1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
/**
* @file llkeyboardwin32.cpp
* @brief Handler for assignable key bindings
*
* Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#if LL_WINDOWS
#include "linden_common.h"
#include "llkeyboardwin32.h"
#include "llwindow.h"
#define WIN32_LEAN_AND_MEAN
#include <winsock2.h>
#include <windows.h>
LLKeyboardWin32::LLKeyboardWin32()
{
// Set up key mapping for windows - eventually can read this from a file?
// Anything not in the key map gets dropped
// Add default A-Z
// Virtual key mappings from WinUser.h
KEY cur_char;
for (cur_char = 'A'; cur_char <= 'Z'; cur_char++)
{
mTranslateKeyMap[cur_char] = (KEY)cur_char;
}
for (cur_char = '0'; cur_char <= '9'; cur_char++)
{
mTranslateKeyMap[cur_char] = (KEY)cur_char;
}
// numpad number keys
for (cur_char = 0x60; cur_char <= 0x69; cur_char++)
{
mTranslateKeyMap[cur_char] = (KEY)('0' + (0x60 - cur_char));
}
mTranslateKeyMap[VK_SPACE] = ' ';
mTranslateKeyMap[VK_OEM_1] = ';';
// When the user hits, for example, Ctrl-= as a keyboard shortcut,
// Windows generates VK_OEM_PLUS. This is true on both QWERTY and DVORAK
// keyboards in the US. Numeric keypad '+' generates VK_ADD below.
// Thus we translate it as '='.
// Potential bug: This may not be true on international keyboards. JC
mTranslateKeyMap[VK_OEM_PLUS] = '=';
mTranslateKeyMap[VK_OEM_COMMA] = ',';
mTranslateKeyMap[VK_OEM_MINUS] = '-';
mTranslateKeyMap[VK_OEM_PERIOD] = '.';
mTranslateKeyMap[VK_OEM_2] = '/';
mTranslateKeyMap[VK_OEM_3] = '`';
mTranslateKeyMap[VK_OEM_4] = '[';
mTranslateKeyMap[VK_OEM_5] = '\\';
mTranslateKeyMap[VK_OEM_6] = ']';
mTranslateKeyMap[VK_OEM_7] = '\'';
mTranslateKeyMap[VK_ESCAPE] = KEY_ESCAPE;
mTranslateKeyMap[VK_RETURN] = KEY_RETURN;
mTranslateKeyMap[VK_LEFT] = KEY_LEFT;
mTranslateKeyMap[VK_RIGHT] = KEY_RIGHT;
mTranslateKeyMap[VK_UP] = KEY_UP;
mTranslateKeyMap[VK_DOWN] = KEY_DOWN;
mTranslateKeyMap[VK_BACK] = KEY_BACKSPACE;
mTranslateKeyMap[VK_INSERT] = KEY_INSERT;
mTranslateKeyMap[VK_DELETE] = KEY_DELETE;
mTranslateKeyMap[VK_SHIFT] = KEY_SHIFT;
mTranslateKeyMap[VK_CONTROL] = KEY_CONTROL;
mTranslateKeyMap[VK_MENU] = KEY_ALT;
mTranslateKeyMap[VK_CAPITAL] = KEY_CAPSLOCK;
mTranslateKeyMap[VK_HOME] = KEY_HOME;
mTranslateKeyMap[VK_END] = KEY_END;
mTranslateKeyMap[VK_PRIOR] = KEY_PAGE_UP;
mTranslateKeyMap[VK_NEXT] = KEY_PAGE_DOWN;
mTranslateKeyMap[VK_TAB] = KEY_TAB;
mTranslateKeyMap[VK_ADD] = KEY_ADD;
mTranslateKeyMap[VK_SUBTRACT] = KEY_SUBTRACT;
mTranslateKeyMap[VK_MULTIPLY] = KEY_MULTIPLY;
mTranslateKeyMap[VK_DIVIDE] = KEY_DIVIDE;
mTranslateKeyMap[VK_F1] = KEY_F1;
mTranslateKeyMap[VK_F2] = KEY_F2;
mTranslateKeyMap[VK_F3] = KEY_F3;
mTranslateKeyMap[VK_F4] = KEY_F4;
mTranslateKeyMap[VK_F5] = KEY_F5;
mTranslateKeyMap[VK_F6] = KEY_F6;
mTranslateKeyMap[VK_F7] = KEY_F7;
mTranslateKeyMap[VK_F8] = KEY_F8;
mTranslateKeyMap[VK_F9] = KEY_F9;
mTranslateKeyMap[VK_F10] = KEY_F10;
mTranslateKeyMap[VK_F11] = KEY_F11;
mTranslateKeyMap[VK_F12] = KEY_F12;
mTranslateKeyMap[VK_CLEAR] = KEY_PAD_CENTER;
// Build inverse map
std::map<U16, KEY>::iterator iter;
for (iter = mTranslateKeyMap.begin(); iter != mTranslateKeyMap.end(); iter++)
{
mInvTranslateKeyMap[iter->second] = iter->first;
}
// numpad map
mTranslateNumpadMap[0x60] = KEY_PAD_INS; // keypad 0
mTranslateNumpadMap[0x61] = KEY_PAD_END; // keypad 1
mTranslateNumpadMap[0x62] = KEY_PAD_DOWN; // keypad 2
mTranslateNumpadMap[0x63] = KEY_PAD_PGDN; // keypad 3
mTranslateNumpadMap[0x64] = KEY_PAD_LEFT; // keypad 4
mTranslateNumpadMap[0x65] = KEY_PAD_CENTER; // keypad 5
mTranslateNumpadMap[0x66] = KEY_PAD_RIGHT; // keypad 6
mTranslateNumpadMap[0x67] = KEY_PAD_HOME; // keypad 7
mTranslateNumpadMap[0x68] = KEY_PAD_UP; // keypad 8
mTranslateNumpadMap[0x69] = KEY_PAD_PGUP; // keypad 9
mTranslateNumpadMap[0x6E] = KEY_PAD_DEL; // keypad .
for (iter = mTranslateNumpadMap.begin(); iter != mTranslateNumpadMap.end(); iter++)
{
mInvTranslateNumpadMap[iter->second] = iter->first;
}
}
// Asynchronously poll the control, alt and shift keys and set the
// appropriate states.
// Note: this does not generate edges.
void LLKeyboardWin32::resetMaskKeys()
{
// GetAsyncKeyState returns a short and uses the most significant
// bit to indicate that the key is down.
if (GetAsyncKeyState(VK_SHIFT) & 0x8000)
{
mKeyLevel[KEY_SHIFT] = TRUE;
}
if (GetAsyncKeyState(VK_CONTROL) & 0x8000)
{
mKeyLevel[KEY_CONTROL] = TRUE;
}
if (GetAsyncKeyState(VK_MENU) & 0x8000)
{
mKeyLevel[KEY_ALT] = TRUE;
}
}
//void LLKeyboardWin32::setModifierKeyLevel( KEY key, BOOL new_state )
//{
// if( mKeyLevel[key] != new_state )
// {
// mKeyLevelFrameCount[key] = 0;
//
// if( new_state )
// {
// mKeyLevelTimer[key].reset();
// }
// mKeyLevel[key] = new_state;
// }
//}
MASK LLKeyboardWin32::updateModifiers()
{
//RN: this seems redundant, as we should have already received the appropriate
// messages for the modifier keys
// Scan the modifier keys as of the last Windows key message
// (keydown encoded in high order bit of short)
//setModifierKeyLevel( KEY_SHIFT, GetKeyState(VK_SHIFT) & 0x8000 );
//setModifierKeyLevel( KEY_CONTROL, GetKeyState(VK_CONTROL) & 0x8000 );
//setModifierKeyLevel( KEY_ALT, GetKeyState(VK_MENU) & 0x8000 );
//setModifierKeyLevel( KEY_CAPSLOCK, GetKeyState(VK_CAPITAL) & 0x0001); // Low order bit carries the toggle state.
// Get mask for keyboard events
MASK mask = currentMask(FALSE);
return mask;
}
// mask is ignored, except for extended flag -- we poll the modifier keys for the other flags
BOOL LLKeyboardWin32::handleKeyDown(const U16 key, MASK mask)
{
KEY translated_key;
U32 translated_mask;
BOOL handled = FALSE;
translated_mask = updateModifiers();
if (translateExtendedKey(key, mask, &translated_key))
{
handled = handleTranslatedKeyDown(translated_key, translated_mask);
}
return handled;
}
// mask is ignored, except for extended flag -- we poll the modifier keys for the other flags
BOOL LLKeyboardWin32::handleKeyUp(const U16 key, MASK mask)
{
KEY translated_key;
U32 translated_mask;
BOOL handled = FALSE;
translated_mask = updateModifiers();
if (translateExtendedKey(key, mask, &translated_key))
{
handled = handleTranslatedKeyUp(translated_key, translated_mask);
}
return handled;
}
MASK LLKeyboardWin32::currentMask(BOOL)
{
MASK mask = MASK_NONE;
if (mKeyLevel[KEY_SHIFT]) mask |= MASK_SHIFT;
if (mKeyLevel[KEY_CONTROL]) mask |= MASK_CONTROL;
if (mKeyLevel[KEY_ALT]) mask |= MASK_ALT;
return mask;
}
void LLKeyboardWin32::scanKeyboard()
{
S32 key;
for (key = 0; key < KEY_COUNT; key++)
{
// On Windows, verify key down state. JC
if (mKeyLevel[key])
{
// *TODO: I KNOW there must be a better way of
// interrogating the key state than this, using async key
// state can cause ALL kinds of bugs - Doug
if (key < KEY_BUTTON0)
{
// ...under windows make sure the key actually still is down.
// ...translate back to windows key
U16 virtual_key = inverseTranslateExtendedKey(key);
// keydown in highest bit
if (!(GetAsyncKeyState(virtual_key) & 0x8000))
{
//llinfos << "Key up event missed, resetting" << llendl;
mKeyLevel[key] = FALSE;
}
}
}
// Generate callback if any event has occurred on this key this frame.
// Can't just test mKeyLevel, because this could be a slow frame and
// key might have gone down then up. JC
if (mKeyLevel[key] || mKeyDown[key] || mKeyUp[key])
{
mCurScanKey = key;
mCallbacks->handleScanKey(key, mKeyDown[key], mKeyUp[key], mKeyLevel[key]);
}
}
// Reset edges for next frame
for (key = 0; key < KEY_COUNT; key++)
{
mKeyUp[key] = FALSE;
mKeyDown[key] = FALSE;
if (mKeyLevel[key])
{
mKeyLevelFrameCount[key]++;
}
}
}
BOOL LLKeyboardWin32::translateExtendedKey(const U16 os_key, const MASK mask, KEY *translated_key)
{
if(mNumpadDistinct == ND_NUMLOCK_ON)
{
std::map<U16, KEY>::iterator iter = mTranslateNumpadMap.find(os_key);
if (iter != mTranslateNumpadMap.end())
{
*translated_key = iter->second;
return TRUE;
}
}
BOOL success = translateKey(os_key, translated_key);
if(mNumpadDistinct != ND_NEVER) {
if(!success) return success;
if(mask & MASK_EXTENDED)
{
// this is where we'd create new keycodes for extended keys
// the set of extended keys includes the 'normal' arrow keys and
// the pgup/dn/insert/home/end/delete cluster above the arrow keys
// see http://windowssdk.msdn.microsoft.com/en-us/library/ms646280.aspx
// only process the return key if numlock is off
if(((mNumpadDistinct == ND_NUMLOCK_OFF &&
!(GetKeyState(VK_NUMLOCK) & 1))
|| mNumpadDistinct == ND_NUMLOCK_ON) &&
*translated_key == KEY_RETURN) {
*translated_key = KEY_PAD_RETURN;
}
}
else
{
// the non-extended keys, those are in the numpad
switch (*translated_key)
{
case KEY_LEFT:
*translated_key = KEY_PAD_LEFT; break;
case KEY_RIGHT:
*translated_key = KEY_PAD_RIGHT; break;
case KEY_UP:
*translated_key = KEY_PAD_UP; break;
case KEY_DOWN:
*translated_key = KEY_PAD_DOWN; break;
case KEY_HOME:
*translated_key = KEY_PAD_HOME; break;
case KEY_END:
*translated_key = KEY_PAD_END; break;
case KEY_PAGE_UP:
*translated_key = KEY_PAD_PGUP; break;
case KEY_PAGE_DOWN:
*translated_key = KEY_PAD_PGDN; break;
case KEY_INSERT:
*translated_key = KEY_PAD_INS; break;
case KEY_DELETE:
*translated_key = KEY_PAD_DEL; break;
}
}
}
return success;
}
U16 LLKeyboardWin32::inverseTranslateExtendedKey(const KEY translated_key)
{
// if numlock is on, then we need to translate KEY_PAD_FOO to the corresponding number pad number
if((mNumpadDistinct == ND_NUMLOCK_ON) && (GetKeyState(VK_NUMLOCK) & 1))
{
std::map<KEY, U16>::iterator iter = mInvTranslateNumpadMap.find(translated_key);
if (iter != mInvTranslateNumpadMap.end())
{
return iter->second;
}
}
// if numlock is off or we're not converting numbers to arrows, we map our keypad arrows
// to regular arrows since Windows doesn't distinguish between them
KEY converted_key = translated_key;
switch (converted_key)
{
case KEY_PAD_LEFT:
converted_key = KEY_LEFT; break;
case KEY_PAD_RIGHT:
converted_key = KEY_RIGHT; break;
case KEY_PAD_UP:
converted_key = KEY_UP; break;
case KEY_PAD_DOWN:
converted_key = KEY_DOWN; break;
case KEY_PAD_HOME:
converted_key = KEY_HOME; break;
case KEY_PAD_END:
converted_key = KEY_END; break;
case KEY_PAD_PGUP:
converted_key = KEY_PAGE_UP; break;
case KEY_PAD_PGDN:
converted_key = KEY_PAGE_DOWN; break;
case KEY_PAD_INS:
converted_key = KEY_INSERT; break;
case KEY_PAD_DEL:
converted_key = KEY_DELETE; break;
case KEY_PAD_RETURN:
converted_key = KEY_RETURN; break;
}
// convert our virtual keys to OS keys
return inverseTranslateKey(converted_key);
}
#endif
|