summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGraham Madarasz <graham@lindenlab.com>2013-06-12 08:09:29 -0700
committerGraham Madarasz <graham@lindenlab.com>2013-06-12 08:09:29 -0700
commit48324a93833cee8aca7559588ee5f2b4afa250fa (patch)
tree59e37ff8a4b1f93a49304e9f3da57e290debfb8c
parent7ad631e6eabaf48f33f4808293ed7ffde8240adb (diff)
Fix issues with NaNs in tangent data from using normalize3fast on zero-length vectors and other data conditioning; also added assert to normalize3fast to make finding these problems easier in the future
-rwxr-xr-xindra/llmath/llvector4a.inl9
-rwxr-xr-xindra/llmath/llvolume.cpp128
2 files changed, 106 insertions, 31 deletions
diff --git a/indra/llmath/llvector4a.inl b/indra/llmath/llvector4a.inl
index 7c52ffef21..4589bac9fb 100755
--- a/indra/llmath/llvector4a.inl
+++ b/indra/llmath/llvector4a.inl
@@ -331,6 +331,9 @@ inline LLSimdScalar LLVector4a::dot4(const LLVector4a& b) const
// Note that this does not consider zero length vectors!
inline void LLVector4a::normalize3()
{
+ // find out about bad math before it takes two man-days to track down
+ llassert(isFinite3() && !equals3(getZero()));
+
// lenSqrd = a dot a
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
@@ -379,6 +382,9 @@ inline void LLVector4a::normalize4()
// Note that this does not consider zero length vectors!
inline LLSimdScalar LLVector4a::normalize3withLength()
{
+ // find out about bad math before it takes two man-days to track down
+ llassert(isFinite3() && !equals3(getZero()));
+
// lenSqrd = a dot a
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
@@ -404,6 +410,9 @@ inline LLSimdScalar LLVector4a::normalize3withLength()
// Note that this does not consider zero length vectors!
inline void LLVector4a::normalize3fast()
{
+ // find out about bad math before it takes two man-days to track down
+ llassert(isFinite3() && !equals3(getZero()));
+
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
const LLQuad approxRsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
mQ = _mm_mul_ps( mQ, approxRsqrt );
diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp
index 1932272afb..bc2572375a 100755
--- a/indra/llmath/llvolume.cpp
+++ b/indra/llmath/llvolume.cpp
@@ -7209,46 +7209,53 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build)
return TRUE;
}
+#define TANGENTIAL_PARANOIA_ASSERTS 1
+
+#if TANGENTIAL_PARANOIA_ASSERTS
+ #define tangential_paranoia(a) llassert(a)
+#else
+ #define tangential_paranoia(a)
+#endif
+
//adapted from Lengyel, Eric. “Computing Tangent Space Basis Vectors for an Arbitrary Mesh”. Terathon Software 3D Graphics Library, 2001. http://www.terathon.com/code/tangent.html
void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVector4a *normal,
const LLVector2 *texcoord, U32 triangleCount, const U16* index_array, LLVector4a *tangent)
{
- //LLVector4a *tan1 = new LLVector4a[vertexCount * 2];
LLVector4a* tan1 = (LLVector4a*) ll_aligned_malloc_16(vertexCount*2*sizeof(LLVector4a));
- LLVector4a* tan2 = tan1 + vertexCount;
+ LLVector4a* tan2 = tan1 + vertexCount;
memset(tan1, 0, vertexCount*2*sizeof(LLVector4a));
- for (U32 a = 0; a < triangleCount; a++)
- {
- U32 i1 = *index_array++;
- U32 i2 = *index_array++;
- U32 i3 = *index_array++;
+ for (U32 a = 0; a < triangleCount; a++)
+ {
+ U32 i1 = *index_array++;
+ U32 i2 = *index_array++;
+ U32 i3 = *index_array++;
- const LLVector4a& v1 = vertex[i1];
- const LLVector4a& v2 = vertex[i2];
- const LLVector4a& v3 = vertex[i3];
+ const LLVector4a& v1 = vertex[i1];
+ const LLVector4a& v2 = vertex[i2];
+ const LLVector4a& v3 = vertex[i3];
- const LLVector2& w1 = texcoord[i1];
- const LLVector2& w2 = texcoord[i2];
- const LLVector2& w3 = texcoord[i3];
+ const LLVector2& w1 = texcoord[i1];
+ const LLVector2& w2 = texcoord[i2];
+ const LLVector2& w3 = texcoord[i3];
const F32* v1ptr = v1.getF32ptr();
const F32* v2ptr = v2.getF32ptr();
const F32* v3ptr = v3.getF32ptr();
- float x1 = v2ptr[0] - v1ptr[0];
- float x2 = v3ptr[0] - v1ptr[0];
- float y1 = v2ptr[1] - v1ptr[1];
- float y2 = v3ptr[1] - v1ptr[1];
- float z1 = v2ptr[2] - v1ptr[2];
- float z2 = v3ptr[2] - v1ptr[2];
+ float x1 = v2ptr[0] - v1ptr[0];
+ float x2 = v3ptr[0] - v1ptr[0];
+ float y1 = v2ptr[1] - v1ptr[1];
+ float y2 = v3ptr[1] - v1ptr[1];
+ float z1 = v2ptr[2] - v1ptr[2];
+ float z2 = v3ptr[2] - v1ptr[2];
- float s1 = w2.mV[0] - w1.mV[0];
- float s2 = w3.mV[0] - w1.mV[0];
- float t1 = w2.mV[1] - w1.mV[1];
- float t2 = w3.mV[1] - w1.mV[1];
+ float s1 = w2.mV[0] - w1.mV[0];
+ float s2 = w3.mV[0] - w1.mV[0];
+ float t1 = w2.mV[1] - w1.mV[1];
+ float t2 = w3.mV[1] - w1.mV[1];
F32 rd = s1*t2-s2*t1;
@@ -7262,18 +7269,67 @@ void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVe
LLVector4a tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r,
(s1 * z2 - s2 * z1) * r);
+
tan1[i1].add(sdir);
tan1[i2].add(sdir);
tan1[i3].add(sdir);
-
+
+ tangential_paranoia(tan1[i1].isFinite3());
+ tangential_paranoia(tan1[i2].isFinite3());
+ tangential_paranoia(tan1[i3].isFinite3());
+
tan2[i1].add(tdir);
tan2[i2].add(tdir);
tan2[i3].add(tdir);
- }
-
- for (U32 a = 0; a < vertexCount; a++)
- {
- LLVector4a n = normal[a];
+
+ tangential_paranoia(tan2[i1].isFinite3());
+ tangential_paranoia(tan2[i2].isFinite3());
+ tangential_paranoia(tan2[i3].isFinite3());
+ }
+
+ // These appear to come out of the summing above distinctly non-unit-length
+ //
+ for (U32 a = 0; a < vertexCount; a++)
+ {
+ // Conditioning required by assets which don't necessarily reference every vert index
+ // (i.e. some of the tangents can end up uninitialized and therefore indeterminate/INF)
+ // and protection against zero length vectors which are not handled by normalize3fast.
+ //
+ if (!tan1[a].isFinite3() || tan1[a].equals3(LLVector4a::getZero()))
+ {
+ tan1[a].set(0,0,1,1);
+ }
+ else
+ {
+ tan1[a].normalize3fast();
+ }
+
+ if (!tan2[a].isFinite3() || tan2[a].equals3(LLVector4a::getZero()))
+ {
+ tan2[a].set(0,0,1,1);
+ }
+ else
+ {
+ tan2[a].normalize3fast();
+ }
+
+ const F32 cefgw = 0.03f;
+ tangential_paranoia(tan1[a].isFinite3());
+ tangential_paranoia(tan2[a].isFinite3());
+ tangential_paranoia(tan1[a].isNormalized3(cefgw));
+ tangential_paranoia(tan2[a].isNormalized3(cefgw));
+ }
+
+ for (U32 a = 0; a < vertexCount; a++)
+ {
+ LLVector4a n = normal[a];
+
+ if (!n.isFinite3() || n.equals3(LLVector4a::getZero()))
+ {
+ n.set(0,1,0,1);
+ }
+
+ n.normalize3fast();
const LLVector4a& t = tan1[a];
@@ -7283,12 +7339,20 @@ void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVe
LLVector4a ncrosst;
ncrosst.setCross3(n,t);
- // Gram-Schmidt orthogonalize
- n.mul(n.dot3(t).getF32());
+ F32 n_dot_t = n.dot3(t).getF32();
+
+ tangential_paranoia(llfinite(n_dot_t) && !llisnan(n_dot_t));
+
+ // Gram-Schmidt orthogonalize
+ n.mul(n_dot_t);
+
+ tangential_paranoia(n.isFinite3());
LLVector4a tsubn;
tsubn.setSub(t,n);
+ tangential_paranoia(tsubn.isFinite3());
+
if (tsubn.dot3(tsubn).getF32() > F_APPROXIMATELY_ZERO)
{
tsubn.normalize3fast();
@@ -7300,6 +7364,8 @@ void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVe
tangent[a] = tsubn;
+ tangential_paranoia(tangent[a].isNormalized3(0.1f));
+
llassert(llfinite(tangent[a].getF32ptr()[0]));
llassert(llfinite(tangent[a].getF32ptr()[1]));
llassert(llfinite(tangent[a].getF32ptr()[2]));