summaryrefslogtreecommitdiff
path: root/indra/newview/llsechandler_basic.cpp
blob: 2adc6399a53ecefb320dec754f9ff6438c8b1887 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
/** 
 * @file llsechandler_basic.cpp
 * @brief Security API for services such as certificate handling
 * secure local storage, etc.
 *
 * $LicenseInfo:firstyear=2003&license=viewergpl$
 * 
 * Copyright (c) 2003-2000, Linden Research, Inc.
 * 
 * Second Life Viewer Source Code
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlife.com/developers/opensource/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at http://secondlife.com/developers/opensource/flossexception
 * 
LLS * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 * $/LicenseInfo$
 */


#include "llviewerprecompiledheaders.h"
#include "llsecapi.h"
#include "llsechandler_basic.h"
#include "llsdserialize.h"
#include "llviewernetwork.h"
#include "llxorcipher.h"
#include "llfile.h"
#include "lldir.h"
#include "llviewercontrol.h"
#include <vector>
#include <ios>
#include <openssl/ossl_typ.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/pem.h>
#include <openssl/asn1.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <iostream>
#include <iomanip>
#include <time.h>
#include "llmachineid.h"



// 128 bits of salt data...
#define STORE_SALT_SIZE 16 
#define BUFFER_READ_SIZE 256
std::string cert_string_from_asn1_string(ASN1_STRING* value);
std::string cert_string_from_octet_string(ASN1_OCTET_STRING* value);

LLSD _basic_constraints_ext(X509* cert);
LLSD _key_usage_ext(X509* cert);
LLSD _ext_key_usage_ext(X509* cert);
LLSD _subject_key_identifier_ext(X509 *cert);
LLSD _authority_key_identifier_ext(X509* cert);

LLBasicCertificate::LLBasicCertificate(const std::string& pem_cert) 
{
	
	// BIO_new_mem_buf returns a read only bio, but takes a void* which isn't const
	// so we need to cast it.
	BIO * pem_bio = BIO_new_mem_buf((void*)pem_cert.c_str(), pem_cert.length());
	if(pem_bio == NULL)
	{
		LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;
		throw LLInvalidCertificate(this);
	}
	mCert = NULL;
	PEM_read_bio_X509(pem_bio, &mCert, 0, NULL);
	BIO_free(pem_bio);
	if (!mCert)
	{
		throw LLInvalidCertificate(this);
	}
}


LLBasicCertificate::LLBasicCertificate(X509* pCert) 
{
	if (!pCert || !pCert->cert_info)
	{
		throw LLInvalidCertificate(this);
	}	
	mCert = X509_dup(pCert);
}

LLBasicCertificate::~LLBasicCertificate() 
{
	if(mCert)
	{
		X509_free(mCert);
	}
}

//
// retrieve the pem using the openssl functionality
std::string LLBasicCertificate::getPem() const
{ 
	char * pem_bio_chars = NULL;
	// a BIO is the equivalent of a 'std::stream', and
	// can be a file, mem stream, whatever.  Grab a memory based
	// BIO for the result
	BIO *pem_bio = BIO_new(BIO_s_mem());
	if (!pem_bio)
	{
		LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;		
		return std::string();
	}
	PEM_write_bio_X509(pem_bio, mCert);
	int length = BIO_get_mem_data(pem_bio, &pem_bio_chars);
	std::string result = std::string(pem_bio_chars, length);
	BIO_free(pem_bio);
	return result;
}

// get the DER encoding for the cert
// DER is a binary encoding format for certs...
std::vector<U8> LLBasicCertificate::getBinary() const
{ 
	U8 * der_bio_data = NULL;
	// get a memory bio 
	BIO *der_bio = BIO_new(BIO_s_mem());
	if (!der_bio)
	{
		LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;			
		return std::vector<U8>();
	}
	i2d_X509_bio(der_bio, mCert);
	int length = BIO_get_mem_data(der_bio, &der_bio_data);
	std::vector<U8> result(length);
	// vectors are guranteed to be a contiguous chunk of memory.
	memcpy(&result[0], der_bio_data,  length);
	BIO_free(der_bio);
	return result;
}


void LLBasicCertificate::getLLSD(LLSD &llsd)
{
	if (mLLSDInfo.isUndefined())
	{
		_initLLSD();
	}
	llsd = mLLSDInfo;
}

// Initialize the LLSD info for the certificate
LLSD& LLBasicCertificate::_initLLSD()
{ 

	// call the various helpers to build the LLSD
	mLLSDInfo[CERT_SUBJECT_NAME] = cert_name_from_X509_NAME(X509_get_subject_name(mCert));
	mLLSDInfo[CERT_ISSUER_NAME] = cert_name_from_X509_NAME(X509_get_issuer_name(mCert));
	mLLSDInfo[CERT_SUBJECT_NAME_STRING] = cert_string_name_from_X509_NAME(X509_get_subject_name(mCert));
	mLLSDInfo[CERT_ISSUER_NAME_STRING] = cert_string_name_from_X509_NAME(X509_get_issuer_name(mCert));
	ASN1_INTEGER *sn = X509_get_serialNumber(mCert);
	if (sn != NULL)
	{
		mLLSDInfo[CERT_SERIAL_NUMBER] = cert_string_from_asn1_integer(sn);
	}
	
	mLLSDInfo[CERT_VALID_TO] = cert_date_from_asn1_time(X509_get_notAfter(mCert));
	mLLSDInfo[CERT_VALID_FROM] = cert_date_from_asn1_time(X509_get_notBefore(mCert));
	mLLSDInfo[CERT_SHA1_DIGEST] = cert_get_digest("sha1", mCert);
	mLLSDInfo[CERT_MD5_DIGEST] = cert_get_digest("md5", mCert);
	// add the known extensions
	mLLSDInfo[CERT_BASIC_CONSTRAINTS] = _basic_constraints_ext(mCert);
	mLLSDInfo[CERT_KEY_USAGE] = _key_usage_ext(mCert);
	mLLSDInfo[CERT_EXTENDED_KEY_USAGE] = _ext_key_usage_ext(mCert);
	mLLSDInfo[CERT_SUBJECT_KEY_IDENTFIER] = _subject_key_identifier_ext(mCert);
	mLLSDInfo[CERT_AUTHORITY_KEY_IDENTIFIER] = _authority_key_identifier_ext(mCert);
	return mLLSDInfo; 
}

// Retrieve the basic constraints info
LLSD _basic_constraints_ext(X509* cert)
{
	LLSD result;
	BASIC_CONSTRAINTS *bs = (BASIC_CONSTRAINTS *)X509_get_ext_d2i(cert, NID_basic_constraints, NULL, NULL);
	if(bs)
	{
		result = LLSD::emptyMap();
		// Determines whether the cert can be used as a CA
		result[CERT_BASIC_CONSTRAINTS_CA] = (bool)bs->ca;
	
		if(bs->pathlen) 
		{
			// the pathlen determines how deep a certificate chain can be from
			// this CA
			if((bs->pathlen->type == V_ASN1_NEG_INTEGER)
			   || !bs->ca) 
			{
				result[CERT_BASIC_CONSTRAINTS_PATHLEN] = 0;
			} 
			else 
			{
				result[CERT_BASIC_CONSTRAINTS_PATHLEN] = (int)ASN1_INTEGER_get(bs->pathlen);
			}
		}

	}
	return result;
}

// retrieve the key usage, which specifies how the cert can be used.
// 
LLSD _key_usage_ext(X509* cert)
{
	LLSD result;
	ASN1_STRING *usage_str = (ASN1_STRING *)X509_get_ext_d2i(cert, NID_key_usage, NULL, NULL);
	if(usage_str)
	{
		result = LLSD::emptyArray();
		long usage = 0;
		if(usage_str->length > 0) 
		{
			usage = usage_str->data[0];
			if(usage_str->length > 1)
			{
				usage |= usage_str->data[1] << 8;
			}
		}
		ASN1_STRING_free(usage_str);
		if(usage)
		{
			if(usage & KU_DIGITAL_SIGNATURE) result.append(LLSD((std::string)CERT_KU_DIGITAL_SIGNATURE));
			if(usage & KU_NON_REPUDIATION) result.append(LLSD((std::string)CERT_KU_NON_REPUDIATION));
			if(usage & KU_KEY_ENCIPHERMENT) result.append(LLSD((std::string)CERT_KU_KEY_ENCIPHERMENT));
			if(usage & KU_DATA_ENCIPHERMENT) result.append(LLSD((std::string)CERT_KU_DATA_ENCIPHERMENT));
			if(usage & KU_KEY_AGREEMENT) result.append(LLSD((std::string)CERT_KU_KEY_AGREEMENT));
			if(usage & KU_KEY_CERT_SIGN) result.append(LLSD((std::string)CERT_KU_CERT_SIGN));			
			if(usage & KU_CRL_SIGN) result.append(LLSD((std::string)CERT_KU_CRL_SIGN));	
			if(usage & KU_ENCIPHER_ONLY) result.append(LLSD((std::string)CERT_KU_ENCIPHER_ONLY));				
			if(usage & KU_DECIPHER_ONLY) result.append(LLSD((std::string)CERT_KU_DECIPHER_ONLY));		
		}
	}
	return result;
}

// retrieve the extended key usage for the cert
LLSD _ext_key_usage_ext(X509* cert)
{
	LLSD result;
	EXTENDED_KEY_USAGE *eku = (EXTENDED_KEY_USAGE *)X509_get_ext_d2i(cert, NID_ext_key_usage, NULL, NULL);
	if(eku)
	{
		result = LLSD::emptyArray();
		while(sk_ASN1_OBJECT_num(eku))
		{
			ASN1_OBJECT *usage = sk_ASN1_OBJECT_pop(eku);
			if(usage)
			{
				int nid = OBJ_obj2nid(usage);
				if (nid)
				{
					std::string sn = OBJ_nid2sn(nid);
					result.append(sn);
				}
				ASN1_OBJECT_free(usage);
			}
		}
	}
	return result;
}

// retrieve the subject key identifier of the cert
LLSD _subject_key_identifier_ext(X509 *cert)
{
	LLSD result;
	ASN1_OCTET_STRING *skeyid = (ASN1_OCTET_STRING *)X509_get_ext_d2i(cert, NID_subject_key_identifier, NULL, NULL);
	if(skeyid)
	{
		result = cert_string_from_octet_string(skeyid);
	}
	return result;
}

// retrieve the authority key identifier of the cert
LLSD _authority_key_identifier_ext(X509* cert)
{
	LLSD result;
	AUTHORITY_KEYID *akeyid = (AUTHORITY_KEYID *)X509_get_ext_d2i(cert, NID_authority_key_identifier, NULL, NULL);
	if(akeyid)
	{
		result = LLSD::emptyMap();
		if(akeyid->keyid)
		{
			result[CERT_AUTHORITY_KEY_IDENTIFIER_ID] = cert_string_from_octet_string(akeyid->keyid);
		}
		if(akeyid->serial)
		{
			result[CERT_AUTHORITY_KEY_IDENTIFIER_SERIAL] = cert_string_from_asn1_integer(akeyid->serial);
		}	
	}
	
	// we ignore the issuer name in the authority key identifier, we check the issue name via
	// the the issuer name entry in the cert.
	

	return result;
}

// retrieve an openssl x509 object,
// which must be freed by X509_free
X509* LLBasicCertificate::getOpenSSLX509() const
{ 
	return X509_dup(mCert); 
}  

// generate a single string containing the subject or issuer
// name of the cert.
std::string cert_string_name_from_X509_NAME(X509_NAME* name)
{
	char * name_bio_chars = NULL;
	// get a memory bio
	BIO *name_bio = BIO_new(BIO_s_mem());
	// stream the name into the bio.  The name will be in the 'short name' format
	X509_NAME_print_ex(name_bio, name, 0, XN_FLAG_RFC2253);
	int length = BIO_get_mem_data(name_bio, &name_bio_chars);
	std::string result = std::string(name_bio_chars, length);
	BIO_free(name_bio);
	return result;
}

// generate an LLSD from a certificate name (issuer or subject name).  
// the name will be strings indexed by the 'long form'
LLSD cert_name_from_X509_NAME(X509_NAME* name)
{
	LLSD result = LLSD::emptyMap();
	int name_entries = X509_NAME_entry_count(name);
	for (int entry_index=0; entry_index < name_entries; entry_index++) 
	{
		char buffer[32];
		X509_NAME_ENTRY *entry = X509_NAME_get_entry(name, entry_index);
		
		std::string name_value = std::string((const char*)M_ASN1_STRING_data(X509_NAME_ENTRY_get_data(entry)), 
											 M_ASN1_STRING_length(X509_NAME_ENTRY_get_data(entry)));

		ASN1_OBJECT* name_obj = X509_NAME_ENTRY_get_object(entry);		
		OBJ_obj2txt(buffer, sizeof(buffer), name_obj, 0);
		std::string obj_buffer_str = std::string(buffer);
		result[obj_buffer_str] = name_value;
	}
	
	return result;
}

// Generate a string from an ASN1 integer.  ASN1 Integers are
// bignums, so they can be 'infinitely' long, therefore we
// cannot simply use a conversion to U64 or something.
// We retrieve as a readable string for UI

std::string cert_string_from_asn1_integer(ASN1_INTEGER* value)
{
	std::string result;
	BIGNUM *bn = ASN1_INTEGER_to_BN(value, NULL);
	if(bn)
	{
		char * ascii_bn = BN_bn2hex(bn);

		if(ascii_bn)
		{
			result = ascii_bn;
			OPENSSL_free(ascii_bn);
		}
		BN_free(bn);
	}
	return result;
}

// Generate a string from an OCTET string.
// we retrieve as a 

std::string cert_string_from_octet_string(ASN1_OCTET_STRING* value)
{
	
	std::stringstream result;
	result << std::hex << std::setprecision(2);
	for (int i=0; i < value->length; i++)
	{
		if (i != 0) 
		{
			result << ":";
		}
		result  << std::setfill('0') << std::setw(2) << (int)value->data[i];
	}
	return result.str();
}

// Generate a string from an ASN1 integer.  ASN1 Integers are
// bignums, so they can be 'infinitely' long, therefore we
// cannot simply use a conversion to U64 or something.
// We retrieve as a readable string for UI

std::string cert_string_from_asn1_string(ASN1_STRING* value)
{
	char * string_bio_chars = NULL;
	std::string result;
	// get a memory bio
	BIO *string_bio = BIO_new(BIO_s_mem());
	if(!string_bio)
	{
		// stream the name into the bio.  The name will be in the 'short name' format
		ASN1_STRING_print_ex(string_bio, value, ASN1_STRFLGS_RFC2253);
		int length = BIO_get_mem_data(string_bio, &string_bio_chars);
		result = std::string(string_bio_chars, length);
		BIO_free(string_bio);
	}
	else
	{
		LL_WARNS("SECAPI") << "Could not allocate an openssl memory BIO." << LL_ENDL;
	}
	
	return result;
}

// retrieve a date structure from an ASN1 time, for 
// validity checking.
LLDate cert_date_from_asn1_time(ASN1_TIME* asn1_time)
{
	
	struct tm timestruct = {0};
	int i = asn1_time->length;
	
	if (i < 10)
	{
		return LLDate();
	}	
	// convert the date from the ASN1 time (which is a string in ZULU time), to
	// a timeval.
	timestruct.tm_year = (asn1_time->data[0]-'0') * 10 + (asn1_time->data[1]-'0');
	
	/* Deal with Year 2000 */
	if (timestruct.tm_year < 70)
		timestruct.tm_year += 100;
	
	timestruct.tm_mon = (asn1_time->data[2]-'0') * 10 + (asn1_time->data[3]-'0') - 1;
	timestruct.tm_mday = (asn1_time->data[4]-'0') * 10 + (asn1_time->data[5]-'0');
	timestruct.tm_hour = (asn1_time->data[6]-'0') * 10 + (asn1_time->data[7]-'0');
	timestruct.tm_min = (asn1_time->data[8]-'0') * 10 + (asn1_time->data[9]-'0');
	timestruct.tm_sec = (asn1_time->data[10]-'0') * 10 + (asn1_time->data[11]-'0');

#if LL_WINDOWS
	return LLDate((F64)_mkgmtime(&timestruct));
#else // LL_WINDOWS
	return LLDate((F64)timegm(&timestruct));
#endif // LL_WINDOWS
}

													   
// Generate a string containing a digest.  The digest time is 'ssh1' or
// 'md5', and the resulting string is of the form "aa:12:5c:' and so on
std::string cert_get_digest(const std::string& digest_type, X509 *cert)
{
	unsigned char digest_data[BUFFER_READ_SIZE];
	unsigned int len = sizeof(digest_data);
	std::stringstream result;
	const EVP_MD* digest = NULL;
	// we could use EVP_get_digestbyname, but that requires initializer code which
	// would require us to complicate things by plumbing it into the system.
	if (digest_type == "md5")
	{
		digest = EVP_md5();
	}
	else if (digest_type == "sha1")
	{
		digest = EVP_sha1();
	}
	else
	{
		return std::string();
	}

	X509_digest(cert, digest, digest_data, &len);
	result << std::hex << std::setprecision(2);
	for (unsigned int i=0; i < len; i++)
	{
		if (i != 0) 
		{
			result << ":";
		}
		result  << std::setfill('0') << std::setw(2) << (int)digest_data[i];
	}
	return result.str();
}


// class LLBasicCertificateVector
// This class represents a list of certificates, implemented by a vector of certificate pointers.
// it contains implementations of the virtual functions for iterators, search, add, remove, etc.
//

//  Find a certificate in the list.
// It will find a cert that has minimally the params listed, with the values being the same
LLBasicCertificateVector::iterator LLBasicCertificateVector::find(const LLSD& params)
{
	BOOL found = FALSE;
	// loop through the entire vector comparing the values in the certs
	// against those passed in via the params.
	// params should be a map.  Only the items specified in the map will be
	// checked, but they must match exactly, even if they're maps or arrays.
	
	for(iterator cert = begin();
		cert != end();
		cert++)
	{

		found= TRUE;
		LLSD cert_info;
		(*cert)->getLLSD(cert_info);
			for (LLSD::map_const_iterator param = params.beginMap();
			 param != params.endMap();
			 param++)
		{

			if (!cert_info.has((std::string)param->first) || 
				(!valueCompareLLSD(cert_info[(std::string)param->first], param->second)))
			{
				found = FALSE;
				break;
			}
		}
		if (found)
		{
			return (cert);
		}
	}
	return end();
}

// Insert a certificate into the store.  If the certificate already 
// exists in the store, nothing is done.
void  LLBasicCertificateVector::insert(iterator _iter, 
									   LLPointer<LLCertificate> cert)
{
	LLSD cert_info;
	cert->getLLSD(cert_info);
	if (cert_info.isMap() && cert_info.has(CERT_SHA1_DIGEST))
	{
		LLSD existing_cert_info = LLSD::emptyMap();
		existing_cert_info[CERT_MD5_DIGEST] = cert_info[CERT_MD5_DIGEST];
		if(find(existing_cert_info) == end())
		{
			BasicIteratorImpl *basic_iter = dynamic_cast<BasicIteratorImpl*>(_iter.mImpl.get());
			mCerts.insert(basic_iter->mIter, cert);
		}
	}
}

// remove a certificate from the store
LLPointer<LLCertificate> LLBasicCertificateVector::erase(iterator _iter)
{
	
	if (_iter != end())
	{
		BasicIteratorImpl *basic_iter = dynamic_cast<BasicIteratorImpl*>(_iter.mImpl.get());
		LLPointer<LLCertificate> result = (*_iter);
		mCerts.erase(basic_iter->mIter);
		return result;
	}
	return NULL;
}


//
// LLBasicCertificateStore
// This class represents a store of CA certificates.  The basic implementation
// uses a pem file such as the legacy CA.pem stored in the existing 
// SL implementation.
LLBasicCertificateStore::LLBasicCertificateStore(const std::string& filename)
{
	mFilename = filename;
	load_from_file(filename);
}

void LLBasicCertificateStore::load_from_file(const std::string& filename)
{
	// scan the PEM file extracting each certificate
	if (!LLFile::isfile(filename))
	{
		return;
	}
	
	BIO* file_bio = BIO_new(BIO_s_file());
	if(file_bio)
	{
		if (BIO_read_filename(file_bio, filename.c_str()) > 0)
		{	
			X509 *cert_x509 = NULL;
			while((PEM_read_bio_X509(file_bio, &cert_x509, 0, NULL)) && 
				  (cert_x509 != NULL))
			{
				try
				{
					add(new LLBasicCertificate(cert_x509));
				}
				catch (...)
				{
					LL_WARNS("SECAPI") << "Failure creating certificate from the certificate store file." << LL_ENDL;
				}
				X509_free(cert_x509);
				cert_x509 = NULL;
			}
			BIO_free(file_bio);
		}
	}
	else
	{
		LL_WARNS("SECAPI") << "Could not allocate a file BIO" << LL_ENDL;
	}
}


LLBasicCertificateStore::~LLBasicCertificateStore()
{
}


// persist the store
void LLBasicCertificateStore::save()
{
	llofstream file_store(mFilename, llofstream::binary);
	if(!file_store.fail())
	{
		for(iterator cert = begin();
			cert != end();
			cert++)
		{
			std::string pem = (*cert)->getPem();
			if(!pem.empty())
			{
				file_store << (*cert)->getPem() << std::endl;
			}
		}
		file_store.close();
	}
	else
	{
		LL_WARNS("SECAPI") << "Could not open certificate store " << mFilename << "for save" << LL_ENDL;
	}
}

// return the store id
std::string LLBasicCertificateStore::storeId() const
{
	// this is the basic handler which uses the CA.pem store,
	// so we ignore this.
	return std::string("");
}


//
// LLBasicCertificateChain
// This class represents a chain of certs, each cert being signed by the next cert
// in the chain.  Certs must be properly signed by the parent
LLBasicCertificateChain::LLBasicCertificateChain(const X509_STORE_CTX* store)
{

	// we're passed in a context, which contains a cert, and a blob of untrusted
	// certificates which compose the chain.
	if((store == NULL) || (store->cert == NULL))
	{
		LL_WARNS("SECAPI") << "An invalid store context was passed in when trying to create a certificate chain" << LL_ENDL;
		return;
	}
	// grab the child cert
	LLPointer<LLCertificate> current = new LLBasicCertificate(store->cert);

	add(current);
	if(store->untrusted != NULL)
	{
		// if there are other certs in the chain, we build up a vector
		// of untrusted certs so we can search for the parents of each
		// consecutive cert.
		LLBasicCertificateVector untrusted_certs;
		for(int i = 0; i < sk_X509_num(store->untrusted); i++)
		{
			LLPointer<LLCertificate> cert = new LLBasicCertificate(sk_X509_value(store->untrusted, i));
			untrusted_certs.add(cert);

		}		
		while(untrusted_certs.size() > 0)
		{
			LLSD find_data = LLSD::emptyMap();
			LLSD cert_data;
			current->getLLSD(cert_data);
			// we simply build the chain via subject/issuer name as the
			// client should not have passed in multiple CA's with the same 
			// subject name.  If they did, it'll come out in the wash during
			// validation.
			find_data[CERT_SUBJECT_NAME_STRING] = cert_data[CERT_ISSUER_NAME_STRING]; 
			LLBasicCertificateVector::iterator issuer = untrusted_certs.find(find_data);
			if (issuer != untrusted_certs.end())
			{
				current = untrusted_certs.erase(issuer);
				add(current);
			}
			else
			{
				break;
			}
		}
	}
}


// subdomain wildcard specifiers can be divided into 3 parts
// the part before the first *, the part after the first * but before
// the second *, and the part after the second *.
// It then iterates over the second for each place in the string
// that it matches.  ie if the subdomain was testfoofoobar, and
// the wildcard was test*foo*bar, it would match test, then
// recursively match foofoobar and foobar

bool _cert_subdomain_wildcard_match(const std::string& subdomain,
									const std::string& wildcard)
{
	// split wildcard into the portion before the *, and the portion after

	int wildcard_pos = wildcard.find_first_of('*');	
	// check the case where there is no wildcard.
	if(wildcard_pos == wildcard.npos)
	{
		return (subdomain == wildcard);
	}
	
	// we need to match the first part of the subdomain string up to the wildcard
	// position
	if(subdomain.substr(0, wildcard_pos) != wildcard.substr(0, wildcard_pos))
	{
		// the first portions of the strings didn't match
		return FALSE;
	}
	
	// as the portion of the wildcard string before the * matched, we need to check the
	// portion afterwards.  Grab that portion.
	std::string new_wildcard_string = wildcard.substr( wildcard_pos+1, wildcard.npos);
	if(new_wildcard_string.empty())
	{
		// we had nothing after the *, so it's an automatic match
		return TRUE;
	}
	
	// grab the portion of the remaining wildcard string before the next '*'.  We need to find this
	// within the remaining subdomain string. and then recursively check.
	std::string new_wildcard_match_string = new_wildcard_string.substr(0, new_wildcard_string.find_first_of('*'));
	
	// grab the portion of the subdomain after the part that matched the initial wildcard portion
	std::string new_subdomain = subdomain.substr(wildcard_pos, subdomain.npos);
	
	// iterate through the current subdomain, finding instances of the match string.
	int sub_pos = new_subdomain.find_first_of(new_wildcard_match_string);
	while(sub_pos != std::string::npos)
	{
		new_subdomain = new_subdomain.substr(sub_pos, std::string::npos);
		if(_cert_subdomain_wildcard_match(new_subdomain, new_wildcard_string))
		{
			return TRUE;
		}
		sub_pos = new_subdomain.find_first_of(new_wildcard_match_string, 1);


	}
	// didn't find any instances of the match string that worked in the subdomain, so fail.
	return FALSE;
}


// RFC2459 does not address wildcards as part of it's name matching
// specification, and there is no RFC specifying wildcard matching,
// RFC2818 does a few statements about wildcard matching, but is very 
// general.  Generally, wildcard matching is per implementation, although
// it's pretty similar.
// in our case, we use the '*' wildcard character only, within each
// subdomain.  The hostname and the CN specification should have the
// same number of subdomains.
// We then iterate that algorithm over each subdomain.
bool _cert_hostname_wildcard_match(const std::string& hostname, const std::string& common_name)
{
	std::string new_hostname = hostname;
	std::string new_cn = common_name;
	
	// find the last '.' in the hostname and the match name.
	int subdomain_pos = new_hostname.find_last_of('.');
	int subcn_pos = new_cn.find_last_of('.');
	
	// if the last char is a '.', strip it
	if(subdomain_pos == (new_hostname.length()-1))
	{
		new_hostname = new_hostname.substr(0, subdomain_pos);
		subdomain_pos = new_hostname.find_last_of('.');
	}
	if(subcn_pos == (new_cn.length()-1))
	{
		new_cn = new_cn.substr(0, subcn_pos);
		subcn_pos = new_cn.find_last_of('.');
	}	

	// Check to see if there are any further '.' in the string.  
	while((subcn_pos != std::string::npos) && (subdomain_pos != std::string::npos))
	{
		// snip out last subdomain in both the match string and the hostname
		// The last bit for 'my.current.host.com' would be 'com'  
		std::string cn_part = new_cn.substr(subcn_pos+1, std::string::npos);
		std::string hostname_part = new_hostname.substr(subdomain_pos+1, std::string::npos);
		
		if(!_cert_subdomain_wildcard_match(new_hostname.substr(subdomain_pos+1, std::string::npos),
										   cn_part))
		{
			return FALSE;
		}
		new_hostname = new_hostname.substr(0, subdomain_pos);
		new_cn = new_cn.substr(0, subcn_pos);
		subdomain_pos = new_hostname.find_last_of('.');
		subcn_pos = new_cn.find_last_of('.');
	}	
	// check to see if the most significant portion of the common name is '*'.  If so, we can
	// simply return success as child domains are also matched.
	if(new_cn == "*")
	{
		// if it's just a '*' we support all child domains as well, so '*.
		return TRUE;
	}
	
	return _cert_subdomain_wildcard_match(new_hostname, new_cn);

}

// validate that the LLSD array in llsd_set contains the llsd_value 
bool _LLSDArrayIncludesValue(const LLSD& llsd_set, LLSD llsd_value)
{
	for(LLSD::array_const_iterator set_value = llsd_set.beginArray();
		set_value != llsd_set.endArray();
		set_value++)
	{
		if(valueCompareLLSD((*set_value), llsd_value))
		{
			return TRUE;
		}
	}
	return FALSE;
}

void _validateCert(int validation_policy,
				  LLPointer<LLCertificate> cert,
				  const LLSD& validation_params,
				  int depth)
{

	LLSD current_cert_info;
	cert->getLLSD(current_cert_info);		
	// check basic properties exist in the cert
	if(!current_cert_info.has(CERT_SUBJECT_NAME) || !current_cert_info.has(CERT_SUBJECT_NAME_STRING))
	{
		throw LLCertException(cert, "Cert doesn't have a Subject Name");				
	}
	
	if(!current_cert_info.has(CERT_ISSUER_NAME_STRING))
	{
		throw LLCertException(cert, "Cert doesn't have an Issuer Name");				
	}
	
	// check basic properties exist in the cert
	if(!current_cert_info.has(CERT_VALID_FROM) || !current_cert_info.has(CERT_VALID_TO))
	{
		throw LLCertException(cert, "Cert doesn't have an expiration period");				
	}
	if (!current_cert_info.has(CERT_SHA1_DIGEST))
	{
		throw LLCertException(cert, "No SHA1 digest");
	}

	if (validation_policy & VALIDATION_POLICY_TIME)
	{

		LLDate validation_date(time(NULL));
		if(validation_params.has(CERT_VALIDATION_DATE))
		{
			validation_date = validation_params[CERT_VALIDATION_DATE];
		}
		
		if((validation_date < current_cert_info[CERT_VALID_FROM].asDate()) ||
		   (validation_date > current_cert_info[CERT_VALID_TO].asDate()))
		{
			throw LLCertValidationExpirationException(cert, validation_date);
		}
	}
	if (validation_policy & VALIDATION_POLICY_SSL_KU)
	{
		if (current_cert_info.has(CERT_KEY_USAGE) && current_cert_info[CERT_KEY_USAGE].isArray() &&
			(!(_LLSDArrayIncludesValue(current_cert_info[CERT_KEY_USAGE], 
									   LLSD((std::string)CERT_KU_DIGITAL_SIGNATURE))) ||
			!(_LLSDArrayIncludesValue(current_cert_info[CERT_KEY_USAGE], 
									  LLSD((std::string)CERT_KU_KEY_ENCIPHERMENT)))))
		{
			throw LLCertKeyUsageValidationException(cert);
		}
		// only validate EKU if the cert has it
		if(current_cert_info.has(CERT_EXTENDED_KEY_USAGE) && current_cert_info[CERT_EXTENDED_KEY_USAGE].isArray() &&	   
		   (!_LLSDArrayIncludesValue(current_cert_info[CERT_EXTENDED_KEY_USAGE], 
									LLSD((std::string)CERT_EKU_SERVER_AUTH))))
		{
			throw LLCertKeyUsageValidationException(cert);			
		}
	}
	if (validation_policy & VALIDATION_POLICY_CA_KU)
	{
		if (current_cert_info.has(CERT_KEY_USAGE) && current_cert_info[CERT_KEY_USAGE].isArray() &&
			(!_LLSDArrayIncludesValue(current_cert_info[CERT_KEY_USAGE], 
									   (std::string)CERT_KU_CERT_SIGN)))
			{
				throw LLCertKeyUsageValidationException(cert);						
			}
	}
	
	// validate basic constraints
	if ((validation_policy & VALIDATION_POLICY_CA_BASIC_CONSTRAINTS) &&
		current_cert_info.has(CERT_BASIC_CONSTRAINTS) && 
		current_cert_info[CERT_BASIC_CONSTRAINTS].isMap())
	{
		if(!current_cert_info[CERT_BASIC_CONSTRAINTS].has(CERT_BASIC_CONSTRAINTS_CA) ||
		   !current_cert_info[CERT_BASIC_CONSTRAINTS][CERT_BASIC_CONSTRAINTS_CA])
		{
				throw LLCertBasicConstraintsValidationException(cert);
		}
		if (current_cert_info[CERT_BASIC_CONSTRAINTS].has(CERT_BASIC_CONSTRAINTS_PATHLEN) &&
			((current_cert_info[CERT_BASIC_CONSTRAINTS][CERT_BASIC_CONSTRAINTS_PATHLEN].asInteger() != 0) &&
			 (depth > current_cert_info[CERT_BASIC_CONSTRAINTS][CERT_BASIC_CONSTRAINTS_PATHLEN].asInteger())))
		{
			throw LLCertBasicConstraintsValidationException(cert);					
		}
	}
}

bool _verify_signature(LLPointer<LLCertificate> parent, 
					   LLPointer<LLCertificate> child)
{
	bool verify_result = FALSE; 
	LLSD cert1, cert2;
	parent->getLLSD(cert1);
	child->getLLSD(cert2);
	X509 *signing_cert = parent->getOpenSSLX509();
	X509 *child_cert = child->getOpenSSLX509();
	if((signing_cert != NULL) && (child_cert != NULL))
	{
		EVP_PKEY *pkey = X509_get_pubkey(signing_cert);
		
		
		if(pkey)
		{
			int verify_code = X509_verify(child_cert, pkey);
			verify_result = ( verify_code > 0);
			EVP_PKEY_free(pkey);
		}
		else
		{
			LL_WARNS("SECAPI") << "Could not validate the cert chain signature, as the public key of the signing cert could not be retrieved" << LL_ENDL;
		}

	}
	else
	{
		LL_WARNS("SECAPI") << "Signature verification failed as there are no certs in the chain" << LL_ENDL;
	}
	if(child_cert)
	{
		X509_free(child_cert);
	}
	if(signing_cert)
	{
		X509_free(signing_cert);
	}
	return verify_result;
}


// validate the certificate chain against a store.
// There are many aspects of cert validatioin policy involved in
// trust validation.  The policies in this validation algorithm include
// * Hostname matching for SSL certs
// * Expiration time matching
// * Signature validation
// * Chain trust (is the cert chain trusted against the store)
// * Basic constraints
// * key usage and extended key usage
// TODO: We should add 'authority key identifier' for chaining.
// This algorithm doesn't simply validate the chain by itself
// and verify the last cert is in the certificate store, or points
// to a cert in the store.  It validates whether any cert in the chain
// is trusted in the store, even if it's not the last one.
void LLBasicCertificateStore::validate(int validation_policy,
									   LLPointer<LLCertificateChain> cert_chain,
									   const LLSD& validation_params)
{

	if(cert_chain->size() < 1)
	{
		throw LLCertException(NULL, "No certs in chain");
	}
	iterator current_cert = cert_chain->begin();
	LLSD 	current_cert_info;
	LLSD validation_date;
	if (validation_params.has(CERT_VALIDATION_DATE))
	{
		validation_date = validation_params[CERT_VALIDATION_DATE];
	}

	if (validation_policy & VALIDATION_POLICY_HOSTNAME)
	{
		(*current_cert)->getLLSD(current_cert_info);
		if(!validation_params.has(CERT_HOSTNAME))
		{
			throw LLCertException((*current_cert), "No hostname passed in for validation");			
		}
		if(!current_cert_info.has(CERT_SUBJECT_NAME) || !current_cert_info[CERT_SUBJECT_NAME].has(CERT_NAME_CN))
		{
			throw LLInvalidCertificate((*current_cert));				
		}
		
		LL_DEBUGS("SECAPI") << "Validating the hostname " << validation_params[CERT_HOSTNAME].asString() << 
		     "against the cert CN " << current_cert_info[CERT_SUBJECT_NAME][CERT_NAME_CN].asString() << LL_ENDL;
		if(!_cert_hostname_wildcard_match(validation_params[CERT_HOSTNAME].asString(),
										  current_cert_info[CERT_SUBJECT_NAME][CERT_NAME_CN].asString()))
		{
			throw LLCertValidationHostnameException(validation_params[CERT_HOSTNAME].asString(),
													(*current_cert));
		}
	}

	// check the cache of already validated certs
	X509* cert_x509 = (*current_cert)->getOpenSSLX509();
	if(!cert_x509)
	{
		throw LLInvalidCertificate((*current_cert));			
	}
	std::string sha1_hash((const char *)cert_x509->sha1_hash, SHA_DIGEST_LENGTH);
	t_cert_cache::iterator cache_entry = mTrustedCertCache.find(sha1_hash);
	if(cache_entry != mTrustedCertCache.end())
	{
		LL_DEBUGS("SECAPI") << "Found cert in cache" << LL_ENDL;	
		// this cert is in the cache, so validate the time.
		if (validation_policy & VALIDATION_POLICY_TIME)
		{
			LLDate validation_date(time(NULL));
			if(validation_params.has(CERT_VALIDATION_DATE))
			{
				validation_date = validation_params[CERT_VALIDATION_DATE];
			}
			
			if((validation_date < cache_entry->second.first) ||
			   (validation_date > cache_entry->second.second))
			{
				throw LLCertValidationExpirationException((*current_cert), validation_date);
			}
		}
		// successfully found in cache
		return;
	}
	if(current_cert_info.isUndefined())
	{
		(*current_cert)->getLLSD(current_cert_info);
	}
	LLDate from_time = current_cert_info[CERT_VALID_FROM].asDate();
	LLDate to_time = current_cert_info[CERT_VALID_TO].asDate();
	int depth = 0;
	LLPointer<LLCertificate> previous_cert;
	// loop through the cert chain, validating the current cert against the next one.
	while(current_cert != cert_chain->end())
	{
		
		int local_validation_policy = validation_policy;
		if(current_cert == cert_chain->begin())
		{
			// for the child cert, we don't validate CA stuff
			local_validation_policy &= ~(VALIDATION_POLICY_CA_KU | 
										 VALIDATION_POLICY_CA_BASIC_CONSTRAINTS);
		}
		else
		{
			// for non-child certs, we don't validate SSL Key usage
			local_validation_policy &= ~VALIDATION_POLICY_SSL_KU;				
			if(!_verify_signature((*current_cert),
								  previous_cert))
			{
			   throw LLCertValidationInvalidSignatureException(previous_cert);
			}
		}
		_validateCert(local_validation_policy,
					  (*current_cert),
					  validation_params,
					  depth);
		
		// look for a CA in the CA store that may belong to this chain.
		LLSD cert_search_params = LLSD::emptyMap();		
		// is the cert itself in the store?
		cert_search_params[CERT_SHA1_DIGEST] = current_cert_info[CERT_SHA1_DIGEST];
		LLCertificateStore::iterator found_store_cert = find(cert_search_params);
		if(found_store_cert != end())
		{
			mTrustedCertCache[sha1_hash] = std::pair<LLDate, LLDate>(from_time, to_time);
			return;
		}
		
		// is the parent in the cert store?
			
		cert_search_params = LLSD::emptyMap();
		cert_search_params[CERT_SUBJECT_NAME_STRING] = current_cert_info[CERT_ISSUER_NAME_STRING];
		if (current_cert_info.has(CERT_AUTHORITY_KEY_IDENTIFIER))
		{
			LLSD cert_aki = current_cert_info[CERT_AUTHORITY_KEY_IDENTIFIER];
			if(cert_aki.has(CERT_AUTHORITY_KEY_IDENTIFIER_ID))
			{
				cert_search_params[CERT_SUBJECT_KEY_IDENTFIER] = cert_aki[CERT_AUTHORITY_KEY_IDENTIFIER_ID];
			}
			if(cert_aki.has(CERT_AUTHORITY_KEY_IDENTIFIER_SERIAL))
			{
				cert_search_params[CERT_SERIAL_NUMBER] = cert_aki[CERT_AUTHORITY_KEY_IDENTIFIER_SERIAL];
			}
		}
		found_store_cert = find(cert_search_params);
		
		if(found_store_cert != end())
		{
			// validate the store cert against the depth
			_validateCert(validation_policy & VALIDATION_POLICY_CA_BASIC_CONSTRAINTS,
						  (*found_store_cert),
						  LLSD(),
						  depth);
			
			// verify the signature of the CA
			if(!_verify_signature((*found_store_cert),
								  (*current_cert)))
			{
				throw LLCertValidationInvalidSignatureException(*current_cert);
			}			
			// successfully validated.
			mTrustedCertCache[sha1_hash] = std::pair<LLDate, LLDate>(from_time, to_time);		
			return;
		}
		previous_cert = (*current_cert);
		current_cert++;
		depth++;
		if(current_cert != cert_chain->end())
		{
			(*current_cert)->getLLSD(current_cert_info);
		}
	}
	if (validation_policy & VALIDATION_POLICY_TRUSTED)
	{
		// we reached the end without finding a trusted cert.
		throw LLCertValidationTrustException((*cert_chain)[cert_chain->size()-1]);

	}
	mTrustedCertCache[sha1_hash] = std::pair<LLDate, LLDate>(from_time, to_time);	
}


// LLSecAPIBasicHandler Class
// Interface handler class for the various security storage handlers.

// We read the file on construction, and write it on destruction.  This
// means multiple processes cannot modify the datastore.
LLSecAPIBasicHandler::LLSecAPIBasicHandler(const std::string& protected_data_file,
										   const std::string& legacy_password_path)
{
	mProtectedDataFilename = protected_data_file;
	mProtectedDataMap = LLSD::emptyMap();
	mLegacyPasswordPath = legacy_password_path;

}

LLSecAPIBasicHandler::LLSecAPIBasicHandler()
{
}


void LLSecAPIBasicHandler::init()
{
	mProtectedDataMap = LLSD::emptyMap();
	if (mProtectedDataFilename.length() == 0)
	{
		mProtectedDataFilename = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS,
															"bin_conf.dat");
		mLegacyPasswordPath = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS, "password.dat");
	
		mProtectedDataFilename = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS,
															"bin_conf.dat");	
		std::string store_file = gDirUtilp->getExpandedFilename(LL_PATH_USER_SETTINGS,
														"CA.pem");
		
		
		LL_DEBUGS("SECAPI") << "Loading certificate store from " << store_file << LL_ENDL;
		mStore = new LLBasicCertificateStore(store_file);
		
		// grab the application CA.pem file that contains the well-known certs shipped
		// with the product
		std::string ca_file_path = gDirUtilp->getExpandedFilename(LL_PATH_APP_SETTINGS, "CA.pem");
		llinfos << "app path " << ca_file_path << llendl;
		LLBasicCertificateStore app_ca_store = LLBasicCertificateStore(ca_file_path);	
		
		// push the applicate CA files into the store, therefore adding any new CA certs that 
		// updated
		for(LLCertificateVector::iterator i = app_ca_store.begin();
			i != app_ca_store.end();
			i++)
		{
			mStore->add(*i);
		}
		
	}
	_readProtectedData(); // initialize mProtectedDataMap
						  // may throw LLProtectedDataException if saved datamap is not decryptable
}
LLSecAPIBasicHandler::~LLSecAPIBasicHandler()
{
	_writeProtectedData();
}

void LLSecAPIBasicHandler::_readProtectedData()
{	
	// attempt to load the file into our map
	LLPointer<LLSDParser> parser = new LLSDXMLParser();
	llifstream protected_data_stream(mProtectedDataFilename.c_str(), 
									llifstream::binary);

	if (!protected_data_stream.fail()) {
		int offset;
		U8 salt[STORE_SALT_SIZE];
		U8 buffer[BUFFER_READ_SIZE];
		U8 decrypted_buffer[BUFFER_READ_SIZE];
		int decrypted_length;	
		unsigned char unique_id[MAC_ADDRESS_BYTES];
        LLMachineID::getUniqueID(unique_id, sizeof(unique_id));
		LLXORCipher cipher(unique_id, sizeof(unique_id));

		// read in the salt and key
		protected_data_stream.read((char *)salt, STORE_SALT_SIZE);
		offset = 0;
		if (protected_data_stream.gcount() < STORE_SALT_SIZE)
		{
			throw LLProtectedDataException("Config file too short.");
		}

		cipher.decrypt(salt, STORE_SALT_SIZE);		

		// totally lame.  As we're not using the OS level protected data, we need to
		// at least obfuscate the data.  We do this by using a salt stored at the head of the file
		// to encrypt the data, therefore obfuscating it from someone using simple existing tools.
		// We do include the MAC address as part of the obfuscation, which would require an
		// attacker to get the MAC address as well as the protected store, which improves things
		// somewhat.  It would be better to use the password, but as this store
		// will be used to store the SL password when the user decides to have SL remember it, 
		// so we can't use that.  OS-dependent store implementations will use the OS password/storage 
		// mechanisms and are considered to be more secure.
		// We've a strong intent to move to OS dependent protected data stores.
		

		// read in the rest of the file.
		EVP_CIPHER_CTX ctx;
		EVP_CIPHER_CTX_init(&ctx);
		EVP_DecryptInit(&ctx, EVP_rc4(), salt, NULL);
		// allocate memory:
		std::string decrypted_data;	
		
		while(protected_data_stream.good()) {
			// read data as a block:
			protected_data_stream.read((char *)buffer, BUFFER_READ_SIZE);
			
			EVP_DecryptUpdate(&ctx, decrypted_buffer, &decrypted_length, 
							  buffer, protected_data_stream.gcount());
			decrypted_data.append((const char *)decrypted_buffer, protected_data_stream.gcount());
		}
		
		// RC4 is a stream cipher, so we don't bother to EVP_DecryptFinal, as there is
		// no block padding.
		EVP_CIPHER_CTX_cleanup(&ctx);
		std::istringstream parse_stream(decrypted_data);
		if (parser->parse(parse_stream, mProtectedDataMap, 
						  LLSDSerialize::SIZE_UNLIMITED) == LLSDParser::PARSE_FAILURE)
		{
			throw LLProtectedDataException("Config file cannot be decrypted.");
		}
	}
}

void LLSecAPIBasicHandler::_writeProtectedData()
{	
	std::ostringstream formatted_data_ostream;
	U8 salt[STORE_SALT_SIZE];
	U8 buffer[BUFFER_READ_SIZE];
	U8 encrypted_buffer[BUFFER_READ_SIZE];

	
	if(mProtectedDataMap.isUndefined())
	{
		LLFile::remove(mProtectedDataFilename);
		return;
	}
	// create a string with the formatted data.
	LLSDSerialize::toXML(mProtectedDataMap, formatted_data_ostream);
	std::istringstream formatted_data_istream(formatted_data_ostream.str());
	// generate the seed
	RAND_bytes(salt, STORE_SALT_SIZE);

	
	// write to a temp file so we don't clobber the initial file if there is
	// an error.
	std::string tmp_filename = mProtectedDataFilename + ".tmp";
	
	llofstream protected_data_stream(tmp_filename.c_str(), 
										llofstream::binary);
	try
	{
		
		EVP_CIPHER_CTX ctx;
		EVP_CIPHER_CTX_init(&ctx);
		EVP_EncryptInit(&ctx, EVP_rc4(), salt, NULL);
		unsigned char unique_id[MAC_ADDRESS_BYTES];
        LLMachineID::getUniqueID(unique_id, sizeof(unique_id));
		LLXORCipher cipher(unique_id, sizeof(unique_id));
		cipher.encrypt(salt, STORE_SALT_SIZE);
		protected_data_stream.write((const char *)salt, STORE_SALT_SIZE);

		while (formatted_data_istream.good())
		{
			formatted_data_istream.read((char *)buffer, BUFFER_READ_SIZE);
			if(formatted_data_istream.gcount() == 0)
			{
				break;
			}
			int encrypted_length;
			EVP_EncryptUpdate(&ctx, encrypted_buffer, &encrypted_length, 
						  buffer, formatted_data_istream.gcount());
			protected_data_stream.write((const char *)encrypted_buffer, encrypted_length);
		}
		
		// no EVP_EncrypteFinal, as this is a stream cipher
		EVP_CIPHER_CTX_cleanup(&ctx);

		protected_data_stream.close();
	}
	catch (...)
	{
		// it's good practice to clean up any secure information on error
		// (even though this file isn't really secure.  Perhaps in the future
		// it may be, however.
		LLFile::remove(tmp_filename);
		throw LLProtectedDataException("Error writing Protected Data Store");
	}

	// move the temporary file to the specified file location.
	if((((LLFile::isfile(mProtectedDataFilename) != 0) && 
		 (LLFile::remove(mProtectedDataFilename) != 0))) || 
	   (LLFile::rename(tmp_filename, mProtectedDataFilename)))
	{
		LLFile::remove(tmp_filename);
		throw LLProtectedDataException("Could not overwrite protected data store");
	}
}
		
// instantiate a certificate from a pem string
LLPointer<LLCertificate> LLSecAPIBasicHandler::getCertificate(const std::string& pem_cert)
{
	LLPointer<LLCertificate> result = new LLBasicCertificate(pem_cert);
	return result;
}
		

		
// instiate a certificate from an openssl X509 structure
LLPointer<LLCertificate> LLSecAPIBasicHandler::getCertificate(X509* openssl_cert)
{
	LLPointer<LLCertificate> result = new LLBasicCertificate(openssl_cert);
	return result;		
}
		
// instantiate a chain from an X509_STORE_CTX
LLPointer<LLCertificateChain> LLSecAPIBasicHandler::getCertificateChain(const X509_STORE_CTX* chain)
{
	LLPointer<LLCertificateChain> result = new LLBasicCertificateChain(chain);
	return result;
}
		
// instantiate a cert store given it's id.  if a persisted version
// exists, it'll be loaded.  If not, one will be created (but not
// persisted)
LLPointer<LLCertificateStore> LLSecAPIBasicHandler::getCertificateStore(const std::string& store_id)
{
	return mStore;
}
		
// retrieve protected data
LLSD LLSecAPIBasicHandler::getProtectedData(const std::string& data_type,
											const std::string& data_id)
{

	if (mProtectedDataMap.has(data_type) && 
		mProtectedDataMap[data_type].isMap() && 
		mProtectedDataMap[data_type].has(data_id))
	{
		return mProtectedDataMap[data_type][data_id];
	}
																				
	return LLSD();
}

void LLSecAPIBasicHandler::deleteProtectedData(const std::string& data_type,
											   const std::string& data_id)
{
	if (mProtectedDataMap.has(data_type) &&
		mProtectedDataMap[data_type].isMap() &&
		mProtectedDataMap[data_type].has(data_id))
		{
			mProtectedDataMap[data_type].erase(data_id);
		}
}


//
// persist data in a protected store
//
void LLSecAPIBasicHandler::setProtectedData(const std::string& data_type,
											const std::string& data_id,
											const LLSD& data)
{
	if (!mProtectedDataMap.has(data_type) || !mProtectedDataMap[data_type].isMap()) {
		mProtectedDataMap[data_type] = LLSD::emptyMap();
	}
	
	mProtectedDataMap[data_type][data_id] = data; 
}

//
// Create a credential object from an identifier and authenticator.  credentials are
// per grid.
LLPointer<LLCredential> LLSecAPIBasicHandler::createCredential(const std::string& grid,
															   const LLSD& identifier, 
															   const LLSD& authenticator)
{
	LLPointer<LLSecAPIBasicCredential> result = new LLSecAPIBasicCredential(grid);
	result->setCredentialData(identifier, authenticator);
	return result;
}

// Load a credential from the credential store, given the grid
LLPointer<LLCredential> LLSecAPIBasicHandler::loadCredential(const std::string& grid)
{
	LLSD credential = getProtectedData("credential", grid);
	LLPointer<LLSecAPIBasicCredential> result = new LLSecAPIBasicCredential(grid);
	if(credential.isMap() && 
	   credential.has("identifier"))
	{

		LLSD identifier = credential["identifier"];
		LLSD authenticator;
		if (credential.has("authenticator"))
		{
			authenticator = credential["authenticator"];
		}
		result->setCredentialData(identifier, authenticator);
	}
	else
	{
		// credential was not in protected storage, so pull the credential
		// from the legacy store.
		std::string first_name = gSavedSettings.getString("FirstName");
		std::string last_name = gSavedSettings.getString("LastName");
		
		if ((first_name != "") &&
			(last_name != ""))
		{
			LLSD identifier = LLSD::emptyMap();
			LLSD authenticator;
			identifier["type"] = "agent";
			identifier["first_name"] = first_name;
			identifier["last_name"] = last_name;
			
			std::string legacy_password = _legacyLoadPassword();
			if (legacy_password.length() > 0)
			{
				authenticator = LLSD::emptyMap();
				authenticator["type"] = "hash";
				authenticator["algorithm"] = "md5";
				authenticator["secret"] = legacy_password;
			}
			result->setCredentialData(identifier, authenticator);
		}		
	}
	return result;
}

// Save the credential to the credential store.  Save the authenticator also if requested.
// That feature is used to implement the 'remember password' functionality.
void LLSecAPIBasicHandler::saveCredential(LLPointer<LLCredential> cred, bool save_authenticator)
{
	LLSD credential = LLSD::emptyMap();
	credential["identifier"] = cred->getIdentifier(); 
	if (save_authenticator) 
	{
		credential["authenticator"] = cred->getAuthenticator();
	}
	LL_DEBUGS("SECAPI") << "Saving Credential " << cred->getGrid() << ":" << cred->userID() << " " << save_authenticator << LL_ENDL;
	setProtectedData("credential", cred->getGrid(), credential);
	//*TODO: If we're saving Agni credentials, should we write the
	// credentials to the legacy password.dat/etc?
	_writeProtectedData();
}

// Remove a credential from the credential store.
void LLSecAPIBasicHandler::deleteCredential(LLPointer<LLCredential> cred)
{
	LLSD undefVal;
	deleteProtectedData("credential", cred->getGrid());
	cred->setCredentialData(undefVal, undefVal);
	_writeProtectedData();
}

// load the legacy hash for agni, and decrypt it given the 
// mac address
std::string LLSecAPIBasicHandler::_legacyLoadPassword()
{
	const S32 HASHED_LENGTH = 32;	
	std::vector<U8> buffer(HASHED_LENGTH);
	llifstream password_file(mLegacyPasswordPath, llifstream::binary);
	
	if(password_file.fail())
	{
		return std::string("");
	}
	
	password_file.read((char*)&buffer[0], buffer.size());
	if(password_file.gcount() != buffer.size())
	{
		return std::string("");
	}
	
	// Decipher with MAC address
	unsigned char unique_id[MAC_ADDRESS_BYTES];
    LLMachineID::getUniqueID(unique_id, sizeof(unique_id));
	LLXORCipher cipher(unique_id, sizeof(unique_id));
	cipher.decrypt(&buffer[0], buffer.size());
	
	return std::string((const char*)&buffer[0], buffer.size());
}


// return an identifier for the user
std::string LLSecAPIBasicCredential::userID() const
{
	if (!mIdentifier.isMap())
	{
		return mGrid + "(null)";
	}
	else if ((std::string)mIdentifier["type"] == "agent")
	{
		return  (std::string)mIdentifier["first_name"] + "_" + (std::string)mIdentifier["last_name"];
	}
	else if ((std::string)mIdentifier["type"] == "account")
	{
		return (std::string)mIdentifier["account_name"];
	}

	return "unknown";

}

// return a printable user identifier
std::string LLSecAPIBasicCredential::asString() const
{
	if (!mIdentifier.isMap())
	{
		return mGrid + ":(null)";
	}
	else if ((std::string)mIdentifier["type"] == "agent")
	{
		return mGrid + ":" + (std::string)mIdentifier["first_name"] + " " + (std::string)mIdentifier["last_name"];
	}
	else if ((std::string)mIdentifier["type"] == "account")
	{
		return mGrid + ":" + (std::string)mIdentifier["account_name"];
	}

	return mGrid + ":(unknown type)";
}


bool valueCompareLLSD(const LLSD& lhs, const LLSD& rhs)
{
	if (lhs.type() != rhs.type())
	{
		return FALSE;
	}
    if (lhs.isMap())
	{
		// iterate through the map, verifying the right hand side has all of the
		// values that the left hand side has.
		for (LLSD::map_const_iterator litt = lhs.beginMap();
			 litt != lhs.endMap();
			 litt++)
		{
			if (!rhs.has(litt->first))
			{
				return FALSE;
			}
		}
		
		// Now validate that the left hand side has everything the
		// right hand side has, and that the values are equal.
		for (LLSD::map_const_iterator ritt = rhs.beginMap();
			 ritt != rhs.endMap();
			 ritt++)
		{
			if (!lhs.has(ritt->first))
			{
				return FALSE;
			}
			if (!valueCompareLLSD(lhs[ritt->first], ritt->second))
			{
				return FALSE;
			}
		}
		return TRUE;
	}
    else if (lhs.isArray())
	{
		LLSD::array_const_iterator ritt = rhs.beginArray();
		// iterate through the array, comparing
		for (LLSD::array_const_iterator litt = lhs.beginArray();
			 litt != lhs.endArray();
			 litt++)
		{
			if (!valueCompareLLSD(*ritt, *litt))
			{
				return FALSE;
			}
			ritt++;
		}
		
		return (ritt == rhs.endArray());
	}
    else
	{
		// simple type, compare as string
		return (lhs.asString() == rhs.asString());
	}
	
}