1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
/**
* @file v2math.cpp
* @brief LLVector2 class implementation.
*
* Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#include "linden_common.h"
//#include "vmath.h"
#include "v2math.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llquaternion.h"
// LLVector2
LLVector2 LLVector2::zero(0,0);
// Non-member functions
// Sets all values to absolute value of their original values
// Returns TRUE if data changed
BOOL LLVector2::abs()
{
BOOL ret = FALSE;
if (mV[0] < 0.f) { mV[0] = -mV[0]; ret = TRUE; }
if (mV[1] < 0.f) { mV[1] = -mV[1]; ret = TRUE; }
return ret;
}
F32 angle_between(const LLVector2& a, const LLVector2& b)
{
LLVector2 an = a;
LLVector2 bn = b;
an.normVec();
bn.normVec();
F32 cosine = an * bn;
F32 angle = (cosine >= 1.0f) ? 0.0f :
(cosine <= -1.0f) ? F_PI :
acos(cosine);
return angle;
}
BOOL are_parallel(const LLVector2 &a, const LLVector2 &b, float epsilon)
{
LLVector2 an = a;
LLVector2 bn = b;
an.normVec();
bn.normVec();
F32 dot = an * bn;
if ( (1.0f - fabs(dot)) < epsilon)
{
return TRUE;
}
return FALSE;
}
F32 dist_vec(const LLVector2 &a, const LLVector2 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return fsqrtf( x*x + y*y );
}
F32 dist_vec_squared(const LLVector2 &a, const LLVector2 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return x*x + y*y;
}
F32 dist_vec_squared2D(const LLVector2 &a, const LLVector2 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return x*x + y*y;
}
LLVector2 lerp(const LLVector2 &a, const LLVector2 &b, F32 u)
{
return LLVector2(
a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u );
}
|