summaryrefslogtreecommitdiff
path: root/indra/llmath/v2math.h
blob: 327e9376755e73feabad9bb40115edf4d3618316 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/**
 * @file v2math.h
 * @brief LLVector2 class header file.
 *
 * $LicenseInfo:firstyear=2000&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#ifndef LL_V2MATH_H
#define LL_V2MATH_H

#include "llmath.h"
#include "v3math.h"

class LLVector4;
class LLMatrix3;
class LLQuaternion;

//  Llvector2 = |x y z w|

static const U32 LENGTHOFVECTOR2 = 2;

class LLVector2
{
    public:
        F32 mV[LENGTHOFVECTOR2];

        static LLVector2 zero;

        LLVector2();                              // Initializes LLVector2 to (0, 0)
        LLVector2(F32 x, F32 y);                  // Initializes LLVector2 to (x. y)
        LLVector2(const F32 *vec);                // Initializes LLVector2 to (vec[0]. vec[1])
        explicit LLVector2(const LLVector3 &vec); // Initializes LLVector2 to (vec[0]. vec[1])
        explicit LLVector2(const LLSD &sd);

        // Clears LLVector2 to (0, 0).  DEPRECATED - prefer zeroVec.
        void    clear();
        void    setZero();
        void    clearVec(); // deprecated
        void    zeroVec();  // deprecated

        void    set(F32 x, F32 y);          // Sets LLVector2 to (x, y)
        void    set(const LLVector2 &vec);  // Sets LLVector2 to vec
        void    set(const F32 *vec);            // Sets LLVector2 to vec

        LLSD    getValue() const;
        void    setValue(const LLSD& sd);

        void    setVec(F32 x, F32 y);           // deprecated
        void    setVec(const LLVector2 &vec);   // deprecated
        void    setVec(const F32 *vec);         // deprecated

        inline bool isFinite() const; // checks to see if all values of LLVector2 are finite

        F32     length() const;             // Returns magnitude of LLVector2
        F32     lengthSquared() const;      // Returns magnitude squared of LLVector2
        F32     normalize();                    // Normalizes and returns the magnitude of LLVector2

        F32     magVec() const;             // deprecated
        F32     magVecSquared() const;      // deprecated
        F32     normVec();                  // deprecated

        bool    abs();                      // sets all values to absolute value of original value (first octant), returns true if changed

        const LLVector2&    scaleVec(const LLVector2& vec);             // scales per component by vec

        bool isNull();          // Returns true if vector has a _very_small_ length
        bool isExactlyZero() const      { return !mV[VX] && !mV[VY]; }

        F32 operator[](int idx) const { return mV[idx]; }
        F32 &operator[](int idx) { return mV[idx]; }

        friend bool operator<(const LLVector2 &a, const LLVector2 &b);  // For sorting. x is "more significant" than y
        friend LLVector2 operator+(const LLVector2 &a, const LLVector2 &b); // Return vector a + b
        friend LLVector2 operator-(const LLVector2 &a, const LLVector2 &b); // Return vector a minus b
        friend F32 operator*(const LLVector2 &a, const LLVector2 &b);       // Return a dot b
        friend LLVector2 operator%(const LLVector2 &a, const LLVector2 &b); // Return a cross b
        friend LLVector2 operator/(const LLVector2 &a, F32 k);              // Return a divided by scaler k
        friend LLVector2 operator*(const LLVector2 &a, F32 k);              // Return a times scaler k
        friend LLVector2 operator*(F32 k, const LLVector2 &a);              // Return a times scaler k
        friend bool operator==(const LLVector2 &a, const LLVector2 &b);     // Return a == b
        friend bool operator!=(const LLVector2 &a, const LLVector2 &b);     // Return a != b

        friend const LLVector2& operator+=(LLVector2 &a, const LLVector2 &b);   // Return vector a + b
        friend const LLVector2& operator-=(LLVector2 &a, const LLVector2 &b);   // Return vector a minus b
        friend const LLVector2& operator%=(LLVector2 &a, const LLVector2 &b);   // Return a cross b
        friend const LLVector2& operator*=(LLVector2 &a, F32 k);                // Return a times scaler k
        friend const LLVector2& operator/=(LLVector2 &a, F32 k);                // Return a divided by scaler k

        friend LLVector2 operator-(const LLVector2 &a);                 // Return vector -a

        friend std::ostream&     operator<<(std::ostream& s, const LLVector2 &a);       // Stream a
};


// Non-member functions

F32 angle_between(const LLVector2 &a, const LLVector2 &b);  // Returns angle (radians) between a and b
bool are_parallel(const LLVector2 &a, const LLVector2 &b, F32 epsilon=F_APPROXIMATELY_ZERO);    // Returns true if a and b are very close to parallel
F32 dist_vec(const LLVector2 &a, const LLVector2 &b);       // Returns distance between a and b
F32 dist_vec_squared(const LLVector2 &a, const LLVector2 &b);// Returns distance squared between a and b
F32 dist_vec_squared2D(const LLVector2 &a, const LLVector2 &b);// Returns distance squared between a and b ignoring Z component
LLVector2 lerp(const LLVector2 &a, const LLVector2 &b, F32 u); // Returns a vector that is a linear interpolation between a and b

// Constructors

inline LLVector2::LLVector2(void)
{
    mV[VX] = 0.f;
    mV[VY] = 0.f;
}

inline LLVector2::LLVector2(F32 x, F32 y)
{
    mV[VX] = x;
    mV[VY] = y;
}

inline LLVector2::LLVector2(const F32 *vec)
{
    mV[VX] = vec[VX];
    mV[VY] = vec[VY];
}

inline LLVector2::LLVector2(const LLVector3 &vec)
{
    mV[VX] = vec.mV[VX];
    mV[VY] = vec.mV[VY];
}

inline LLVector2::LLVector2(const LLSD &sd)
{
    setValue(sd);
}

// Clear and Assignment Functions

inline void LLVector2::clear(void)
{
    mV[VX] = 0.f;
    mV[VY] = 0.f;
}

inline void LLVector2::setZero(void)
{
    mV[VX] = 0.f;
    mV[VY] = 0.f;
}

// deprecated
inline void LLVector2::clearVec(void)
{
    mV[VX] = 0.f;
    mV[VY] = 0.f;
}

// deprecated
inline void LLVector2::zeroVec(void)
{
    mV[VX] = 0.f;
    mV[VY] = 0.f;
}

inline void LLVector2::set(F32 x, F32 y)
{
    mV[VX] = x;
    mV[VY] = y;
}

inline void LLVector2::set(const LLVector2 &vec)
{
    mV[VX] = vec.mV[VX];
    mV[VY] = vec.mV[VY];
}

inline void LLVector2::set(const F32 *vec)
{
    mV[VX] = vec[VX];
    mV[VY] = vec[VY];
}


// deprecated
inline void LLVector2::setVec(F32 x, F32 y)
{
    mV[VX] = x;
    mV[VY] = y;
}

// deprecated
inline void LLVector2::setVec(const LLVector2 &vec)
{
    mV[VX] = vec.mV[VX];
    mV[VY] = vec.mV[VY];
}

// deprecated
inline void LLVector2::setVec(const F32 *vec)
{
    mV[VX] = vec[VX];
    mV[VY] = vec[VY];
}


// LLVector2 Magnitude and Normalization Functions

inline F32 LLVector2::length(void) const
{
    return (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
}

inline F32 LLVector2::lengthSquared(void) const
{
    return mV[0]*mV[0] + mV[1]*mV[1];
}

inline F32 LLVector2::normalize(void)
{
    F32 mag = (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
    F32 oomag;

    if (mag > FP_MAG_THRESHOLD)
    {
        oomag = 1.f/mag;
        mV[0] *= oomag;
        mV[1] *= oomag;
    }
    else
    {
        mV[0] = 0.f;
        mV[1] = 0.f;
        mag = 0;
    }
    return (mag);
}

// checker
inline bool LLVector2::isFinite() const
{
    return (llfinite(mV[VX]) && llfinite(mV[VY]));
}

// deprecated
inline F32      LLVector2::magVec(void) const
{
    return (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
}

// deprecated
inline F32      LLVector2::magVecSquared(void) const
{
    return mV[0]*mV[0] + mV[1]*mV[1];
}

// deprecated
inline F32      LLVector2::normVec(void)
{
    F32 mag = (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
    F32 oomag;

    if (mag > FP_MAG_THRESHOLD)
    {
        oomag = 1.f/mag;
        mV[0] *= oomag;
        mV[1] *= oomag;
    }
    else
    {
        mV[0] = 0.f;
        mV[1] = 0.f;
        mag = 0;
    }
    return (mag);
}

inline const LLVector2& LLVector2::scaleVec(const LLVector2& vec)
{
    mV[VX] *= vec.mV[VX];
    mV[VY] *= vec.mV[VY];

    return *this;
}

inline bool LLVector2::isNull()
{
    if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] )
    {
        return true;
    }
    return false;
}


// LLVector2 Operators

// For sorting. By convention, x is "more significant" than y.
inline bool operator<(const LLVector2 &a, const LLVector2 &b)
{
    if( a.mV[VX] == b.mV[VX] )
    {
        return a.mV[VY] < b.mV[VY];
    }
    else
    {
        return a.mV[VX] < b.mV[VX];
    }
}


inline LLVector2 operator+(const LLVector2 &a, const LLVector2 &b)
{
    LLVector2 c(a);
    return c += b;
}

inline LLVector2 operator-(const LLVector2 &a, const LLVector2 &b)
{
    LLVector2 c(a);
    return c -= b;
}

inline F32  operator*(const LLVector2 &a, const LLVector2 &b)
{
    return (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1]);
}

inline LLVector2 operator%(const LLVector2 &a, const LLVector2 &b)
{
    return LLVector2(a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1], a.mV[1]*b.mV[0] - b.mV[1]*a.mV[0]);
}

inline LLVector2 operator/(const LLVector2 &a, F32 k)
{
    F32 t = 1.f / k;
    return LLVector2( a.mV[0] * t, a.mV[1] * t );
}

inline LLVector2 operator*(const LLVector2 &a, F32 k)
{
    return LLVector2( a.mV[0] * k, a.mV[1] * k );
}

inline LLVector2 operator*(F32 k, const LLVector2 &a)
{
    return LLVector2( a.mV[0] * k, a.mV[1] * k );
}

inline bool operator==(const LLVector2 &a, const LLVector2 &b)
{
    return (  (a.mV[0] == b.mV[0])
            &&(a.mV[1] == b.mV[1]));
}

inline bool operator!=(const LLVector2 &a, const LLVector2 &b)
{
    return (  (a.mV[0] != b.mV[0])
            ||(a.mV[1] != b.mV[1]));
}

inline const LLVector2& operator+=(LLVector2 &a, const LLVector2 &b)
{
    a.mV[0] += b.mV[0];
    a.mV[1] += b.mV[1];
    return a;
}

inline const LLVector2& operator-=(LLVector2 &a, const LLVector2 &b)
{
    a.mV[0] -= b.mV[0];
    a.mV[1] -= b.mV[1];
    return a;
}

inline const LLVector2& operator%=(LLVector2 &a, const LLVector2 &b)
{
    LLVector2 ret(a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1], a.mV[1]*b.mV[0] - b.mV[1]*a.mV[0]);
    a = ret;
    return a;
}

inline const LLVector2& operator*=(LLVector2 &a, F32 k)
{
    a.mV[0] *= k;
    a.mV[1] *= k;
    return a;
}

inline const LLVector2& operator/=(LLVector2 &a, F32 k)
{
    F32 t = 1.f / k;
    a.mV[0] *= t;
    a.mV[1] *= t;
    return a;
}

inline LLVector2 operator-(const LLVector2 &a)
{
    return LLVector2( -a.mV[0], -a.mV[1] );
}

inline void update_min_max(LLVector2& min, LLVector2& max, const LLVector2& pos)
{
    for (U32 i = 0; i < 2; i++)
    {
        if (min.mV[i] > pos.mV[i])
        {
            min.mV[i] = pos.mV[i];
        }
        if (max.mV[i] < pos.mV[i])
        {
            max.mV[i] = pos.mV[i];
        }
    }
}

inline std::ostream& operator<<(std::ostream& s, const LLVector2 &a)
{
    s << "{ " << a.mV[VX] << ", " << a.mV[VY] << " }";
    return s;
}

#endif