1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
/**
* @file llsimplestats_test.cpp
* @date 2010-10-22
* @brief Test cases for some of llsimplestat.h
*
* $LicenseInfo:firstyear=2010&license=viewergpl$
*
* Copyright (c) 2010, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include <tut/tut.hpp>
#include "lltut.h"
#include "../llsimplestat.h"
#include "llsd.h"
#include "llmath.h"
// @brief Used as a pointer cast type to get access to LLSimpleStatCounter
class TutStatCounter: public LLSimpleStatCounter
{
public:
TutStatCounter(); // Not defined
~TutStatCounter(); // Not defined
void operator=(const TutStatCounter &); // Not defined
void setRawCount(U32 c) { mCount = c; }
U32 getRawCount() const { return mCount; }
};
namespace tut
{
struct stat_counter_index
{};
typedef test_group<stat_counter_index> stat_counter_index_t;
typedef stat_counter_index_t::object stat_counter_index_object_t;
tut::stat_counter_index_t tut_stat_counter_index("stat_counter_test");
// Testing LLSimpleStatCounter's external interface
template<> template<>
void stat_counter_index_object_t::test<1>()
{
LLSimpleStatCounter c1;
ensure("Initialized counter is zero", (0 == c1.getCount()));
ensure("Counter increment return is 1", (1 == ++c1));
ensure("Counter increment return is 2", (2 == ++c1));
ensure("Current counter is 2", (2 == c1.getCount()));
c1.reset();
ensure("Counter is 0 after reset", (0 == c1.getCount()));
ensure("Counter increment return is 1", (1 == ++c1));
}
// Testing LLSimpleStatCounter's internal state
template<> template<>
void stat_counter_index_object_t::test<2>()
{
LLSimpleStatCounter c1;
TutStatCounter * tc1 = (TutStatCounter *) &c1;
ensure("Initialized private counter is zero", (0 == tc1->getRawCount()));
++c1;
++c1;
ensure("Current private counter is 2", (2 == tc1->getRawCount()));
c1.reset();
ensure("Raw counter is 0 after reset", (0 == tc1->getRawCount()));
}
// Testing LLSimpleStatCounter's wrapping behavior
template<> template<>
void stat_counter_index_object_t::test<3>()
{
LLSimpleStatCounter c1;
TutStatCounter * tc1 = (TutStatCounter *) &c1;
tc1->setRawCount(U32_MAX);
ensure("Initialized private counter is zero", (U32_MAX == c1.getCount()));
ensure("Increment of max value wraps to 0", (0 == ++c1));
}
// Testing LLSimpleStatMMM's external behavior
template<> template<>
void stat_counter_index_object_t::test<4>()
{
LLSimpleStatMMM<> m1;
typedef LLSimpleStatMMM<>::Value lcl_float;
lcl_float zero(0);
// Freshly-constructed
ensure("Constructed MMM<> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1.0);
ensure("Single insert MMM<> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("Single insert MMM<> has 1.0 max", (1.0 == m1.getMax()));
ensure("Single insert MMM<> has 1.0 mean", (1.0 == m1.getMean()));
// Second insert
m1.record(3.0);
ensure("2nd insert MMM<> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("2nd insert MMM<> has 3.0 max", (3.0 == m1.getMax()));
ensure_approximately_equals("2nd insert MMM<> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1);
// Third insert
m1.record(5.0);
ensure("3rd insert MMM<> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("3rd insert MMM<> has 5.0 max", (5.0 == m1.getMax()));
ensure_approximately_equals("3rd insert MMM<> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1);
// Fourth insert
m1.record(1000000.0);
ensure("4th insert MMM<> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<> has 1.0 min", (1.0 == m1.getMin()));
ensure("4th insert MMM<> has 100000.0 max", (1000000.0 == m1.getMax()));
ensure_approximately_equals("4th insert MMM<> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1);
// Reset
m1.reset();
ensure("Reset MMM<> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<5>()
{
LLSimpleStatMMM<> m1;
typedef LLSimpleStatMMM<>::Value lcl_float;
lcl_float zero(0);
// Insert overflowing values
const lcl_float bignum(F32_MAX / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<> has fetchable mean", (1.0 == m1.getMean() || true));
// We should be infinte but not interested in proving the IEEE standard here.
LLSD sd1(m1.getMean());
// std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl;
ensure("Overflowed MMM<> produces LLSDable Real", (sd1.isReal()));
}
// Testing LLSimpleStatMMM<F32>'s external behavior
template<> template<>
void stat_counter_index_object_t::test<6>()
{
LLSimpleStatMMM<F32> m1;
typedef LLSimpleStatMMM<F32>::Value lcl_float;
lcl_float zero(0);
// Freshly-constructed
ensure("Constructed MMM<F32> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<F32> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<F32> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<F32> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1.0);
ensure("Single insert MMM<F32> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("Single insert MMM<F32> has 1.0 max", (1.0 == m1.getMax()));
ensure("Single insert MMM<F32> has 1.0 mean", (1.0 == m1.getMean()));
// Second insert
m1.record(3.0);
ensure("2nd insert MMM<F32> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("2nd insert MMM<F32> has 3.0 max", (3.0 == m1.getMax()));
ensure_approximately_equals("2nd insert MMM<F32> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1);
// Third insert
m1.record(5.0);
ensure("3rd insert MMM<F32> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("3rd insert MMM<F32> has 5.0 max", (5.0 == m1.getMax()));
ensure_approximately_equals("3rd insert MMM<F32> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1);
// Fourth insert
m1.record(1000000.0);
ensure("4th insert MMM<F32> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<F32> has 1.0 min", (1.0 == m1.getMin()));
ensure("4th insert MMM<F32> has 1000000.0 max", (1000000.0 == m1.getMax()));
ensure_approximately_equals("4th insert MMM<F32> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1);
// Reset
m1.reset();
ensure("Reset MMM<F32> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<F32> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<F32> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<F32> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<7>()
{
LLSimpleStatMMM<F32> m1;
typedef LLSimpleStatMMM<F32>::Value lcl_float;
lcl_float zero(0);
// Insert overflowing values
const lcl_float bignum(F32_MAX / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<F32> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<F32> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<F32> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<F32> has fetchable mean", (1.0 == m1.getMean() || true));
// We should be infinte but not interested in proving the IEEE standard here.
LLSD sd1(m1.getMean());
// std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl;
ensure("Overflowed MMM<F32> produces LLSDable Real", (sd1.isReal()));
}
// Testing LLSimpleStatMMM<F64>'s external behavior
template<> template<>
void stat_counter_index_object_t::test<8>()
{
LLSimpleStatMMM<F64> m1;
typedef LLSimpleStatMMM<F64>::Value lcl_float;
lcl_float zero(0);
// Freshly-constructed
ensure("Constructed MMM<F64> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<F64> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<F64> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<F64> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1.0);
ensure("Single insert MMM<F64> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("Single insert MMM<F64> has 1.0 max", (1.0 == m1.getMax()));
ensure("Single insert MMM<F64> has 1.0 mean", (1.0 == m1.getMean()));
// Second insert
m1.record(3.0);
ensure("2nd insert MMM<F64> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("2nd insert MMM<F64> has 3.0 max", (3.0 == m1.getMax()));
ensure_approximately_equals("2nd insert MMM<F64> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1);
// Third insert
m1.record(5.0);
ensure("3rd insert MMM<F64> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("3rd insert MMM<F64> has 5.0 max", (5.0 == m1.getMax()));
ensure_approximately_equals("3rd insert MMM<F64> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1);
// Fourth insert
m1.record(1000000.0);
ensure("4th insert MMM<F64> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<F64> has 1.0 min", (1.0 == m1.getMin()));
ensure("4th insert MMM<F64> has 1000000.0 max", (1000000.0 == m1.getMax()));
ensure_approximately_equals("4th insert MMM<F64> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1);
// Reset
m1.reset();
ensure("Reset MMM<F64> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<F64> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<F64> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<F64> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<9>()
{
LLSimpleStatMMM<F64> m1;
typedef LLSimpleStatMMM<F64>::Value lcl_float;
lcl_float zero(0);
// Insert overflowing values
const lcl_float bignum(F64_MAX / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<F64> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<F64> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<F64> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<F64> has fetchable mean", (1.0 == m1.getMean() || true));
// We should be infinte but not interested in proving the IEEE standard here.
LLSD sd1(m1.getMean());
// std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl;
ensure("Overflowed MMM<F64> produces LLSDable Real", (sd1.isReal()));
}
// Testing LLSimpleStatMMM<U64>'s external behavior
template<> template<>
void stat_counter_index_object_t::test<10>()
{
LLSimpleStatMMM<U64> m1;
typedef LLSimpleStatMMM<U64>::Value lcl_int;
lcl_int zero(0);
// Freshly-constructed
ensure("Constructed MMM<U64> has 0 count", (0 == m1.getCount()));
ensure("Constructed MMM<U64> has 0 min", (zero == m1.getMin()));
ensure("Constructed MMM<U64> has 0 max", (zero == m1.getMax()));
ensure("Constructed MMM<U64> has 0 mean no div-by-zero", (zero == m1.getMean()));
// Single insert
m1.record(1);
ensure("Single insert MMM<U64> has 1 count", (1 == m1.getCount()));
ensure("Single insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("Single insert MMM<U64> has 1 max", (1 == m1.getMax()));
ensure("Single insert MMM<U64> has 1 mean", (1 == m1.getMean()));
// Second insert
m1.record(3);
ensure("2nd insert MMM<U64> has 2 count", (2 == m1.getCount()));
ensure("2nd insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("2nd insert MMM<U64> has 3 max", (3 == m1.getMax()));
ensure("2nd insert MMM<U64> has 2 mean", (2 == m1.getMean()));
// Third insert
m1.record(5);
ensure("3rd insert MMM<U64> has 3 count", (3 == m1.getCount()));
ensure("3rd insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("3rd insert MMM<U64> has 5 max", (5 == m1.getMax()));
ensure("3rd insert MMM<U64> has 3 mean", (3 == m1.getMean()));
// Fourth insert
m1.record(U64L(1000000000000));
ensure("4th insert MMM<U64> has 4 count", (4 == m1.getCount()));
ensure("4th insert MMM<U64> has 1 min", (1 == m1.getMin()));
ensure("4th insert MMM<U64> has 1000000000000ULL max", (U64L(1000000000000) == m1.getMax()));
ensure("4th insert MMM<U64> has 250000000002ULL mean", (U64L( 250000000002) == m1.getMean()));
// Reset
m1.reset();
ensure("Reset MMM<U64> has 0 count", (0 == m1.getCount()));
ensure("Reset MMM<U64> has 0 min", (zero == m1.getMin()));
ensure("Reset MMM<U64> has 0 max", (zero == m1.getMax()));
ensure("Reset MMM<U64> has 0 mean no div-by-zero", (zero == m1.getMean()));
}
// Testing LLSimpleStatMMM's response to large values
template<> template<>
void stat_counter_index_object_t::test<11>()
{
LLSimpleStatMMM<U64> m1;
typedef LLSimpleStatMMM<U64>::Value lcl_int;
lcl_int zero(0);
// Insert overflowing values
const lcl_int bignum(U64L(0xffffffffffffffff) / 2);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(bignum);
m1.record(zero);
ensure("Overflowed MMM<U64> has 8 count", (8 == m1.getCount()));
ensure("Overflowed MMM<U64> has 0 min", (zero == m1.getMin()));
ensure("Overflowed MMM<U64> has huge max", (bignum == m1.getMax()));
ensure("Overflowed MMM<U64> has fetchable mean", (zero == m1.getMean() || true));
}
}
|