diff options
author | Graham Madarasz <graham@lindenlab.com> | 2013-06-12 08:09:29 -0700 |
---|---|---|
committer | Graham Madarasz <graham@lindenlab.com> | 2013-06-12 08:09:29 -0700 |
commit | 48324a93833cee8aca7559588ee5f2b4afa250fa (patch) | |
tree | 59e37ff8a4b1f93a49304e9f3da57e290debfb8c | |
parent | 7ad631e6eabaf48f33f4808293ed7ffde8240adb (diff) |
Fix issues with NaNs in tangent data from using normalize3fast on zero-length vectors and other data conditioning; also added assert to normalize3fast to make finding these problems easier in the future
-rwxr-xr-x | indra/llmath/llvector4a.inl | 9 | ||||
-rwxr-xr-x | indra/llmath/llvolume.cpp | 128 |
2 files changed, 106 insertions, 31 deletions
diff --git a/indra/llmath/llvector4a.inl b/indra/llmath/llvector4a.inl index 7c52ffef21..4589bac9fb 100755 --- a/indra/llmath/llvector4a.inl +++ b/indra/llmath/llvector4a.inl @@ -331,6 +331,9 @@ inline LLSimdScalar LLVector4a::dot4(const LLVector4a& b) const // Note that this does not consider zero length vectors! inline void LLVector4a::normalize3() { + // find out about bad math before it takes two man-days to track down + llassert(isFinite3() && !equals3(getZero())); + // lenSqrd = a dot a LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this ); // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 } @@ -379,6 +382,9 @@ inline void LLVector4a::normalize4() // Note that this does not consider zero length vectors! inline LLSimdScalar LLVector4a::normalize3withLength() { + // find out about bad math before it takes two man-days to track down + llassert(isFinite3() && !equals3(getZero())); + // lenSqrd = a dot a LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this ); // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 } @@ -404,6 +410,9 @@ inline LLSimdScalar LLVector4a::normalize3withLength() // Note that this does not consider zero length vectors! inline void LLVector4a::normalize3fast() { + // find out about bad math before it takes two man-days to track down + llassert(isFinite3() && !equals3(getZero())); + LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this ); const LLQuad approxRsqrt = _mm_rsqrt_ps(lenSqrd.mQ); mQ = _mm_mul_ps( mQ, approxRsqrt ); diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp index 1932272afb..bc2572375a 100755 --- a/indra/llmath/llvolume.cpp +++ b/indra/llmath/llvolume.cpp @@ -7209,46 +7209,53 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) return TRUE; } +#define TANGENTIAL_PARANOIA_ASSERTS 1 + +#if TANGENTIAL_PARANOIA_ASSERTS + #define tangential_paranoia(a) llassert(a) +#else + #define tangential_paranoia(a) +#endif + //adapted from Lengyel, Eric. “Computing Tangent Space Basis Vectors for an Arbitrary Mesh”. Terathon Software 3D Graphics Library, 2001. http://www.terathon.com/code/tangent.html void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVector4a *normal, const LLVector2 *texcoord, U32 triangleCount, const U16* index_array, LLVector4a *tangent) { - //LLVector4a *tan1 = new LLVector4a[vertexCount * 2]; LLVector4a* tan1 = (LLVector4a*) ll_aligned_malloc_16(vertexCount*2*sizeof(LLVector4a)); - LLVector4a* tan2 = tan1 + vertexCount; + LLVector4a* tan2 = tan1 + vertexCount; memset(tan1, 0, vertexCount*2*sizeof(LLVector4a)); - for (U32 a = 0; a < triangleCount; a++) - { - U32 i1 = *index_array++; - U32 i2 = *index_array++; - U32 i3 = *index_array++; + for (U32 a = 0; a < triangleCount; a++) + { + U32 i1 = *index_array++; + U32 i2 = *index_array++; + U32 i3 = *index_array++; - const LLVector4a& v1 = vertex[i1]; - const LLVector4a& v2 = vertex[i2]; - const LLVector4a& v3 = vertex[i3]; + const LLVector4a& v1 = vertex[i1]; + const LLVector4a& v2 = vertex[i2]; + const LLVector4a& v3 = vertex[i3]; - const LLVector2& w1 = texcoord[i1]; - const LLVector2& w2 = texcoord[i2]; - const LLVector2& w3 = texcoord[i3]; + const LLVector2& w1 = texcoord[i1]; + const LLVector2& w2 = texcoord[i2]; + const LLVector2& w3 = texcoord[i3]; const F32* v1ptr = v1.getF32ptr(); const F32* v2ptr = v2.getF32ptr(); const F32* v3ptr = v3.getF32ptr(); - float x1 = v2ptr[0] - v1ptr[0]; - float x2 = v3ptr[0] - v1ptr[0]; - float y1 = v2ptr[1] - v1ptr[1]; - float y2 = v3ptr[1] - v1ptr[1]; - float z1 = v2ptr[2] - v1ptr[2]; - float z2 = v3ptr[2] - v1ptr[2]; + float x1 = v2ptr[0] - v1ptr[0]; + float x2 = v3ptr[0] - v1ptr[0]; + float y1 = v2ptr[1] - v1ptr[1]; + float y2 = v3ptr[1] - v1ptr[1]; + float z1 = v2ptr[2] - v1ptr[2]; + float z2 = v3ptr[2] - v1ptr[2]; - float s1 = w2.mV[0] - w1.mV[0]; - float s2 = w3.mV[0] - w1.mV[0]; - float t1 = w2.mV[1] - w1.mV[1]; - float t2 = w3.mV[1] - w1.mV[1]; + float s1 = w2.mV[0] - w1.mV[0]; + float s2 = w3.mV[0] - w1.mV[0]; + float t1 = w2.mV[1] - w1.mV[1]; + float t2 = w3.mV[1] - w1.mV[1]; F32 rd = s1*t2-s2*t1; @@ -7262,18 +7269,67 @@ void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVe LLVector4a tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r); + tan1[i1].add(sdir); tan1[i2].add(sdir); tan1[i3].add(sdir); - + + tangential_paranoia(tan1[i1].isFinite3()); + tangential_paranoia(tan1[i2].isFinite3()); + tangential_paranoia(tan1[i3].isFinite3()); + tan2[i1].add(tdir); tan2[i2].add(tdir); tan2[i3].add(tdir); - } - - for (U32 a = 0; a < vertexCount; a++) - { - LLVector4a n = normal[a]; + + tangential_paranoia(tan2[i1].isFinite3()); + tangential_paranoia(tan2[i2].isFinite3()); + tangential_paranoia(tan2[i3].isFinite3()); + } + + // These appear to come out of the summing above distinctly non-unit-length + // + for (U32 a = 0; a < vertexCount; a++) + { + // Conditioning required by assets which don't necessarily reference every vert index + // (i.e. some of the tangents can end up uninitialized and therefore indeterminate/INF) + // and protection against zero length vectors which are not handled by normalize3fast. + // + if (!tan1[a].isFinite3() || tan1[a].equals3(LLVector4a::getZero())) + { + tan1[a].set(0,0,1,1); + } + else + { + tan1[a].normalize3fast(); + } + + if (!tan2[a].isFinite3() || tan2[a].equals3(LLVector4a::getZero())) + { + tan2[a].set(0,0,1,1); + } + else + { + tan2[a].normalize3fast(); + } + + const F32 cefgw = 0.03f; + tangential_paranoia(tan1[a].isFinite3()); + tangential_paranoia(tan2[a].isFinite3()); + tangential_paranoia(tan1[a].isNormalized3(cefgw)); + tangential_paranoia(tan2[a].isNormalized3(cefgw)); + } + + for (U32 a = 0; a < vertexCount; a++) + { + LLVector4a n = normal[a]; + + if (!n.isFinite3() || n.equals3(LLVector4a::getZero())) + { + n.set(0,1,0,1); + } + + n.normalize3fast(); const LLVector4a& t = tan1[a]; @@ -7283,12 +7339,20 @@ void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVe LLVector4a ncrosst; ncrosst.setCross3(n,t); - // Gram-Schmidt orthogonalize - n.mul(n.dot3(t).getF32()); + F32 n_dot_t = n.dot3(t).getF32(); + + tangential_paranoia(llfinite(n_dot_t) && !llisnan(n_dot_t)); + + // Gram-Schmidt orthogonalize + n.mul(n_dot_t); + + tangential_paranoia(n.isFinite3()); LLVector4a tsubn; tsubn.setSub(t,n); + tangential_paranoia(tsubn.isFinite3()); + if (tsubn.dot3(tsubn).getF32() > F_APPROXIMATELY_ZERO) { tsubn.normalize3fast(); @@ -7300,6 +7364,8 @@ void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVe tangent[a] = tsubn; + tangential_paranoia(tangent[a].isNormalized3(0.1f)); + llassert(llfinite(tangent[a].getF32ptr()[0])); llassert(llfinite(tangent[a].getF32ptr()[1])); llassert(llfinite(tangent[a].getF32ptr()[2])); |