1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
|
/**
* @file llreflectionmapmanager.cpp
* @brief LLReflectionMapManager class implementation
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llreflectionmapmanager.h"
#include "llviewercamera.h"
#include "llspatialpartition.h"
#include "llviewerregion.h"
#include "pipeline.h"
#include "llviewershadermgr.h"
#include "llviewercontrol.h"
#include "llenvironment.h"
#include "llstartup.h"
extern BOOL gCubeSnapshot;
extern BOOL gTeleportDisplay;
// get the next highest power of two of v (or v if v is already a power of two)
//defined in llvertexbuffer.cpp
extern U32 nhpo2(U32 v);
static void touch_default_probe(LLReflectionMap* probe)
{
if (LLViewerCamera::getInstance())
{
LLVector3 origin = LLViewerCamera::getInstance()->getOrigin();
origin.mV[2] += 64.f;
probe->mOrigin.load3(origin.mV);
}
}
LLReflectionMapManager::LLReflectionMapManager()
{
initCubeFree();
}
void LLReflectionMapManager::initCubeFree()
{
// start at 1 because index 0 is reserved for mDefaultProbe
for (int i = 1; i < LL_MAX_REFLECTION_PROBE_COUNT; ++i)
{
mCubeFree.push_back(i);
}
}
struct CompareProbeDistance
{
LLReflectionMap* mDefaultProbe;
bool operator()(const LLPointer<LLReflectionMap>& lhs, const LLPointer<LLReflectionMap>& rhs)
{
return lhs->mDistance < rhs->mDistance;
}
};
static F32 update_score(LLReflectionMap* p)
{
return gFrameTimeSeconds - p->mLastUpdateTime - p->mDistance*0.1f;
}
// return true if a is higher priority for an update than b
static bool check_priority(LLReflectionMap* a, LLReflectionMap* b)
{
if (a->mCubeIndex == -1)
{ // not a candidate for updating
return false;
}
else if (b->mCubeIndex == -1)
{ // certainly higher priority than b
return true;
}
else if (!a->mComplete && !b->mComplete)
{ //neither probe is complete, use distance
return a->mDistance < b->mDistance;
}
else if (a->mComplete && b->mComplete)
{ //both probes are complete, use update_score metric
return update_score(a) > update_score(b);
}
// one of these probes is not complete, if b is complete, a is higher priority
return b->mComplete;
}
// helper class to seed octree with probes
void LLReflectionMapManager::update()
{
if (!LLPipeline::sReflectionProbesEnabled || gTeleportDisplay || LLStartUp::getStartupState() < STATE_PRECACHE)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(!gCubeSnapshot); // assert a snapshot is not in progress
if (LLAppViewer::instance()->logoutRequestSent())
{
return;
}
initReflectionMaps();
if (!mRenderTarget.isComplete())
{
U32 color_fmt = GL_RGB16F;
U32 targetRes = mProbeResolution * 4; // super sample
mRenderTarget.allocate(targetRes, targetRes, color_fmt, true);
}
if (mMipChain.empty())
{
U32 res = mProbeResolution;
U32 count = log2((F32)res) + 0.5f;
mMipChain.resize(count);
for (int i = 0; i < count; ++i)
{
mMipChain[i].allocate(res, res, GL_RGB16F);
res /= 2;
}
}
llassert(mProbes[0] == mDefaultProbe);
LLVector4a camera_pos;
camera_pos.load3(LLViewerCamera::instance().getOrigin().mV);
// process kill list
for (auto& probe : mKillList)
{
auto const & iter = std::find(mProbes.begin(), mProbes.end(), probe);
if (iter != mProbes.end())
{
deleteProbe(iter - mProbes.begin());
}
}
mKillList.clear();
// process create list
for (auto& probe : mCreateList)
{
mProbes.push_back(probe);
}
mCreateList.clear();
if (mProbes.empty())
{
return;
}
bool did_update = false;
static LLCachedControl<S32> sDetail(gSavedSettings, "RenderReflectionProbeDetail", -1);
static LLCachedControl<S32> sLevel(gSavedSettings, "RenderReflectionProbeLevel", 3);
bool realtime = sDetail >= (S32)LLReflectionMapManager::DetailLevel::REALTIME;
LLReflectionMap* closestDynamic = nullptr;
LLReflectionMap* oldestProbe = nullptr;
LLReflectionMap* oldestOccluded = nullptr;
if (mUpdatingProbe != nullptr)
{
did_update = true;
doProbeUpdate();
}
// update distance to camera for all probes
std::sort(mProbes.begin()+1, mProbes.end(), CompareProbeDistance());
llassert(mProbes[0] == mDefaultProbe);
llassert(mProbes[0]->mCubeArray == mTexture);
llassert(mProbes[0]->mCubeIndex == 0);
// make sure we're assigning cube slots to the closest probes
// first free any cube indices for distant probes
for (U32 i = mReflectionProbeCount; i < mProbes.size(); ++i)
{
LLReflectionMap* probe = mProbes[i];
llassert(probe != nullptr);
if (probe->mCubeIndex != -1 && mUpdatingProbe != probe)
{ // free this index
mCubeFree.push_back(probe->mCubeIndex);
probe->mCubeArray = nullptr;
probe->mCubeIndex = -1;
probe->mComplete = false;
}
}
// next distribute the free indices
U32 count = llmin(mReflectionProbeCount, (U32)mProbes.size());
for (S32 i = 1; i < count && !mCubeFree.empty(); ++i)
{
// find the closest probe that needs a cube index
LLReflectionMap* probe = mProbes[i];
if (probe->mCubeIndex == -1)
{
S32 idx = allocateCubeIndex();
llassert(idx > 0); //if we're still in this loop, mCubeFree should not be empty and allocateCubeIndex should be returning good indices
probe->mCubeArray = mTexture;
probe->mCubeIndex = idx;
}
}
for (int i = 0; i < mProbes.size(); ++i)
{
LLReflectionMap* probe = mProbes[i];
if (probe->getNumRefs() == 1)
{ // no references held outside manager, delete this probe
deleteProbe(i);
--i;
continue;
}
if (probe != mDefaultProbe && !probe->isRelevant())
{
continue;
}
LLVector4a d;
if (probe != mDefaultProbe)
{
d.setSub(camera_pos, probe->mOrigin);
probe->mDistance = d.getLength3().getF32() - probe->mRadius;
}
else if (probe->mComplete)
{
// make default probe have a distance of 64m for the purposes of prioritization (if it's already been generated once)
probe->mDistance = 64.f;
}
else
{
probe->mDistance = -4096.f; //boost priority of default probe when it's not complete
}
if (probe->mComplete)
{
probe->autoAdjustOrigin();
probe->mFadeIn = llmin((F32) (probe->mFadeIn + gFrameIntervalSeconds), 1.f);
}
if (probe->mOccluded && probe->mComplete)
{
if (oldestOccluded == nullptr)
{
oldestOccluded = probe;
}
else if (probe->mLastUpdateTime < oldestOccluded->mLastUpdateTime)
{
oldestOccluded = probe;
}
}
else
{
if (!did_update &&
i < mReflectionProbeCount &&
(oldestProbe == nullptr ||
check_priority(probe, oldestProbe)))
{
oldestProbe = probe;
}
}
if (realtime &&
closestDynamic == nullptr &&
probe->mCubeIndex != -1 &&
probe->getIsDynamic())
{
closestDynamic = probe;
}
}
if (realtime && closestDynamic != nullptr)
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmu - realtime");
// update the closest dynamic probe realtime
// should do a full irradiance pass on "odd" frames and a radiance pass on "even" frames
closestDynamic->autoAdjustOrigin();
// store and override the value of "isRadiancePass" -- parts of the render pipe rely on "isRadiancePass" to set
// lighting values etc
bool radiance_pass = isRadiancePass();
mRadiancePass = mRealtimeRadiancePass;
for (U32 i = 0; i < 6; ++i)
{
updateProbeFace(closestDynamic, i);
}
mRealtimeRadiancePass = !mRealtimeRadiancePass;
// restore "isRadiancePass"
mRadiancePass = radiance_pass;
}
static LLCachedControl<F32> sUpdatePeriod(gSavedSettings, "RenderDefaultProbeUpdatePeriod", 2.f);
if ((gFrameTimeSeconds - mDefaultProbe->mLastUpdateTime) < sUpdatePeriod)
{
if (sLevel == 0)
{ // when probes are disabled don't update the default probe more often than the prescribed update period
oldestProbe = nullptr;
}
}
else if (sLevel > 0)
{ // when probes are enabled don't update the default probe less often than the prescribed update period
oldestProbe = mDefaultProbe;
}
// switch to updating the next oldest probe
if (!did_update && oldestProbe != nullptr)
{
LLReflectionMap* probe = oldestProbe;
llassert(probe->mCubeIndex != -1);
probe->autoAdjustOrigin();
mUpdatingProbe = probe;
doProbeUpdate();
}
if (oldestOccluded)
{
// as far as this occluded probe is concerned, an origin/radius update is as good as a full update
oldestOccluded->autoAdjustOrigin();
oldestOccluded->mLastUpdateTime = gFrameTimeSeconds;
}
}
LLReflectionMap* LLReflectionMapManager::addProbe(LLSpatialGroup* group)
{
LLReflectionMap* probe = new LLReflectionMap();
probe->mGroup = group;
if (mDefaultProbe.isNull())
{ //safety check to make sure default probe is always first probe added
mDefaultProbe = new LLReflectionMap();
mProbes.push_back(mDefaultProbe);
}
llassert(mProbes[0] == mDefaultProbe);
if (group)
{
probe->mOrigin = group->getOctreeNode()->getCenter();
}
if (gCubeSnapshot)
{ //snapshot is in progress, mProbes is being iterated over, defer insertion until next update
mCreateList.push_back(probe);
}
else
{
mProbes.push_back(probe);
}
return probe;
}
struct CompareProbeDepth
{
bool operator()(const LLReflectionMap* lhs, const LLReflectionMap* rhs)
{
return lhs->mMinDepth < rhs->mMinDepth;
}
};
void LLReflectionMapManager::getReflectionMaps(std::vector<LLReflectionMap*>& maps)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
LLMatrix4a modelview;
modelview.loadu(gGLModelView);
LLVector4a oa; // scratch space for transformed origin
U32 count = 0;
U32 lastIdx = 0;
for (U32 i = 0; count < maps.size() && i < mProbes.size(); ++i)
{
mProbes[i]->mLastBindTime = gFrameTimeSeconds; // something wants to use this probe, indicate it's been requested
if (mProbes[i]->mCubeIndex != -1)
{
if (!mProbes[i]->mOccluded && mProbes[i]->mComplete)
{
maps[count++] = mProbes[i];
modelview.affineTransform(mProbes[i]->mOrigin, oa);
mProbes[i]->mMinDepth = -oa.getF32ptr()[2] - mProbes[i]->mRadius;
mProbes[i]->mMaxDepth = -oa.getF32ptr()[2] + mProbes[i]->mRadius;
}
}
else
{
mProbes[i]->mProbeIndex = -1;
}
lastIdx = i;
}
// set remaining probe indices to -1
for (U32 i = lastIdx+1; i < mProbes.size(); ++i)
{
mProbes[i]->mProbeIndex = -1;
}
if (count > 1)
{
std::sort(maps.begin(), maps.begin() + count, CompareProbeDepth());
}
for (U32 i = 0; i < count; ++i)
{
maps[i]->mProbeIndex = i;
}
// null terminate list
if (count < maps.size())
{
maps[count] = nullptr;
}
}
LLReflectionMap* LLReflectionMapManager::registerSpatialGroup(LLSpatialGroup* group)
{
if (group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_VOLUME)
{
OctreeNode* node = group->getOctreeNode();
F32 size = node->getSize().getF32ptr()[0];
if (size >= 15.f && size <= 17.f)
{
return addProbe(group);
}
}
return nullptr;
}
LLReflectionMap* LLReflectionMapManager::registerViewerObject(LLViewerObject* vobj)
{
llassert(vobj != nullptr);
LLReflectionMap* probe = new LLReflectionMap();
probe->mViewerObject = vobj;
probe->mOrigin.load3(vobj->getPositionAgent().mV);
if (gCubeSnapshot)
{ //snapshot is in progress, mProbes is being iterated over, defer insertion until next update
mCreateList.push_back(probe);
}
else
{
mProbes.push_back(probe);
}
return probe;
}
S32 LLReflectionMapManager::allocateCubeIndex()
{
if (!mCubeFree.empty())
{
S32 ret = mCubeFree.front();
mCubeFree.pop_front();
return ret;
}
return -1;
}
void LLReflectionMapManager::deleteProbe(U32 i)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
LLReflectionMap* probe = mProbes[i];
llassert(probe != mDefaultProbe);
if (probe->mCubeIndex != -1)
{ // mark the cube index used by this probe as being free
mCubeFree.push_back(probe->mCubeIndex);
}
if (mUpdatingProbe == probe)
{
mUpdatingProbe = nullptr;
mUpdatingFace = 0;
}
// remove from any Neighbors lists
for (auto& other : probe->mNeighbors)
{
auto const & iter = std::find(other->mNeighbors.begin(), other->mNeighbors.end(), probe);
llassert(iter != other->mNeighbors.end());
other->mNeighbors.erase(iter);
}
mProbes.erase(mProbes.begin() + i);
}
void LLReflectionMapManager::doProbeUpdate()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(mUpdatingProbe != nullptr);
updateProbeFace(mUpdatingProbe, mUpdatingFace);
if (++mUpdatingFace == 6)
{
updateNeighbors(mUpdatingProbe);
mUpdatingFace = 0;
if (isRadiancePass())
{
mUpdatingProbe->mComplete = true;
mUpdatingProbe = nullptr;
mRadiancePass = false;
}
else
{
mRadiancePass = true;
}
}
}
// Do the reflection map update render passes.
// For every 12 calls of this function, one complete reflection probe radiance map and irradiance map is generated
// First six passes render the scene with direct lighting only into a scratch space cube map at the end of the cube map array and generate
// a simple mip chain (not convolution filter).
// At the end of these passes, an irradiance map is generated for this probe and placed into the irradiance cube map array at the index for this probe
// The next six passes render the scene with both radiance and irradiance into the same scratch space cube map and generate a simple mip chain.
// At the end of these passes, a radiance map is generated for this probe and placed into the radiance cube map array at the index for this probe.
// In effect this simulates single-bounce lighting.
void LLReflectionMapManager::updateProbeFace(LLReflectionMap* probe, U32 face)
{
// hacky hot-swap of camera specific render targets
gPipeline.mRT = &gPipeline.mAuxillaryRT;
mLightScale = 1.f;
static LLCachedControl<F32> max_local_light_ambiance(gSavedSettings, "RenderReflectionProbeMaxLocalLightAmbiance", 8.f);
if (!isRadiancePass() && probe->getAmbiance() > max_local_light_ambiance)
{
mLightScale = max_local_light_ambiance / probe->getAmbiance();
}
if (probe == mDefaultProbe)
{
touch_default_probe(probe);
gPipeline.pushRenderTypeMask();
//only render sky, water, terrain, and clouds
gPipeline.andRenderTypeMask(LLPipeline::RENDER_TYPE_SKY, LLPipeline::RENDER_TYPE_WL_SKY,
LLPipeline::RENDER_TYPE_WATER, LLPipeline::RENDER_TYPE_VOIDWATER, LLPipeline::RENDER_TYPE_CLOUDS, LLPipeline::RENDER_TYPE_TERRAIN, LLPipeline::END_RENDER_TYPES);
probe->update(mRenderTarget.getWidth(), face);
gPipeline.popRenderTypeMask();
}
else
{
probe->update(mRenderTarget.getWidth(), face);
}
gPipeline.mRT = &gPipeline.mMainRT;
S32 sourceIdx = mReflectionProbeCount;
if (probe != mUpdatingProbe)
{ // this is the "realtime" probe that's updating every frame, use the secondary scratch space channel
sourceIdx += 1;
}
gGL.setColorMask(true, true);
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
LLGLDisable cull(GL_CULL_FACE);
LLGLDisable blend(GL_BLEND);
// downsample to placeholder map
{
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(gGL.MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.flush();
U32 res = mProbeResolution * 2;
static LLStaticHashedString resScale("resScale");
static LLStaticHashedString direction("direction");
static LLStaticHashedString znear("znear");
static LLStaticHashedString zfar("zfar");
LLRenderTarget* screen_rt = &gPipeline.mAuxillaryRT.screen;
// perform a gaussian blur on the super sampled render before downsampling
{
gGaussianProgram.bind();
gGaussianProgram.uniform1f(resScale, 1.f / (mProbeResolution * 2));
S32 diffuseChannel = gGaussianProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
// horizontal
gGaussianProgram.uniform2f(direction, 1.f, 0.f);
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
mRenderTarget.bindTarget();
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
mRenderTarget.flush();
// vertical
gGaussianProgram.uniform2f(direction, 0.f, 1.f);
gGL.getTexUnit(diffuseChannel)->bind(&mRenderTarget);
screen_rt->bindTarget();
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
screen_rt->flush();
}
S32 mips = log2((F32)mProbeResolution) + 0.5f;
gReflectionMipProgram.bind();
S32 diffuseChannel = gReflectionMipProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe mip");
mMipChain[i].bindTarget();
if (i == 0)
{
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
}
else
{
gGL.getTexUnit(diffuseChannel)->bind(&(mMipChain[i - 1]));
}
gReflectionMipProgram.uniform1f(resScale, 1.f/(mProbeResolution*2));
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
res /= 2;
S32 mip = i - (mMipChain.size() - mips);
if (mip >= 0)
{
LL_PROFILE_GPU_ZONE("probe mip copy");
mTexture->bind(0);
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, sourceIdx * 6 + face, 0, 0, res, res);
//if (i == 0)
//{
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
//}
mTexture->unbind();
}
mMipChain[i].flush();
}
gGL.popMatrix();
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.popMatrix();
gGL.getTexUnit(diffuseChannel)->unbind(LLTexUnit::TT_TEXTURE);
gReflectionMipProgram.unbind();
}
if (face == 5)
{
mMipChain[0].bindTarget();
static LLStaticHashedString sSourceIdx("sourceIdx");
if (isRadiancePass())
{
//generate radiance map (even if this is not the irradiance map, we need the mip chain for the irradiance map)
gRadianceGenProgram.bind();
mVertexBuffer->setBuffer();
S32 channel = gRadianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
gRadianceGenProgram.uniform1i(sSourceIdx, sourceIdx);
gRadianceGenProgram.uniform1f(LLShaderMgr::REFLECTION_PROBE_MAX_LOD, mMaxProbeLOD);
U32 res = mMipChain[0].getWidth();
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe radiance gen");
static LLStaticHashedString sMipLevel("mipLevel");
static LLStaticHashedString sRoughness("roughness");
static LLStaticHashedString sWidth("u_width");
gRadianceGenProgram.uniform1f(sRoughness, (F32)i / (F32)(mMipChain.size() - 1));
gRadianceGenProgram.uniform1f(sMipLevel, i);
gRadianceGenProgram.uniform1i(sWidth, mProbeResolution);
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
}
if (i != mMipChain.size() - 1)
{
res /= 2;
glViewport(0, 0, res, res);
}
}
gRadianceGenProgram.unbind();
}
else
{
//generate irradiance map
gIrradianceGenProgram.bind();
S32 channel = gIrradianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
gIrradianceGenProgram.uniform1i(sSourceIdx, sourceIdx);
gIrradianceGenProgram.uniform1f(LLShaderMgr::REFLECTION_PROBE_MAX_LOD, mMaxProbeLOD);
mVertexBuffer->setBuffer();
int start_mip = 0;
// find the mip target to start with based on irradiance map resolution
for (start_mip = 0; start_mip < mMipChain.size(); ++start_mip)
{
if (mMipChain[start_mip].getWidth() == LL_IRRADIANCE_MAP_RESOLUTION)
{
break;
}
}
//for (int i = start_mip; i < mMipChain.size(); ++i)
{
int i = start_mip;
LL_PROFILE_GPU_ZONE("probe irradiance gen");
glViewport(0, 0, mMipChain[i].getWidth(), mMipChain[i].getHeight());
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
S32 res = mMipChain[i].getWidth();
mIrradianceMaps->bind(channel);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i - start_mip, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
mTexture->bind(channel);
}
}
}
mMipChain[0].flush();
gIrradianceGenProgram.unbind();
}
}
void LLReflectionMapManager::reset()
{
mReset = true;
}
void LLReflectionMapManager::shift(const LLVector4a& offset)
{
for (auto& probe : mProbes)
{
probe->mOrigin.add(offset);
}
}
void LLReflectionMapManager::updateNeighbors(LLReflectionMap* probe)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
if (mDefaultProbe == probe)
{
return;
}
//remove from existing neighbors
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmun - clear");
for (auto& other : probe->mNeighbors)
{
auto const & iter = std::find(other->mNeighbors.begin(), other->mNeighbors.end(), probe);
llassert(iter != other->mNeighbors.end()); // <--- bug davep if this ever happens, something broke badly
other->mNeighbors.erase(iter);
}
probe->mNeighbors.clear();
}
// search for new neighbors
if (probe->isRelevant())
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmun - search");
for (auto& other : mProbes)
{
if (other != mDefaultProbe && other != probe)
{
if (other->isRelevant() && probe->intersects(other))
{
probe->mNeighbors.push_back(other);
other->mNeighbors.push_back(probe);
}
}
}
}
}
void LLReflectionMapManager::updateUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
// structure for packing uniform buffer object
// see class3/deferred/reflectionProbeF.glsl
struct ReflectionProbeData
{
// for box probes, matrix that transforms from camera space to a [-1, 1] cube representing the bounding box of
// the box probe
LLMatrix4 refBox[LL_MAX_REFLECTION_PROBE_COUNT];
// for sphere probes, origin (xyz) and radius (w) of refmaps in clip space
LLVector4 refSphere[LL_MAX_REFLECTION_PROBE_COUNT];
// extra parameters
// x - irradiance scale
// y - radiance scale
// z - fade in
// w - znear
LLVector4 refParams[LL_MAX_REFLECTION_PROBE_COUNT];
// indices used by probe:
// [i][0] - cubemap array index for this probe
// [i][1] - index into "refNeighbor" for probes that intersect this probe
// [i][2] - number of probes that intersect this probe, or -1 for no neighbors
// [i][3] - priority (probe type stored in sign bit - positive for spheres, negative for boxes)
GLint refIndex[LL_MAX_REFLECTION_PROBE_COUNT][4];
// list of neighbor indices
GLint refNeighbor[4096];
GLint refBucket[256][4]; //lookup table for which index to start with for the given Z depth
// numbrer of active refmaps
GLint refmapCount;
};
mReflectionMaps.resize(mReflectionProbeCount);
getReflectionMaps(mReflectionMaps);
ReflectionProbeData rpd;
F32 minDepth[256];
for (int i = 0; i < 256; ++i)
{
rpd.refBucket[i][0] = mReflectionProbeCount;
rpd.refBucket[i][1] = mReflectionProbeCount;
rpd.refBucket[i][2] = mReflectionProbeCount;
rpd.refBucket[i][3] = mReflectionProbeCount;
minDepth[i] = FLT_MAX;
}
// load modelview matrix into matrix 4a
LLMatrix4a modelview;
modelview.loadu(gGLModelView);
LLVector4a oa; // scratch space for transformed origin
S32 count = 0;
U32 nc = 0; // neighbor "cursor" - index into refNeighbor to start writing the next probe's list of neighbors
LLEnvironment& environment = LLEnvironment::instance();
LLSettingsSky::ptr_t psky = environment.getCurrentSky();
static LLCachedControl<F32> cloud_shadow_scale(gSavedSettings, "RenderCloudShadowAmbianceFactor", 0.125f);
static LLCachedControl<bool> should_auto_adjust(gSavedSettings, "RenderSkyAutoAdjustLegacy", true);
F32 minimum_ambiance = psky->getTotalReflectionProbeAmbiance(cloud_shadow_scale, should_auto_adjust);
F32 ambscale = gCubeSnapshot && !isRadiancePass() ? 0.f : 1.f;
F32 radscale = gCubeSnapshot && !isRadiancePass() ? 0.5f : 1.f;
for (auto* refmap : mReflectionMaps)
{
if (refmap == nullptr)
{
break;
}
if (refmap != mDefaultProbe)
{
// bucket search data
// theory of operation:
// 1. Determine minimum and maximum depth of each influence volume and store in mDepth (done in getReflectionMaps)
// 2. Sort by minimum depth
// 3. Prepare a bucket for each 1m of depth out to 256m
// 4. For each bucket, store the index of the nearest probe that might influence pixels in that bucket
// 5. In the shader, lookup the bucket for the pixel depth to get the index of the first probe that could possibly influence
// the current pixel.
int depth_min = llclamp(llfloor(refmap->mMinDepth), 0, 255);
int depth_max = llclamp(llfloor(refmap->mMaxDepth), 0, 255);
for (U32 i = depth_min; i <= depth_max; ++i)
{
if (refmap->mMinDepth < minDepth[i])
{
minDepth[i] = refmap->mMinDepth;
rpd.refBucket[i][0] = refmap->mProbeIndex;
}
}
}
llassert(refmap->mProbeIndex == count);
llassert(mReflectionMaps[refmap->mProbeIndex] == refmap);
llassert(refmap->mCubeIndex >= 0); // should always be true, if not, getReflectionMaps is bugged
{
if (refmap->mViewerObject)
{ // have active manual probes live-track the object they're associated with
refmap->mOrigin.load3(refmap->mViewerObject->getPositionAgent().mV);
refmap->mRadius = refmap->mViewerObject->getScale().mV[0] * 0.5f;
}
modelview.affineTransform(refmap->mOrigin, oa);
rpd.refSphere[count].set(oa.getF32ptr());
rpd.refSphere[count].mV[3] = refmap->mRadius;
}
rpd.refIndex[count][0] = refmap->mCubeIndex;
llassert(nc % 4 == 0);
rpd.refIndex[count][1] = nc / 4;
rpd.refIndex[count][3] = refmap->mPriority;
// for objects that are reflection probes, use the volume as the influence volume of the probe
// only possibile influence volumes are boxes and spheres, so detect boxes and treat everything else as spheres
if (refmap->getBox(rpd.refBox[count]))
{ // negate priority to indicate this probe has a box influence volume
rpd.refIndex[count][3] = -rpd.refIndex[count][3];
}
rpd.refParams[count].set(
llmax(minimum_ambiance, refmap->getAmbiance())*ambscale, // ambiance scale
radscale, // radiance scale
refmap->mFadeIn, // fade in weight
oa.getF32ptr()[2] - refmap->mRadius); // z near
S32 ni = nc; // neighbor ("index") - index into refNeighbor to write indices for current reflection probe's neighbors
{
//LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - refNeighbors");
//pack neghbor list
const U32 max_neighbors = 64;
U32 neighbor_count = 0;
for (auto& neighbor : refmap->mNeighbors)
{
if (ni >= 4096)
{ // out of space
break;
}
GLint idx = neighbor->mProbeIndex;
if (idx == -1 || neighbor->mOccluded || neighbor->mCubeIndex == -1)
{
continue;
}
// this neighbor may be sampled
rpd.refNeighbor[ni++] = idx;
neighbor_count++;
if (neighbor_count >= max_neighbors)
{
break;
}
}
}
if (nc == ni)
{
//no neighbors, tag as empty
rpd.refIndex[count][1] = -1;
}
else
{
rpd.refIndex[count][2] = ni - nc;
// move the cursor forward
nc = ni;
if (nc % 4 != 0)
{ // jump to next power of 4 for compatibility with ivec4
nc += 4 - (nc % 4);
}
}
count++;
}
#if 0
{
// fill in gaps in refBucket
S32 probe_idx = mReflectionProbeCount;
for (int i = 0; i < 256; ++i)
{
if (i < count)
{ // for debugging, store depth of mReflectionsMaps[i]
rpd.refBucket[i][1] = (S32) (mReflectionMaps[i]->mDepth * 10);
}
if (rpd.refBucket[i][0] == mReflectionProbeCount)
{
rpd.refBucket[i][0] = probe_idx;
}
else
{
probe_idx = rpd.refBucket[i][0];
}
}
}
#endif
rpd.refmapCount = count;
//copy rpd into uniform buffer object
if (mUBO == 0)
{
glGenBuffers(1, &mUBO);
}
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - update buffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUBO);
glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeData), &rpd, GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
#if 0
if (!gCubeSnapshot)
{
for (auto& probe : mProbes)
{
LLViewerObject* vobj = probe->mViewerObject;
if (vobj)
{
F32 time = (F32)gFrameTimeSeconds - probe->mLastUpdateTime;
vobj->setDebugText(llformat("%d/%d/%d/%.1f - %.1f/%.1f", probe->mCubeIndex, probe->mProbeIndex, (U32) probe->mNeighbors.size(), probe->mMinDepth, probe->mMaxDepth, time), time > 1.f ? LLColor4::white : LLColor4::green);
}
}
}
#endif
}
void LLReflectionMapManager::setUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
if (mUBO == 0)
{
updateUniforms();
}
glBindBufferBase(GL_UNIFORM_BUFFER, 1, mUBO);
}
void renderReflectionProbe(LLReflectionMap* probe)
{
if (probe->isRelevant())
{
F32* po = probe->mOrigin.getF32ptr();
//draw orange line from probe to neighbors
gGL.flush();
gGL.diffuseColor4f(1, 0.5f, 0, 1);
gGL.begin(gGL.LINES);
for (auto& neighbor : probe->mNeighbors)
{
if (probe->mViewerObject && neighbor->mViewerObject)
{
continue;
}
gGL.vertex3fv(po);
gGL.vertex3fv(neighbor->mOrigin.getF32ptr());
}
gGL.end();
gGL.flush();
gGL.diffuseColor4f(1, 1, 0, 1);
gGL.begin(gGL.LINES);
for (auto& neighbor : probe->mNeighbors)
{
if (probe->mViewerObject && neighbor->mViewerObject)
{
gGL.vertex3fv(po);
gGL.vertex3fv(neighbor->mOrigin.getF32ptr());
}
}
gGL.end();
gGL.flush();
}
#if 0
LLSpatialGroup* group = probe->mGroup;
if (group)
{ // draw lines from corners of object aabb to reflection probe
const LLVector4a* bounds = group->getBounds();
LLVector4a o = bounds[0];
gGL.flush();
gGL.diffuseColor4f(0, 0, 1, 1);
F32* c = o.getF32ptr();
const F32* bc = bounds[0].getF32ptr();
const F32* bs = bounds[1].getF32ptr();
// daaw blue lines from corners to center of node
gGL.begin(gGL.LINES);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] + bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] + bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] - bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] - bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] + bs[1], bc[2] - bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] + bs[1], bc[2] - bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] - bs[1], bc[2] - bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] - bs[1], bc[2] - bs[2]);
gGL.end();
//draw yellow line from center of node to reflection probe origin
gGL.flush();
gGL.diffuseColor4f(1, 1, 0, 1);
gGL.begin(gGL.LINES);
gGL.vertex3fv(c);
gGL.vertex3fv(po);
gGL.end();
gGL.flush();
}
#endif
}
void LLReflectionMapManager::renderDebug()
{
gDebugProgram.bind();
for (auto& probe : mProbes)
{
renderReflectionProbe(probe);
}
gDebugProgram.unbind();
}
void LLReflectionMapManager::initReflectionMaps()
{
U32 count = LL_MAX_REFLECTION_PROBE_COUNT;
if (mTexture.isNull() || mReflectionProbeCount != count || mReset)
{
mReset = false;
mReflectionProbeCount = count;
mProbeResolution = nhpo2(llclamp(gSavedSettings.getU32("RenderReflectionProbeResolution"), (U32)64, (U32)512));
mMaxProbeLOD = log2f(mProbeResolution) - 1.f; // number of mips - 1
mTexture = new LLCubeMapArray();
// store mReflectionProbeCount+2 cube maps, final two cube maps are used for render target and radiance map generation source)
mTexture->allocate(mProbeResolution, 3, mReflectionProbeCount + 2);
mIrradianceMaps = new LLCubeMapArray();
mIrradianceMaps->allocate(LL_IRRADIANCE_MAP_RESOLUTION, 3, mReflectionProbeCount, FALSE);
// reset probe state
mUpdatingFace = 0;
mUpdatingProbe = nullptr;
mRadiancePass = false;
mRealtimeRadiancePass = false;
for (auto& probe : mProbes)
{
probe->mLastUpdateTime = 0.f;
probe->mComplete = false;
probe->mProbeIndex = -1;
probe->mCubeArray = nullptr;
probe->mCubeIndex = -1;
probe->mNeighbors.clear();
}
mCubeFree.clear();
initCubeFree();
if (mDefaultProbe.isNull())
{
llassert(mProbes.empty()); // default probe MUST be the first probe created
mDefaultProbe = new LLReflectionMap();
mProbes.push_back(mDefaultProbe);
}
llassert(mProbes[0] == mDefaultProbe);
mDefaultProbe->mCubeIndex = 0;
mDefaultProbe->mCubeArray = mTexture;
mDefaultProbe->mDistance = 64.f;
mDefaultProbe->mRadius = 4096.f;
mDefaultProbe->mProbeIndex = 0;
touch_default_probe(mDefaultProbe);
}
if (mVertexBuffer.isNull())
{
U32 mask = LLVertexBuffer::MAP_VERTEX;
LLPointer<LLVertexBuffer> buff = new LLVertexBuffer(mask);
buff->allocateBuffer(4, 0);
LLStrider<LLVector3> v;
buff->getVertexStrider(v);
v[0] = LLVector3(-1, -1, -1);
v[1] = LLVector3(1, -1, -1);
v[2] = LLVector3(-1, 1, -1);
v[3] = LLVector3(1, 1, -1);
buff->unmapBuffer();
mVertexBuffer = buff;
}
}
void LLReflectionMapManager::cleanup()
{
mVertexBuffer = nullptr;
mRenderTarget.release();
mMipChain.clear();
mTexture = nullptr;
mIrradianceMaps = nullptr;
mProbes.clear();
mKillList.clear();
mCreateList.clear();
mReflectionMaps.clear();
mUpdatingFace = 0;
mDefaultProbe = nullptr;
mUpdatingProbe = nullptr;
glDeleteBuffers(1, &mUBO);
mUBO = 0;
// note: also called on teleport (not just shutdown), so make sure we're in a good "starting" state
initCubeFree();
}
void LLReflectionMapManager::doOcclusion()
{
LLVector4a eye;
eye.load3(LLViewerCamera::instance().getOrigin().mV);
for (auto& probe : mProbes)
{
if (probe != nullptr && probe != mDefaultProbe)
{
probe->doOcclusion(eye);
}
}
}
|