summaryrefslogtreecommitdiff
path: root/indra/newview/llvlcomposition.cpp
blob: b915cce93361bf2d655253a4c7743380112dda0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/** 
 * @file llvlcomposition.cpp
 * @brief Viewer-side representation of a composition layer...
 *
 * $LicenseInfo:firstyear=2001&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "llviewerprecompiledheaders.h"

#include "llvlcomposition.h"

#include <functional>

#include "llerror.h"
#include "v3math.h"
#include "llsurface.h"
#include "lltextureview.h"
#include "llviewertexture.h"
#include "llviewertexturelist.h"
#include "llfetchedgltfmaterial.h"
#include "llgltfmateriallist.h"
#include "llviewerregion.h"
#include "noise.h"
#include "llregionhandle.h" // for from_region_handle
#include "llviewercontrol.h"


extern LLColor4U MAX_WATER_COLOR;

static const U32 BASE_SIZE = 128;
static const F32 TERRAIN_DECODE_PRIORITY = 2048.f * 2048.f;

namespace
{
    F32 bilinear(const F32 v00, const F32 v01, const F32 v10, const F32 v11, const F32 x_frac, const F32 y_frac)
    {
        // Not sure if this is the right math...
        // Take weighted average of all four points (bilinear interpolation)
        F32 result;

        const F32 inv_x_frac = 1.f - x_frac;
        const F32 inv_y_frac = 1.f - y_frac;
        result = inv_x_frac*inv_y_frac*v00
                + x_frac*inv_y_frac*v10
                + inv_x_frac*y_frac*v01
                + x_frac*y_frac*v11;

        return result;
    }

    void boost_minimap_texture(LLViewerFetchedTexture* tex, F32 virtual_size)
    {
        llassert(tex);
        if (!tex) { return; }

        tex->setBoostLevel(LLGLTexture::BOOST_TERRAIN); // in case the raw image is at low detail
        tex->addTextureStats(virtual_size); // priority
    }

    void boost_minimap_material(LLFetchedGLTFMaterial* mat, F32 virtual_size)
    {
        if (!mat) { return; }
        if (mat->mBaseColorTexture) { boost_minimap_texture(mat->mBaseColorTexture, virtual_size); }
        if (mat->mNormalTexture) { boost_minimap_texture(mat->mNormalTexture, virtual_size); }
        if (mat->mMetallicRoughnessTexture) { boost_minimap_texture(mat->mMetallicRoughnessTexture, virtual_size); }
        if (mat->mEmissiveTexture) { boost_minimap_texture(mat->mEmissiveTexture, virtual_size); }
    }

    void unboost_minimap_texture(LLViewerFetchedTexture* tex)
    {
        if (!tex) { return; }
        tex->setBoostLevel(LLGLTexture::BOOST_NONE);
        tex->setMinDiscardLevel(MAX_DISCARD_LEVEL + 1);
    }

    void unboost_minimap_material(LLFetchedGLTFMaterial* mat)
    {
        if (!mat) { return; }
        if (mat->mBaseColorTexture) { unboost_minimap_texture(mat->mBaseColorTexture); }
        if (mat->mNormalTexture) { unboost_minimap_texture(mat->mNormalTexture); }
        if (mat->mMetallicRoughnessTexture) { unboost_minimap_texture(mat->mMetallicRoughnessTexture); }
        if (mat->mEmissiveTexture) { unboost_minimap_texture(mat->mEmissiveTexture); }
    }
};

LLTerrainMaterials::LLTerrainMaterials()
{
    for (S32 i = 0; i < ASSET_COUNT; ++i)
    {
        mMaterialTexturesSet[i] = false;
    }
}

LLTerrainMaterials::~LLTerrainMaterials()
{
    unboost();
}

BOOL LLTerrainMaterials::generateMaterials()
{
    if (texturesReady(true, true))
    {
        return TRUE;
    }

    if (materialsReady(true, true))
    {
        return TRUE;
    }

    return FALSE;
}

void LLTerrainMaterials::boost()
{
    for (S32 i = 0; i < ASSET_COUNT; ++i)
    {
        LLPointer<LLViewerFetchedTexture>& tex = mDetailTextures[i];
        llassert(tex.notNull());
        boost_minimap_texture(tex, TERRAIN_DECODE_PRIORITY);

        LLPointer<LLFetchedGLTFMaterial>& mat = mDetailMaterials[i];
        boost_minimap_material(mat, TERRAIN_DECODE_PRIORITY);
    }
}

void LLTerrainMaterials::unboost()
{
    for (S32 i = 0; i < ASSET_COUNT; ++i)
    {
        LLPointer<LLViewerFetchedTexture>& tex = mDetailTextures[i];
        unboost_minimap_texture(tex);

        LLPointer<LLFetchedGLTFMaterial>& mat = mDetailMaterials[i];
        unboost_minimap_material(mat);
    }
}

LLUUID LLTerrainMaterials::getDetailAssetID(S32 asset)
{
    llassert(mDetailTextures[asset] && mDetailMaterials[asset]);
    // Assume both the the material and texture were fetched in the same way
    // using the same UUID. However, we may not know at this point which one
    // will load.
	return mDetailTextures[asset] ? mDetailTextures[asset]->getID() : LLUUID::null;
}

LLPointer<LLViewerFetchedTexture> fetch_terrain_texture(const LLUUID& id)
{
    if (id.isNull())
    {
        return nullptr;
    }

    LLPointer<LLViewerFetchedTexture> tex = LLViewerTextureManager::getFetchedTexture(id);
    return tex;
}

void LLTerrainMaterials::setDetailAssetID(S32 asset, const LLUUID& id)
{
    // *NOTE: If there were multiple terrain swatches using the same asset
    // ID, the asset still in use will be temporarily unboosted.
    // It will be boosted again during terrain rendering.
    unboost_minimap_texture(mDetailTextures[asset]);
    unboost_minimap_material(mDetailMaterials[asset]);

	// This is terrain texture, but we are not setting it as BOOST_TERRAIN
	// since we will be manipulating it later as needed.
	mDetailTextures[asset] = fetch_terrain_texture(id);
    LLPointer<LLFetchedGLTFMaterial>& mat = mDetailMaterials[asset];
    mat = id.isNull() ? nullptr : gGLTFMaterialList.getMaterial(id);
    mMaterialTexturesSet[asset] = false;
}

LLTerrainMaterials::Type LLTerrainMaterials::getMaterialType()
{
	LL_PROFILE_ZONE_SCOPED;

    const BOOL use_textures = texturesReady(false, false) || !materialsReady(false, false);
    return use_textures ? Type::TEXTURE : Type::PBR;
}

bool LLTerrainMaterials::texturesReady(bool boost, bool strict)
{
    bool ready[ASSET_COUNT];
    // *NOTE: Calls to textureReady may boost textures. Do not early-return.
    for (S32 i = 0; i < ASSET_COUNT; i++)
    {
        ready[i] = mDetailTextures[i].notNull() && textureReady(mDetailTextures[i], boost);
    }

    bool one_ready = false;
    for (S32 i = 0; i < ASSET_COUNT; i++)
    {
        const bool current_ready = ready[i];
        one_ready = one_ready || current_ready;
        if (!current_ready && strict)
        {
            return false;
        }
    }
    return one_ready;
}

bool LLTerrainMaterials::materialsReady(bool boost, bool strict)
{
    bool ready[ASSET_COUNT];
    // *NOTE: Calls to materialReady may boost materials/textures. Do not early-return.
    for (S32 i = 0; i < ASSET_COUNT; i++)
    {
        ready[i] = materialReady(mDetailMaterials[i], mMaterialTexturesSet[i], boost, strict);
    }

#if 1
    static LLCachedControl<bool> sRenderTerrainPBREnabled(gSavedSettings, "RenderTerrainPBREnabled", false);
    static LLCachedControl<bool> sRenderTerrainPBRForce(gSavedSettings, "RenderTerrainPBRForce", false);
    if (sRenderTerrainPBREnabled && sRenderTerrainPBRForce)
    {
        bool defined = true;
        for (S32 i = 0; i < ASSET_COUNT; i++)
        {
            if (!mDetailMaterials[i])
            {
                defined = false;
                break;
            }
        }
        if (defined)
        {
            return true;
        }
    }
#endif

    bool one_ready = false;
    for (S32 i = 0; i < ASSET_COUNT; i++)
    {
        const bool current_ready = ready[i];
        one_ready = one_ready || current_ready;
        if (!current_ready && strict)
        {
            return false;
        }
    }
    return one_ready;
}

// Boost the texture loading priority
// Return true when ready to use (i.e. texture is sufficiently loaded)
// static
bool LLTerrainMaterials::textureReady(LLPointer<LLViewerFetchedTexture>& tex, bool boost)
{
    llassert(tex);
    if (!tex) { return false; }

    if (tex->getDiscardLevel() < 0)
    {
        if (boost)
        {
            boost_minimap_texture(tex, BASE_SIZE*BASE_SIZE);
        }
        return false;
    }
    if ((tex->getDiscardLevel() != 0 &&
         (tex->getWidth() < BASE_SIZE ||
          tex->getHeight() < BASE_SIZE)))
    {
        if (boost)
        {
            boost_minimap_texture(tex, BASE_SIZE*BASE_SIZE);

            S32 width = tex->getFullWidth();
            S32 height = tex->getFullHeight();
            S32 min_dim = llmin(width, height);
            S32 ddiscard = 0;
            while (min_dim > BASE_SIZE && ddiscard < MAX_DISCARD_LEVEL)
            {
                ddiscard++;
                min_dim /= 2;
            }
            tex->setMinDiscardLevel(ddiscard);
        }
        return false;
    }
    if (tex->getComponents() == 0)
    {
        return false;
    }
    return true;
}

// Boost the loading priority of every known texture in the material
// Return true when ready to use
// static
bool LLTerrainMaterials::materialReady(LLPointer<LLFetchedGLTFMaterial> &mat, bool &textures_set, bool boost, bool strict)
{
    if (!mat || !mat->isLoaded())
    {
        return false;
    }

    // Material is loaded, but textures may not be
    if (!textures_set)
    {
        textures_set = true;
        // *NOTE: These can sometimes be set to to nullptr due to
        // updateTEMaterialTextures. For the sake of robustness, we emulate
        // that fetching behavior by setting textures of null IDs to nullptr.
        mat->mBaseColorTexture         = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR]);
        mat->mNormalTexture            = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_NORMAL]);
        mat->mMetallicRoughnessTexture = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_METALLIC_ROUGHNESS]);
        mat->mEmissiveTexture          = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_EMISSIVE]);
    }

    // *NOTE: Calls to textureReady may boost textures. Do not early-return.
    bool ready[LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT];
    ready[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR] =
        mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR].isNull() || textureReady(mat->mBaseColorTexture, boost);
    ready[LLGLTFMaterial::GLTF_TEXTURE_INFO_NORMAL] =
        mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_NORMAL].isNull() || textureReady(mat->mNormalTexture, boost);
    ready[LLGLTFMaterial::GLTF_TEXTURE_INFO_METALLIC_ROUGHNESS] =
        mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_METALLIC_ROUGHNESS].isNull() ||
        textureReady(mat->mMetallicRoughnessTexture, boost);
    ready[LLGLTFMaterial::GLTF_TEXTURE_INFO_EMISSIVE] =
        mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_EMISSIVE].isNull() || textureReady(mat->mEmissiveTexture, boost);

    if (strict)
    {
        for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
        {
            if (!ready[i])
            {
                return false;
            }
        }
    }

    return true;
}

// static
const LLUUID (&LLVLComposition::getDefaultTextures())[ASSET_COUNT]
{
    const static LLUUID default_textures[LLVLComposition::ASSET_COUNT] =
    {
        TERRAIN_DIRT_DETAIL,
        TERRAIN_GRASS_DETAIL,
        TERRAIN_MOUNTAIN_DETAIL,
        TERRAIN_ROCK_DETAIL
    };
    return default_textures;
}

LLVLComposition::LLVLComposition(LLSurface *surfacep, const U32 width, const F32 scale) :
    LLTerrainMaterials(),
	LLViewerLayer(width, scale)
{
	// Load Terrain Textures - Original ones
    const LLUUID (&default_textures)[LLVLComposition::ASSET_COUNT] = LLVLComposition::getDefaultTextures();
    for (S32 i = 0; i < ASSET_COUNT; ++i)
    {
        setDetailAssetID(i, default_textures[i]);
    }

	mSurfacep = surfacep;

	// Initialize the texture matrix to defaults.
	for (S32 i = 0; i < CORNER_COUNT; ++i)
	{
		mStartHeight[i] = gSavedSettings.getF32("TerrainColorStartHeight");
		mHeightRange[i] = gSavedSettings.getF32("TerrainColorHeightRange");
	}
}


LLVLComposition::~LLVLComposition()
{
    LLTerrainMaterials::~LLTerrainMaterials();
}


void LLVLComposition::setSurface(LLSurface *surfacep)
{
	mSurfacep = surfacep;
}

BOOL LLVLComposition::generateHeights(const F32 x, const F32 y,
									  const F32 width, const F32 height)
{
	if (!mParamsReady)
	{
		// All the parameters haven't been set yet (we haven't gotten the message from the sim)
		return FALSE;
	}

	llassert(mSurfacep);

	if (!mSurfacep || !mSurfacep->getRegion()) 
	{
		// We don't always have the region yet here....
		return FALSE;
	}

	S32 x_begin, y_begin, x_end, y_end;

	x_begin = ll_round( x * mScaleInv );
	y_begin = ll_round( y * mScaleInv );
	x_end = ll_round( (x + width) * mScaleInv );
	y_end = ll_round( (y + width) * mScaleInv );

	if (x_end > mWidth)
	{
		x_end = mWidth;
	}
	if (y_end > mWidth)
	{
		y_end = mWidth;
	}

	LLVector3d origin_global = from_region_handle(mSurfacep->getRegion()->getHandle());

	// For perlin noise generation...
	const F32 slope_squared = 1.5f*1.5f;
	const F32 xyScale = 4.9215f; //0.93284f;
	const F32 zScale = 4; //0.92165f;
	const F32 z_offset = 0.f;
	const F32 noise_magnitude = 2.f;		//  Degree to which noise modulates composition layer (versus
											//  simple height)

	const F32 xyScaleInv = (1.f / xyScale);
	const F32 zScaleInv = (1.f / zScale);

	const F32 inv_width = 1.f/mWidth;

	// OK, for now, just have the composition value equal the height at the point.
	for (S32 j = y_begin; j < y_end; j++)
	{
		for (S32 i = x_begin; i < x_end; i++)
		{

			F32 vec[3];
			F32 vec1[3];
			F32 twiddle;

			// Bilinearly interpolate the start height and height range of the textures
			F32 start_height = bilinear(mStartHeight[SOUTHWEST],
										mStartHeight[SOUTHEAST],
										mStartHeight[NORTHWEST],
										mStartHeight[NORTHEAST],
										i*inv_width, j*inv_width); // These will be bilinearly interpolated
			F32 height_range = bilinear(mHeightRange[SOUTHWEST],
										mHeightRange[SOUTHEAST],
										mHeightRange[NORTHWEST],
										mHeightRange[NORTHEAST],
										i*inv_width, j*inv_width); // These will be bilinearly interpolated

			LLVector3 location(i*mScale, j*mScale, 0.f);

			F32 height = mSurfacep->resolveHeightRegion(location) + z_offset;

			// Step 0: Measure the exact height at this texel
			vec[0] = (F32)(origin_global.mdV[VX]+location.mV[VX])*xyScaleInv;	//  Adjust to non-integer lattice
			vec[1] = (F32)(origin_global.mdV[VY]+location.mV[VY])*xyScaleInv;
			vec[2] = height*zScaleInv;
			//
			//  Choose material value by adding to the exact height a random value 
			//
			vec1[0] = vec[0]*(0.2222222222f);
			vec1[1] = vec[1]*(0.2222222222f);
			vec1[2] = vec[2]*(0.2222222222f);
			twiddle = noise2(vec1)*6.5f;					//  Low freq component for large divisions

			twiddle += turbulence2(vec, 2)*slope_squared;	//  High frequency component
			twiddle *= noise_magnitude;

			F32 scaled_noisy_height = (height + twiddle - start_height) * F32(ASSET_COUNT) / height_range;

			scaled_noisy_height = llmax(0.f, scaled_noisy_height);
			scaled_noisy_height = llmin(3.f, scaled_noisy_height);
			*(mDatap + i + j*mWidth) = scaled_noisy_height;
		}
	}
	return TRUE;
}

LLTerrainMaterials gLocalTerrainMaterials;

BOOL LLVLComposition::generateComposition()
{
	if (!mParamsReady)
	{
		// All the parameters haven't been set yet (we haven't gotten the message from the sim)
		return FALSE;
	}

    return LLTerrainMaterials::generateMaterials();
}

namespace
{
    void prepare_fallback_image(LLImageRaw* raw_image)
    {
        raw_image->resize(BASE_SIZE, BASE_SIZE, 4);
        raw_image->fill(LLColor4U::white);
    }

    // Check if the raw image is loaded for this texture at a discard
    // level the minimap can use, and if not then try to get it loaded.
    bool prepare_raw_image(LLPointer<LLImageRaw>& raw_image, bool emissive, LLViewerFetchedTexture* tex, bool& delete_raw_post)
    {
        if (!tex)
        {
            if (!emissive)
            {
                prepare_fallback_image(raw_image);
            }
            else
            {
                llassert(!raw_image);
                raw_image = nullptr;
            }
            return true;
        }
        if (raw_image)
        {
            // Callback already initiated
            if (raw_image->getDataSize() > 0)
            {
                // Callback finished
                delete_raw_post = true;
                return true;
            }
            else
            {
                return false;
            }
        }

        raw_image = new LLImageRaw();

        S32 ddiscard = 0;
        {
            S32 min_dim = llmin(tex->getFullWidth(), tex->getFullHeight());
            while (min_dim > BASE_SIZE && ddiscard < MAX_DISCARD_LEVEL)
            {
                ddiscard++;
                min_dim /= 2;
            }
        }

        struct PendingImage
        {
            LLImageRaw* mRawImage;
            S32 mDesiredDiscard;
            LLUUID mTextureId;
            PendingImage(LLImageRaw* raw_image, S32 ddiscard, const LLUUID& texture_id)
                : mRawImage(raw_image)
                , mDesiredDiscard(ddiscard)
                , mTextureId(texture_id)
            {
                mRawImage->ref();
            }
            ~PendingImage()
            {
                mRawImage->unref();
            }
        };
        PendingImage* pending_image = new PendingImage(raw_image, ddiscard, tex->getID());

        loaded_callback_func cb = [](BOOL success, LLViewerFetchedTexture * src_vi, LLImageRaw * src, LLImageRaw * src_aux, S32 discard_level, BOOL is_final, void* userdata) {
            PendingImage* pending = (PendingImage*)userdata;
            // Owning LLVLComposition still exists

            // Assume mRawImage only used by single LLVLComposition for now
            const bool in_use_by_composition = pending->mRawImage->getNumRefs() > 1;
            llassert(pending->mRawImage->getNumRefs());
            llassert(pending->mRawImage->getNumRefs() <= 2);
            const bool needs_data = !pending->mRawImage->getDataSize();
            if (in_use_by_composition && needs_data)
            {
                if (success && pending->mDesiredDiscard == discard_level)
                {
                    pending->mRawImage->resize(BASE_SIZE, BASE_SIZE, src->getComponents());
                    pending->mRawImage->copyScaled(src);
                }
                else if (is_final)
                {
                    prepare_fallback_image(pending->mRawImage);
                }
            }

            if (is_final) { delete userdata; }
        };
        tex->setLoadedCallback(cb, ddiscard, true, false, pending_image, nullptr);
        tex->forceToSaveRawImage(ddiscard);

        return false;
    }
};

BOOL LLVLComposition::generateMinimapTileLand(const F32 x, const F32 y,
									  const F32 width, const F32 height)
{
	LL_PROFILE_ZONE_SCOPED
	llassert(mSurfacep);
	llassert(x >= 0.f);
	llassert(y >= 0.f);

	///////////////////////////
	//
	// Generate raw data arrays for surface textures
	//
	//

	// These have already been validated by generateComposition.
	U8* st_data[ASSET_COUNT];
	S32 st_data_size[ASSET_COUNT]; // for debugging

    const bool use_textures = getMaterialType() != LLTerrainMaterials::Type::PBR;
    if (use_textures)
    {
        if (!texturesReady(true, true)) { return FALSE; }
    }
    else
    {
        if (!materialsReady(true, true)) { return FALSE; }
    }

	for (S32 i = 0; i < ASSET_COUNT; i++)
	{
		if (mRawImages[i].isNull())
		{
			// Read back a raw image for this discard level, if it exists
            LLViewerFetchedTexture* tex;
            LLViewerFetchedTexture* tex_emissive; // Can be null
            bool has_base_color_factor;
            bool has_emissive_factor;
            bool has_alpha;
            LLColor3 base_color_factor;
            LLColor3 emissive_factor;
            if (use_textures)
            {
                tex = mDetailTextures[i];
                tex_emissive = nullptr;
                has_base_color_factor = false;
                has_emissive_factor = false;
                has_alpha = false;
                llassert(tex);
            }
            else
            {
                tex = mDetailMaterials[i]->mBaseColorTexture;
                tex_emissive = mDetailMaterials[i]->mEmissiveTexture;
                base_color_factor = LLColor3(mDetailMaterials[i]->mBaseColor);
                // *HACK: Treat alpha as black
                base_color_factor *= (mDetailMaterials[i]->mBaseColor.mV[VW]);
                emissive_factor = mDetailMaterials[i]->mEmissiveColor;
                has_base_color_factor = (base_color_factor.mV[VX] != 1.f ||
                                         base_color_factor.mV[VY] != 1.f ||
                                         base_color_factor.mV[VZ] != 1.f);
                has_emissive_factor = (emissive_factor.mV[VX] != 1.f ||
                                       emissive_factor.mV[VY] != 1.f ||
                                       emissive_factor.mV[VZ] != 1.f);
                has_alpha = mDetailMaterials[i]->mAlphaMode != LLGLTFMaterial::ALPHA_MODE_OPAQUE;
            }

            if (!tex) { tex = LLViewerFetchedTexture::sWhiteImagep; }

            bool delete_raw_post = false;
            bool delete_raw_post_emissive = false;
            if (!prepare_raw_image(mRawImagesBaseColor[i], false, tex, delete_raw_post)) { return FALSE; }
            if (tex_emissive && !prepare_raw_image(mRawImagesEmissive[i], true, tex_emissive, delete_raw_post_emissive)) { return FALSE; }
            // tex_emissive can be null, and then will be ignored

            // In the simplest case, the minimap image is just the base color.
            // This will be replaced if we need to do any tinting/compositing.
            mRawImages[i] = mRawImagesBaseColor[i];

            // *TODO: This isn't quite right for PBR:
            // 1) It does not convert the color images from SRGB to linear
            // before mixing (which will always require copying the image).
            // 2) It mixes emissive and base color before mixing terrain
            // materials, but it should be the other way around
            // Long-term, we should consider a method that is more
            // maintainable. Shaders, perhaps? Bake shaders to textures?
            LLPointer<LLImageRaw> raw_emissive;
            if (tex_emissive)
            {
                raw_emissive = mRawImagesEmissive[i];
                if (has_emissive_factor ||
                    tex_emissive->getWidth(tex_emissive->getRawImageLevel()) != BASE_SIZE ||
                    tex_emissive->getHeight(tex_emissive->getRawImageLevel()) != BASE_SIZE ||
                    tex_emissive->getComponents() != 4)
                {
                    LLPointer<LLImageRaw> newraw_emissive = new LLImageRaw(BASE_SIZE, BASE_SIZE, 4);
                    // Copy RGB, leave alpha alone (set to opaque by default)
                    newraw_emissive->copy(mRawImagesEmissive[i]);
                    if (has_emissive_factor)
                    {
                        newraw_emissive->tint(emissive_factor);
                    }
                    raw_emissive = newraw_emissive;
                }
            }
			if (has_base_color_factor ||
                raw_emissive ||
                has_alpha ||
                tex->getWidth(tex->getRawImageLevel()) != BASE_SIZE ||
				tex->getHeight(tex->getRawImageLevel()) != BASE_SIZE ||
				tex->getComponents() != 3)
			{
				LLPointer<LLImageRaw> newraw = new LLImageRaw(BASE_SIZE, BASE_SIZE, 3);
                if (has_alpha)
                {
                    // Approximate the water underneath terrain alpha with solid water color
                    newraw->clear(
                        MAX_WATER_COLOR.mV[VX],
                        MAX_WATER_COLOR.mV[VY],
                        MAX_WATER_COLOR.mV[VZ],
                        255);
                }
				newraw->composite(mRawImagesBaseColor[i]);
                if (has_base_color_factor)
                {
                    newraw->tint(base_color_factor);
                }
                // Apply emissive texture
                if (raw_emissive)
                {
                    newraw->addEmissive(raw_emissive);
                }

				mRawImages[i] = newraw; // deletes old
			}

            if (delete_raw_post)
            {
                tex->destroyRawImage();
            }
            if (delete_raw_post_emissive)
            {
                tex_emissive->destroyRawImage();
            }

            // Remove intermediary image references
            mRawImagesBaseColor[i] = nullptr;
            mRawImagesEmissive[i] = nullptr;
		}
		st_data[i] = mRawImages[i]->getData();
		st_data_size[i] = mRawImages[i]->getDataSize();
	}

	///////////////////////////////////////
	//
	// Generate and clamp x/y bounding box.
	//
	//

	S32 x_begin, y_begin, x_end, y_end;
	x_begin = (S32)(x * mScaleInv);
	y_begin = (S32)(y * mScaleInv);
	x_end = ll_round( (x + width) * mScaleInv );
	y_end = ll_round( (y + width) * mScaleInv );

	if (x_end > mWidth)
	{
        llassert(false);
		x_end = mWidth;
	}
	if (y_end > mWidth)
	{
        llassert(false);
		y_end = mWidth;
	}


	///////////////////////////////////////////
	//
	// Generate target texture information, stride ratios.
	//
	//

	LLViewerTexture *texturep;
	U32 tex_width, tex_height, tex_comps;
	U32 tex_stride;
	F32 tex_x_scalef, tex_y_scalef;
	S32 tex_x_begin, tex_y_begin, tex_x_end, tex_y_end;
	F32 tex_x_ratiof, tex_y_ratiof;

	texturep = mSurfacep->getSTexture();
	tex_width = texturep->getWidth();
	tex_height = texturep->getHeight();
	tex_comps = texturep->getComponents();
	tex_stride = tex_width * tex_comps;

	U32 st_comps = 3;
	U32 st_width = BASE_SIZE;
	U32 st_height = BASE_SIZE;
	
	if (tex_comps != st_comps)
	{
        llassert(false);
		return FALSE;
	}

	tex_x_scalef = (F32)tex_width / (F32)mWidth;
	tex_y_scalef = (F32)tex_height / (F32)mWidth;
	tex_x_begin = (S32)((F32)x_begin * tex_x_scalef);
	tex_y_begin = (S32)((F32)y_begin * tex_y_scalef);
	tex_x_end = (S32)((F32)x_end * tex_x_scalef);
	tex_y_end = (S32)((F32)y_end * tex_y_scalef);

	tex_x_ratiof = (F32)mWidth*mScale / (F32)tex_width;
	tex_y_ratiof = (F32)mWidth*mScale / (F32)tex_height;

	LLPointer<LLImageRaw> raw = new LLImageRaw(tex_width, tex_height, tex_comps);
	U8 *rawp = raw->getData();

	F32 st_x_stride, st_y_stride;
	st_x_stride = ((F32)st_width / (F32)mTexScaleX)*((F32)mWidth / (F32)tex_width);
	st_y_stride = ((F32)st_height / (F32)mTexScaleY)*((F32)mWidth / (F32)tex_height);

	llassert(st_x_stride > 0.f);
	llassert(st_y_stride > 0.f);
	////////////////////////////////
	//
	// Iterate through the target texture, striding through the
	// subtextures and interpolating appropriately.
	//
	//

	F32 sti, stj;
	S32 st_offset;
	sti = (tex_x_begin * st_x_stride) - st_width*(llfloor((tex_x_begin * st_x_stride)/st_width));
	stj = (tex_y_begin * st_y_stride) - st_height*(llfloor((tex_y_begin * st_y_stride)/st_height));

	st_offset = (llfloor(stj * st_width) + llfloor(sti)) * st_comps;
	for (S32 j = tex_y_begin; j < tex_y_end; j++)
	{
		U32 offset = j * tex_stride + tex_x_begin * tex_comps;
		sti = (tex_x_begin * st_x_stride) - st_width*((U32)(tex_x_begin * st_x_stride)/st_width);
		for (S32 i = tex_x_begin; i < tex_x_end; i++)
		{
			S32 tex0, tex1;
			F32 composition = getValueScaled(i*tex_x_ratiof, j*tex_y_ratiof);

			tex0 = llfloor( composition );
			tex0 = llclamp(tex0, 0, 3);
			composition -= tex0;
			tex1 = tex0 + 1;
			tex1 = llclamp(tex1, 0, 3);

			st_offset = (lltrunc(sti) + lltrunc(stj)*st_width) * st_comps;
			for (U32 k = 0; k < tex_comps; k++)
			{
				// Linearly interpolate based on composition.
				if (st_offset >= st_data_size[tex0] || st_offset >= st_data_size[tex1])
				{
					// SJB: This shouldn't be happening, but does... Rounding error?
					//LL_WARNS() << "offset 0 [" << tex0 << "] =" << st_offset << " >= size=" << st_data_size[tex0] << LL_ENDL;
					//LL_WARNS() << "offset 1 [" << tex1 << "] =" << st_offset << " >= size=" << st_data_size[tex1] << LL_ENDL;
				}
				else
				{
					F32 a = *(st_data[tex0] + st_offset);
					F32 b = *(st_data[tex1] + st_offset);
					rawp[ offset ] = (U8)lltrunc( a + composition * (b - a) );
				}
				offset++;
				st_offset++;
			}

			sti += st_x_stride;
			if (sti >= st_width)
			{
				sti -= st_width;
			}
		}

		stj += st_y_stride;
		if (stj >= st_height)
		{
			stj -= st_height;
		}
	}

	if (!texturep->hasGLTexture())
	{
		texturep->createGLTexture(0, raw);
	}
	texturep->setSubImage(raw, tex_x_begin, tex_y_begin, tex_x_end - tex_x_begin, tex_y_end - tex_y_begin);

    // Un-boost detail textures (will get re-boosted if rendering in high detail)
    for (S32 i = 0; i < ASSET_COUNT; i++)
    {
        unboost_minimap_texture(mDetailTextures[i]);
    }

    // Un-boost textures for each detail material (will get re-boosted if rendering in high detail)
    for (S32 i = 0; i < ASSET_COUNT; i++)
    {
        unboost_minimap_material(mDetailMaterials[i]);
    }
	
	return TRUE;
}

F32 LLVLComposition::getStartHeight(S32 corner)
{
	return mStartHeight[corner];
}

void LLVLComposition::setDetailAssetID(S32 asset, const LLUUID& id)
{
	if (id.isNull())
	{
        return;
    }
    LLTerrainMaterials::setDetailAssetID(asset, id);
	mRawImages[asset] = NULL;
	mRawImagesBaseColor[asset] = NULL;
	mRawImagesEmissive[asset] = NULL;
}

void LLVLComposition::setStartHeight(S32 corner, const F32 start_height)
{
	mStartHeight[corner] = start_height;
}

F32 LLVLComposition::getHeightRange(S32 corner)
{
	return mHeightRange[corner];
}

void LLVLComposition::setHeightRange(S32 corner, const F32 range)
{
	mHeightRange[corner] = range;
}