1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/**
* @file LLGLTFLoader.cpp
* @brief LLGLTFLoader class implementation
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llgltfloader.h"
// Import & define single-header gltf import/export lib
#define TINYGLTF_IMPLEMENTATION
#define TINYGLTF_USE_CPP14 // default is C++ 11
// tinygltf by default loads image files using STB
#define STB_IMAGE_IMPLEMENTATION
// to use our own image loading:
// 1. replace this definition with TINYGLTF_NO_STB_IMAGE
// 2. provide image loader callback with TinyGLTF::SetImageLoader(LoadimageDataFunction LoadImageData, void *user_data)
// tinygltf saves image files using STB
#define STB_IMAGE_WRITE_IMPLEMENTATION
// similarly, can override with TINYGLTF_NO_STB_IMAGE_WRITE and TinyGLTF::SetImageWriter(fxn, data)
// Additionally, disable inclusion of STB header files entirely with
// TINYGLTF_NO_INCLUDE_STB_IMAGE
// TINYGLTF_NO_INCLUDE_STB_IMAGE_WRITE
#include "tinygltf/tiny_gltf.h"
// TODO: includes inherited from dae loader. Validate / prune
#include "llsdserialize.h"
#include "lljoint.h"
#include "llmatrix4a.h"
#include <boost/regex.hpp>
#include <boost/algorithm/string/replace.hpp>
static const std::string lod_suffix[LLModel::NUM_LODS] =
{
"_LOD0",
"_LOD1",
"_LOD2",
"",
"_PHYS",
};
LLGLTFLoader::LLGLTFLoader(std::string filename,
S32 lod,
LLModelLoader::load_callback_t load_cb,
LLModelLoader::joint_lookup_func_t joint_lookup_func,
LLModelLoader::texture_load_func_t texture_load_func,
LLModelLoader::state_callback_t state_cb,
void * opaque_userdata,
JointTransformMap & jointTransformMap,
JointNameSet & jointsFromNodes,
std::map<std::string, std::string> &jointAliasMap,
U32 maxJointsPerMesh,
U32 modelLimit) //,
//bool preprocess)
: LLModelLoader( filename,
lod,
load_cb,
joint_lookup_func,
texture_load_func,
state_cb,
opaque_userdata,
jointTransformMap,
jointsFromNodes,
jointAliasMap,
maxJointsPerMesh ),
//mPreprocessGLTF(preprocess),
mMeshesLoaded(false),
mMaterialsLoaded(false)
{
}
LLGLTFLoader::~LLGLTFLoader() {}
bool LLGLTFLoader::OpenFile(const std::string &filename)
{
tinygltf::TinyGLTF loader;
std::string error_msg;
std::string warn_msg;
std::string filename_lc(filename);
LLStringUtil::toLower(filename_lc);
// Load a tinygltf model fom a file. Assumes that the input filename has already been
// been sanitized to one of (.gltf , .glb) extensions, so does a simple find to distinguish.
if (std::string::npos == filename_lc.rfind(".gltf"))
{ // file is binary
mGltfLoaded = loader.LoadBinaryFromFile(&mGltfModel, &error_msg, &warn_msg, filename);
}
else
{ // file is ascii
mGltfLoaded = loader.LoadASCIIFromFile(&mGltfModel, &error_msg, &warn_msg, filename);
}
if (!mGltfLoaded)
{
if (!warn_msg.empty())
LL_WARNS("GLTF_IMPORT") << "gltf load warning: " << warn_msg.c_str() << LL_ENDL;
if (!error_msg.empty())
LL_WARNS("GLTF_IMPORT") << "gltf load error: " << error_msg.c_str() << LL_ENDL;
return false;
}
mMeshesLoaded = parseMeshes();
if (mMeshesLoaded) uploadMeshes();
mMaterialsLoaded = parseMaterials();
if (mMaterialsLoaded) uploadMaterials();
return (mMeshesLoaded || mMaterialsLoaded);
}
bool LLGLTFLoader::parseMeshes()
{
if (!mGltfLoaded) return false;
// 2022-04 DJH Volume params from dae example. TODO understand PCODE
LLVolumeParams volume_params;
volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
for (tinygltf::Mesh mesh : mGltfModel.meshes)
{
LLModel *pModel = new LLModel(volume_params, 0.f);
if (populateModelFromMesh(pModel, mesh) &&
(LLModel::NO_ERRORS == pModel->getStatus()) &&
validate_model(pModel))
{
mModelList.push_back(pModel);
}
else
{
setLoadState(ERROR_MODEL + pModel->getStatus());
delete(pModel);
return false;
}
}
return true;
}
bool LLGLTFLoader::populateModelFromMesh(LLModel* pModel, const tinygltf::Mesh &mesh)
{
pModel->mLabel = mesh.name;
int pos_idx;
tinygltf::Accessor indices_a, positions_a, normals_a, uv0_a, color0_a;
auto prims = mesh.primitives;
for (auto prim : prims)
{
if (prim.indices >= 0) indices_a = mGltfModel.accessors[prim.indices];
pos_idx = (prim.attributes.count("POSITION") > 0) ? prim.attributes.at("POSITION") : -1;
if (pos_idx >= 0)
{
positions_a = mGltfModel.accessors[pos_idx];
if (TINYGLTF_COMPONENT_TYPE_FLOAT != positions_a.componentType)
continue;
auto positions_bv = mGltfModel.bufferViews[positions_a.bufferView];
auto positions_buf = mGltfModel.buffers[positions_bv.buffer];
//auto type = positions_vb.
//if (positions_buf.name
}
#if 0
int norm_idx, tan_idx, uv0_idx, uv1_idx, color0_idx, color1_idx;
norm_idx = (prim.attributes.count("NORMAL") > 0) ? prim.attributes.at("NORMAL") : -1;
tan_idx = (prim.attributes.count("TANGENT") > 0) ? prim.attributes.at("TANGENT") : -1;
uv0_idx = (prim.attributes.count("TEXCOORDS_0") > 0) ? prim.attributes.at("TEXCOORDS_0") : -1;
uv1_idx = (prim.attributes.count("TEXCOORDS_1") > 0) ? prim.attributes.at("TEXCOORDS_1") : -1;
color0_idx = (prim.attributes.count("COLOR_0") > 0) ? prim.attributes.at("COLOR_0") : -1;
color1_idx = (prim.attributes.count("COLOR_1") > 0) ? prim.attributes.at("COLOR_1") : -1;
#endif
if (prim.mode == TINYGLTF_MODE_TRIANGLES)
{
//auto pos = mesh. TODO resume here DJH 2022-04
}
}
//pModel->addFace()
return false;
}
bool LLGLTFLoader::parseMaterials()
{
if (!mGltfLoaded) return false;
// fill local texture data structures
mSamplers.clear();
for (auto in_sampler : mGltfModel.samplers)
{
gltf_sampler sampler;
sampler.magFilter = in_sampler.magFilter > 0 ? in_sampler.magFilter : GL_LINEAR;
sampler.minFilter = in_sampler.minFilter > 0 ? in_sampler.minFilter : GL_LINEAR;;
sampler.wrapS = in_sampler.wrapS;
sampler.wrapT = in_sampler.wrapT;
sampler.name = in_sampler.name; // unused
mSamplers.push_back(sampler);
}
mImages.clear();
for (auto in_image : mGltfModel.images)
{
gltf_image image;
image.numChannels = in_image.component;
image.bytesPerChannel = in_image.bits >> 3; // Convert bits to bytes
image.pixelType = in_image.pixel_type; // Maps exactly, i.e. TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE == GL_UNSIGNED_BYTE, etc
image.size = static_cast<U32>(in_image.image.size());
image.height = in_image.height;
image.width = in_image.width;
image.data = in_image.image.data();
if (in_image.as_is)
{
LL_WARNS("GLTF_IMPORT") << "Unsupported image encoding" << LL_ENDL;
return false;
}
if (image.size != image.height * image.width * image.numChannels * image.bytesPerChannel)
{
LL_WARNS("GLTF_IMPORT") << "Image size error" << LL_ENDL;
return false;
}
mImages.push_back(image);
}
mTextures.clear();
for (auto in_tex : mGltfModel.textures)
{
gltf_texture tex;
tex.imageIdx = in_tex.source;
tex.samplerIdx = in_tex.sampler;
tex.imageUuid.setNull();
if (tex.imageIdx >= mImages.size() || tex.samplerIdx >= mSamplers.size())
{
LL_WARNS("GLTF_IMPORT") << "Texture sampler/image index error" << LL_ENDL;
return false;
}
mTextures.push_back(tex);
}
// parse each material
for (tinygltf::Material gltf_material : mGltfModel.materials)
{
gltf_render_material mat;
mat.name = gltf_material.name;
tinygltf::PbrMetallicRoughness& pbr = gltf_material.pbrMetallicRoughness;
mat.hasPBR = true; // Always true, for now
mat.baseColor.set(pbr.baseColorFactor.data());
mat.hasBaseTex = pbr.baseColorTexture.index >= 0;
mat.baseColorTexIdx = pbr.baseColorTexture.index;
mat.baseColorTexCoords = pbr.baseColorTexture.texCoord;
mat.metalness = pbr.metallicFactor;
mat.roughness = pbr.roughnessFactor;
mat.hasMRTex = pbr.metallicRoughnessTexture.index >= 0;
mat.metalRoughTexIdx = pbr.metallicRoughnessTexture.index;
mat.metalRoughTexCoords = pbr.metallicRoughnessTexture.texCoord;
mat.normalScale = gltf_material.normalTexture.scale;
mat.hasNormalTex = gltf_material.normalTexture.index >= 0;
mat.normalTexIdx = gltf_material.normalTexture.index;
mat.normalTexCoords = gltf_material.normalTexture.texCoord;
mat.occlusionScale = gltf_material.occlusionTexture.strength;
mat.hasOcclusionTex = gltf_material.occlusionTexture.index >= 0;
mat.occlusionTexIdx = gltf_material.occlusionTexture.index;
mat.occlusionTexCoords = gltf_material.occlusionTexture.texCoord;
mat.emissiveColor.set(gltf_material.emissiveFactor.data());
mat.hasEmissiveTex = gltf_material.emissiveTexture.index >= 0;
mat.emissiveTexIdx = gltf_material.emissiveTexture.index;
mat.emissiveTexCoords = gltf_material.emissiveTexture.texCoord;
mat.alphaMode = gltf_material.alphaMode;
mat.alphaMask = gltf_material.alphaCutoff;
if ((mat.hasNormalTex && (mat.normalTexIdx >= mTextures.size())) ||
(mat.hasOcclusionTex && (mat.occlusionTexIdx >= mTextures.size())) ||
(mat.hasEmissiveTex && (mat.emissiveTexIdx >= mTextures.size())) ||
(mat.hasBaseTex && (mat.baseColorTexIdx >= mTextures.size())) ||
(mat.hasMRTex && (mat.metalRoughTexIdx >= mTextures.size())))
{
LL_WARNS("GLTF_IMPORT") << "Texture resource index error" << LL_ENDL;
return false;
}
if ((mat.hasNormalTex && (mat.normalTexCoords > 2)) || // mesh can have up to 3 sets of UV
(mat.hasOcclusionTex && (mat.occlusionTexCoords > 2)) ||
(mat.hasEmissiveTex && (mat.emissiveTexCoords > 2)) ||
(mat.hasBaseTex && (mat.baseColorTexCoords > 2)) ||
(mat.hasMRTex && (mat.metalRoughTexCoords > 2)))
{
LL_WARNS("GLTF_IMPORT") << "Image texcoord index error" << LL_ENDL;
return false;
}
mMaterials.push_back(mat);
}
return true;
}
// TODO: convert raw vertex buffers to UUIDs
void LLGLTFLoader::uploadMeshes()
{
llassert(0);
}
// convert raw image buffers to texture UUIDs & assemble into a render material
void LLGLTFLoader::uploadMaterials()
{
for (gltf_render_material mat : mMaterials) // Initially 1 material per gltf file, but design for multiple
{
if (mat.hasBaseTex)
{
gltf_texture& gtex = mTextures[mat.baseColorTexIdx];
if (gtex.imageUuid.isNull())
{
gtex.imageUuid = imageBufferToTextureUUID(gtex);
}
}
if (mat.hasMRTex)
{
gltf_texture& gtex = mTextures[mat.metalRoughTexIdx];
if (gtex.imageUuid.isNull())
{
gtex.imageUuid = imageBufferToTextureUUID(gtex);
}
}
if (mat.hasNormalTex)
{
gltf_texture& gtex = mTextures[mat.normalTexIdx];
if (gtex.imageUuid.isNull())
{
gtex.imageUuid = imageBufferToTextureUUID(gtex);
}
}
if (mat.hasOcclusionTex)
{
gltf_texture& gtex = mTextures[mat.occlusionTexIdx];
if (gtex.imageUuid.isNull())
{
gtex.imageUuid = imageBufferToTextureUUID(gtex);
}
}
if (mat.hasEmissiveTex)
{
gltf_texture& gtex = mTextures[mat.emissiveTexIdx];
if (gtex.imageUuid.isNull())
{
gtex.imageUuid = imageBufferToTextureUUID(gtex);
}
}
}
}
LLUUID LLGLTFLoader::imageBufferToTextureUUID(const gltf_texture& tex)
{
//gltf_image& image = mImages[tex.imageIdx];
//gltf_sampler& sampler = mSamplers[tex.samplerIdx];
// fill an LLSD container with image+sampler data
// upload texture
// retrieve UUID
return LLUUID::null;
}
|