unity length. When trying to renormalize such quaternions we + // can oscillate between multiple quantized states. To prevent such + // drifts we only renomalize if the length is far enough from unity. + if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) + { + F32 oomag = 1.f/mag; + mQ[VX] *= oomag; + mQ[VY] *= oomag; + mQ[VZ] *= oomag; + mQ[VS] *= oomag; + } + } + else + { + // we were given a very bad quaternion so we set it to identity + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; + } + + return mag; +} + +// deprecated +inline F32 LLQuaternion::normQuat() +{ + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + + if (mag > FP_MAG_THRESHOLD) + { + if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) + { + // only renormalize if length not close enough to 1.0 already + F32 oomag = 1.f/mag; + mQ[VX] *= oomag; + mQ[VY] *= oomag; + mQ[VZ] *= oomag; + mQ[VS] *= oomag; + } + } + else + { + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; + } + + return mag; +} + +LLQuaternion::Order StringToOrder( const char *str ); + +// Some notes about Quaternions + +// What is a Quaternion? +// --------------------- +// A quaternion is a point in 4-dimensional complex space. +// Q = { Qx, Qy, Qz, Qw } +// +// +// Why Quaternions? +// ---------------- +// The set of quaternions that make up the the 4-D unit sphere +// can be mapped to the set of all rotations in 3-D space. Sometimes +// it is easier to describe/manipulate rotations in quaternion space +// than rotation-matrix space. +// +// +// How Quaternions? +// ---------------- +// In order to take advantage of quaternions we need to know how to +// go from rotation-matricies to quaternions and back. We also have +// to agree what variety of rotations we're generating. +// +// Consider the equation... v' = v * R +// +// There are two ways to think about rotations of vectors. +// 1) v' is the same vector in a different reference frame +// 2) v' is a new vector in the same reference frame +// +// bookmark -- which way are we using? +// +// +// Quaternion from Angle-Axis: +// --------------------------- +// Suppose we wanted to represent a rotation of some angle (theta) +// about some axis ({Ax, Ay, Az})... +// +// axis of rotation = {Ax, Ay, Az} +// angle_of_rotation = theta +// +// s = sin(0.5 * theta) +// c = cos(0.5 * theta) +// Q = { s * Ax, s * Ay, s * Az, c } +// +// +// 3x3 Matrix from Quaternion +// -------------------------- +// +// | | +// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) | +// | | +// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) | +// | | +// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) | +// | | + +#endif |