1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
/**
* @file linkability.cpp
* @author andrew@lindenlab.com
* @date 2007-04-23
* @brief Tests for the LLPrimLinkInfo template which computes the linkability of prims
*
* Copyright (c) 2007-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#include "linden_common.h"
#include "lltut.h"
#include "llprimlinkinfo.h"
#include "llrand.h"
// helper function
void randomize_sphere(LLSphere& sphere, F32 center_range, F32 radius_range)
{
F32 radius = ll_frand(2.f * radius_range) - radius_range;
LLVector3 center;
for (S32 i=0; i<3; ++i)
{
center.mV[i] = ll_frand(2.f * center_range) - center_range;
}
sphere.setRadius(radius);
sphere.setCenter(center);
}
// helper function. Same as above with a min and max radius.
void randomize_sphere(LLSphere& sphere, F32 center_range, F32 minimum_radius, F32 maximum_radius)
{
F32 radius = ll_frand(maximum_radius - minimum_radius) + minimum_radius;
LLVector3 center;
for (S32 i=0; i<3; ++i)
{
center.mV[i] = ll_frand(2.f * center_range) - center_range;
}
sphere.setRadius(radius);
sphere.setCenter(center);
}
// helper function
bool random_sort( const LLPrimLinkInfo< S32 >&, const LLPrimLinkInfo< S32 >& b)
{
return (ll_rand(64) < 32);
}
namespace tut
{
struct linkable_data
{
LLPrimLinkInfo<S32> info;
};
typedef test_group<linkable_data> linkable_test;
typedef linkable_test::object linkable_object;
tut::linkable_test wtf("prim linkability");
template<> template<>
void linkable_object::test<1>()
{
// Here we test the boundary of the LLPrimLinkInfo::canLink() method
// between semi-random middle-sized objects.
S32 number_of_tests = 100;
for (S32 test = 0; test < number_of_tests; ++test)
{
// compute the radii that would provide the above max link distance
F32 first_radius = 0.f;
F32 second_radius = 0.f;
// compute a random center for the first sphere
// compute some random max link distance
F32 max_link_span = ll_frand(MAX_OBJECT_SPAN);
if (max_link_span < OBJECT_SPAN_BONUS)
{
max_link_span += OBJECT_SPAN_BONUS;
}
LLVector3 first_center(
ll_frand(2.f * max_link_span) - max_link_span,
ll_frand(2.f * max_link_span) - max_link_span,
ll_frand(2.f * max_link_span) - max_link_span);
// put the second sphere at the right distance from the origin
// such that it is within the max_link_distance of the first
LLVector3 direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
direction.normalize();
F32 half_milimeter = 0.0005f;
LLVector3 second_center;
// max_span = 3 * (first_radius + second_radius) + OBJECT_SPAN_BONUS
// make sure they link at short distances
{
second_center = first_center + (OBJECT_SPAN_BONUS - half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these nearby objects should link", first_info.canLink(second_info) );
}
// make sure they fail to link if we move them apart just a little bit
{
second_center = first_center + (OBJECT_SPAN_BONUS + half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these nearby objects should NOT link", !first_info.canLink(second_info) );
}
// make sure the objects link or not at medium distances
{
first_radius = 0.3f * ll_frand(max_link_span - OBJECT_SPAN_BONUS);
// This is the exact second radius that will link at exactly our random max_link_distance
second_radius = ((max_link_span - OBJECT_SPAN_BONUS) / 3.f) - first_radius;
second_center = first_center + (max_link_span - first_radius - second_radius - half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these objects should link", first_info.canLink(second_info) );
}
// make sure they fail to link if we move them apart just a little bit
{
// move the second sphere such that it is a little too far from the first
second_center += (2.f * half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these objects should NOT link", !first_info.canLink(second_info) );
}
// make sure things don't link at far distances
{
second_center = first_center + (MAX_OBJECT_SPAN + 2.f * half_milimeter) * direction;
second_radius = 0.3f * MAX_OBJECT_SPAN;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these objects should NOT link", !first_info.canLink(second_info) );
}
}
}
template<> template<>
void linkable_object::test<2>()
{
// Consider a row of eight spheres in a row, each 10m in diameter and centered
// at 10m intervals: 01234567.
F32 radius = 5.f;
F32 spacing = 10.f;
LLVector3 line_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
line_direction.normalize();
LLVector3 first_center(ll_frand(2.f * spacing) -spacing, ll_frand(2.f * spacing) - spacing, ll_frand(2.f * spacing) - spacing);
LLPrimLinkInfo<S32> infos[8];
for (S32 index = 0; index < 8; ++index)
{
LLVector3 center = first_center + ((F32)(index) * spacing) * line_direction;
infos[index].set(index, LLSphere(center, radius));
}
// Max span for 2 spheres of 5m radius is 3 * (5 + 5) + 1 = 31m
// spheres 0&2 have a 30m span (from outside edge to outside edge) and should link
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(infos[2]);
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("0&2 prim count should be 2", prim_count, 2);
ensure_equals("0&2 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0&3 have a 40 meter span and should NOT link outright
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(infos[3]);
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("0&4 prim count should be 1", prim_count, 1);
ensure_equals("0&4 unlinkable list should have length 1", (S32) info_list.size(), 1);
}
// spheres 0-4 should link no matter what order : 01234
// Total span = 50m, 012 link with a r=15.5 giving max span of 3 * (15.5 + 5) + 1 = 62.5, but the cap is 54m
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 1; index < 5; ++index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("01234 prim count should be 5", prim_count, 5);
ensure_equals("01234 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0-5 should link no matter what order : 04321
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 4; index > 0; --index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("04321 prim count should be 5", prim_count, 5);
ensure_equals("04321 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0-4 should link no matter what order : 01423
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(infos[1]);
info_list.push_back(infos[4]);
info_list.push_back(infos[2]);
info_list.push_back(infos[3]);
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("01423 prim count should be 5", prim_count, 5);
ensure_equals("01423 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0-5 should NOT fully link, only 0-4
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 1; index < 6; ++index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("012345 prim count should be 5", prim_count, 5);
ensure_equals("012345 unlinkable list should have length 1", (S32) info_list.size(), 1);
std::list< LLPrimLinkInfo<S32> >::iterator info_itr = info_list.begin();
if (info_itr != info_list.end())
{
// examine the contents of the unlinked info
std::list<S32> unlinked_indecies;
info_itr->getData(unlinked_indecies);
// make sure there is only one index in the unlinked_info
ensure_equals("012345 unlinkable index count should be 1", (S32) unlinked_indecies.size(), 1);
// make sure its value is 6
std::list<S32>::iterator unlinked_index_itr = unlinked_indecies.begin();
S32 unlinkable_index = *unlinked_index_itr;
ensure_equals("012345 unlinkable index should be 5", (S32) unlinkable_index, 5);
}
}
// spheres 0-7 should NOT fully link, only 0-5
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 1; index < 8; ++index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("01234567 prim count should be 5", prim_count, 5);
// Should be 1 linkinfo on unlinkable that has 2 prims
ensure_equals("01234567 unlinkable list should have length 1", (S32) info_list.size(), 1);
std::list< LLPrimLinkInfo<S32> >::iterator info_itr = info_list.begin();
if (info_itr != info_list.end())
{
// make sure there is only one index in the unlinked_info
std::list<S32> unlinked_indecies;
info_itr->getData(unlinked_indecies);
ensure_equals("0123456 unlinkable index count should be 3", (S32) unlinked_indecies.size(), 3);
// make sure its values are 6 and 7
std::list<S32>::iterator unlinked_index_itr = unlinked_indecies.begin();
S32 unlinkable_index = *unlinked_index_itr;
ensure_equals("0123456 first unlinkable index should be 5", (S32) unlinkable_index, 5);
++unlinked_index_itr;
unlinkable_index = *unlinked_index_itr;
ensure_equals("0123456 second unlinkable index should be 6", (S32) unlinkable_index, 6);
++unlinked_index_itr;
unlinkable_index = *unlinked_index_itr;
ensure_equals("0123456 third unlinkable index should be 7", (S32) unlinkable_index, 7);
}
}
}
template<> template<>
void linkable_object::test<3>()
{
// Here we test the link results between an LLPrimLinkInfo and a set of
// randomized LLPrimLinkInfos where the expected results are known.
S32 number_of_tests = 5;
for (S32 test = 0; test < number_of_tests; ++test)
{
// the radii are known
F32 first_radius = 1.f;
F32 second_radius = 2.f;
F32 third_radius = 3.f;
// compute the distances
F32 half_milimeter = 0.0005f;
F32 max_first_second_span = 3.f * (first_radius + second_radius) + OBJECT_SPAN_BONUS;
F32 linkable_distance = max_first_second_span - first_radius - second_radius - half_milimeter;
F32 max_full_span = 3.f * (0.5f * max_first_second_span + third_radius) + OBJECT_SPAN_BONUS;
F32 unlinkable_distance = max_full_span - 0.5f * linkable_distance - third_radius + half_milimeter;
// compute some random directions
LLVector3 first_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
first_direction.normalize();
LLVector3 second_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
second_direction.normalize();
LLVector3 third_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
third_direction.normalize();
// compute the centers
LLVector3 first_center = ll_frand(10.f) * first_direction;
LLVector3 second_center = first_center + ll_frand(linkable_distance) * second_direction;
LLVector3 first_join_center = 0.5f * (first_center + second_center);
LLVector3 third_center = first_join_center + unlinkable_distance * third_direction;
// make sure the second info links and the third does not
{
// initialize the infos
S32 index = 0;
LLPrimLinkInfo<S32> first_info(index++, LLSphere(first_center, first_radius));
LLPrimLinkInfo<S32> second_info(index++, LLSphere(second_center, second_radius));
LLPrimLinkInfo<S32> third_info(index++, LLSphere(third_center, third_radius));
// put the second and third infos in a list
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(second_info);
info_list.push_back(third_info);
// merge the list with the first_info
first_info.mergeLinkableSet(info_list);
S32 prim_count = first_info.getPrimCount();
ensure_equals("prim count should be 2", prim_count, 2);
ensure_equals("unlinkable list should have length 1", (S32) info_list.size(), 1);
}
// reverse the order and make sure we get the same results
{
// initialize the infos
S32 index = 0;
LLPrimLinkInfo<S32> first_info(index++, LLSphere(first_center, first_radius));
LLPrimLinkInfo<S32> second_info(index++, LLSphere(second_center, second_radius));
LLPrimLinkInfo<S32> third_info(index++, LLSphere(third_center, third_radius));
// build the list in the reverse order
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(third_info);
info_list.push_back(second_info);
// merge the list with the first_info
first_info.mergeLinkableSet(info_list);
S32 prim_count = first_info.getPrimCount();
ensure_equals("prim count should be 2", prim_count, 2);
ensure_equals("unlinkable list should have length 1", (S32) info_list.size(), 1);
}
}
}
template<> template<>
void linkable_object::test<4>()
{
// Here we test whether linkability is invarient under permutations
// of link order. To do this we generate a bunch of random spheres
// and then try to link them in different ways.
//
// NOTE: the linkability will only be invarient if there is only one
// linkable solution. Multiple solutions will exist if the set of
// candidates are larger than the maximum linkable distance, or more
// numerous than a single linked object can contain. This is easily
// understood by considering a very large set of link candidates,
// and first linking preferentially to the left until linking fails,
// then doing the same to the right -- the final solutions will differ.
// Hence for this test we must generate candidate sets that lie within
// the linkability envelope of a single object.
//
// NOTE: a random set of objects will tend to either be totally linkable
// or totally not. That is, the random orientations that
F32 root_center_range = 0.f;
F32 min_prim_radius = 0.1f;
F32 max_prim_radius = 2.f;
// Linkability is min(MAX_OBJECT_SPAN,3 *( R1 + R2 ) + BONUS)
// 3 * (min_prim_radius + min_prim_radius) + OBJECT_SPAN_BONUS = 6 * min_prim_radius + OBJECT_SPAN_BONUS;
// Use .45 instead of .5 to gaurantee objects are within the minimum span.
F32 child_center_range = 0.45f * ( (6*min_prim_radius) + OBJECT_SPAN_BONUS );
S32 number_of_tests = 100;
S32 number_of_spheres = 10;
S32 number_of_scrambles = 10;
S32 number_of_random_bubble_sorts = 10;
for (S32 test = 0; test < number_of_tests; ++test)
{
LLSphere sphere;
S32 sphere_index = 0;
// build the root piece
randomize_sphere(sphere, root_center_range, min_prim_radius, max_prim_radius);
info.set( sphere_index++, sphere );
// build the unlinked pieces
std::list< LLPrimLinkInfo<S32> > info_list;
for (; sphere_index < number_of_spheres; ++sphere_index)
{
randomize_sphere(sphere, child_center_range, min_prim_radius, max_prim_radius);
LLPrimLinkInfo<S32> child_info( sphere_index, sphere );
info_list.push_back(child_info);
}
// declare the variables used to store the results
std::list<S32> first_linked_list;
{
// the link attempt will modify our original info's, so we
// have to make copies of the originals for testing
LLPrimLinkInfo<S32> test_info( 0, LLSphere(info.getCenter(), 0.5f * info.getDiameter()) );
std::list< LLPrimLinkInfo<S32> > test_list;
test_list.assign(info_list.begin(), info_list.end());
// try to link
test_info.mergeLinkableSet(test_list);
ensure("All prims should link, but did not.",test_list.empty());
// store the results
test_info.getData(first_linked_list);
first_linked_list.sort();
}
// try to link the spheres in various random orders
for (S32 scramble = 0; scramble < number_of_scrambles; ++scramble)
{
LLPrimLinkInfo<S32> test_info(0, LLSphere(info.getCenter(), 0.5f * info.getDiameter()) );
// scramble the order of the info_list
std::list< LLPrimLinkInfo<S32> > test_list;
test_list.assign(info_list.begin(), info_list.end());
for (S32 i = 0; i < number_of_random_bubble_sorts; i++)
{
test_list.sort(random_sort);
}
// try to link
test_info.mergeLinkableSet(test_list);
// get the results
std::list<S32> linked_list;
test_info.getData(linked_list);
linked_list.sort();
ensure_equals("linked set size should be order independent",linked_list.size(),first_linked_list.size());
}
}
}
}
|