1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/**
* @file cppfeatures_test
* @author Vir
* @date 2021-03
* @brief cpp features
*
* $LicenseInfo:firstyear=2021&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2021, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
// Tests related to newer C++ features, for verifying support across compilers and platforms
#include "linden_common.h"
#include "../test/lltut.h"
namespace tut
{
struct cpp_features_test {};
typedef test_group<cpp_features_test> cpp_features_test_t;
typedef cpp_features_test_t::object cpp_features_test_object_t;
tut::cpp_features_test_t tut_cpp_features_test("LLCPPFeatures");
// bracket initializers
// Can initialize containers or values using curly brackets
template<> template<>
void cpp_features_test_object_t::test<1>()
{
S32 explicit_val{3};
ensure(explicit_val==3);
S32 default_val{};
ensure(default_val==0);
std::vector<S32> fibs{1,1,2,3,5};
ensure(fibs[4]==5);
}
// auto
//
// https://en.cppreference.com/w/cpp/language/auto
//
// Can use auto in place of a more complex type specification, if the compiler can infer the type
template<> template<>
void cpp_features_test_object_t::test<2>()
{
std::vector<S32> numbers{3,6,9};
// auto element
auto& aval = numbers[1];
ensure("auto element", aval==6);
// auto iterator (non-const)
auto it = numbers.rbegin();
*it += 1;
S32 val = *it;
ensure("auto iterator", val==10);
}
// range for
//
// https://en.cppreference.com/w/cpp/language/range-for
//
// Can iterate over containers without explicit iterator
template<> template<>
void cpp_features_test_object_t::test<3>()
{
// Traditional iterator for with container
//
// Problems:
// * Have to create a new variable for the iterator, which is unrelated to the problem you're trying to solve.
// * Redundant and somewhat fragile. Have to make sure begin() and end() are both from the right container.
std::vector<S32> numbers{3,6,9};
for (auto it = numbers.begin(); it != numbers.end(); ++it)
{
auto& n = *it;
n *= 2;
}
ensure("iterator for vector", numbers[2]==18);
// Range for with container
//
// Under the hood, this is doing the same thing as the traditional
// for loop above. Still uses begin() and end() but you don't have
// to access them directly.
std::vector<S32> numbersb{3,6,9};
for (auto& n: numbersb)
{
n *= 2;
}
ensure("range for vector", numbersb[2]==18);
// Range for over a C-style array.
//
// This is handy because the language determines the range automatically.
// Getting this right manually is a little trickier.
S32 pows[] = {1,2,4,8,16};
S32 sum{};
for (const auto& v: pows)
{
sum += v;
}
ensure("for C-array", sum==31);
}
// override specifier
//
// https://en.cppreference.com/w/cpp/language/override
//
// Specify that a particular class function is an override of a virtual function.
// Benefits:
// * Makes code somewhat easier to read by showing intent.
// * Prevents mistakes where you think something is an override but it doesn't actually match the declaration in the parent class.
// Drawbacks:
// * Some compilers require that any class using override must use it consistently for all functions.
// This makes switching a class to use override a lot more work.
class Foo
{
public:
virtual bool is_happy() const = 0;
};
class Bar: public Foo
{
public:
bool is_happy() const override { return true; }
// Override would fail: non-const declaration doesn't match parent
// bool is_happy() override { return true; }
// Override would fail: wrong name
// bool is_happx() override { return true; }
};
template<> template<>
void cpp_features_test_object_t::test<4>()
{
Bar b;
ensure("override", b.is_happy());
}
// final
//
// https://en.cppreference.com/w/cpp/language/final: "Specifies that a
// virtual function cannot be overridden in a derived class or that a
// class cannot be inherited from."
class Vehicle
{
public:
virtual bool has_wheels() const = 0;
};
class WheeledVehicle: public Vehicle
{
public:
virtual bool has_wheels() const final override { return true; }
};
class Bicycle: public WheeledVehicle
{
public:
// Error: can't override final version in WheeledVehicle
// virtual bool has_wheels() override const { return true; }
};
template<> template<>
void cpp_features_test_object_t::test<5>()
{
Bicycle bi;
ensure("final", bi.has_wheels());
}
// deleted function declaration
//
// https://en.cppreference.com/w/cpp/language/function#Deleted_functions
//
// Typical case: copy constructor doesn't make sense for a particular class, so you want to make
// sure the no one tries to copy-construct an instance of the class, and that the
// compiler won't generate a copy constructor for you automatically.
// Traditional fix is to declare a
// copy constructor but never implement it, giving you a link-time error if anyone tries to use it.
// Now you can explicitly declare a function to be deleted, which has at least two advantages over
// the old way:
// * Makes the intention clear
// * Creates an error sooner, at compile time
class DoNotCopy
{
public:
DoNotCopy() {}
DoNotCopy(const DoNotCopy& ref) = delete;
};
template<> template<>
void cpp_features_test_object_t::test<6>()
{
DoNotCopy nc; // OK, default constructor
//DoNotCopy nc2(nc); // No, can't copy
//DoNotCopy nc3 = nc; // No, this also calls copy constructor (even though it looks like an assignment)
}
// defaulted function declaration
//
// https://en.cppreference.com/w/cpp/language/function#Function_definition
//
// What about the complementary case to the deleted function declaration, where you want a copy constructor
// and are happy with the default implementation the compiler will make (memberwise copy).
// Now you can explicitly declare that too.
// Usage: I guess it makes the intent clearer, but otherwise not obviously useful.
class DefaultCopyOK
{
public:
DefaultCopyOK(): mVal(123) {}
DefaultCopyOK(const DefaultCopyOK&) = default;
S32 val() const { return mVal; }
private:
S32 mVal;
};
template<> template<>
void cpp_features_test_object_t::test<7>()
{
DefaultCopyOK d; // OK
DefaultCopyOK d2(d); // OK
DefaultCopyOK d3 = d; // OK
ensure("default copy d", d.val()==123);
ensure("default copy d2", d.val()==d2.val());
ensure("default copy d3", d.val()==d3.val());
}
} // namespace tut
|