summaryrefslogtreecommitdiff
path: root/indra/llmath/raytrace.cpp
blob: c0b5f48f2ddf45d3de0b2c414c38a0446197f0b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
/**
 * @file raytrace.cpp
 * @brief Functions called by box object scripts.
 *
 * $LicenseInfo:firstyear=2001&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"

#include "math.h"
#include "v3math.h"
#include "llquaternion.h"
#include "m3math.h"
#include "raytrace.h"


bool line_plane(const LLVector3 &line_point, const LLVector3 &line_direction,
                const LLVector3 &plane_point, const LLVector3 plane_normal,
                LLVector3 &intersection)
{
    F32 N = line_direction * plane_normal;
    if (0.0f == N)
    {
        // line is perpendicular to plane normal
        // so it is either entirely on plane, or not on plane at all
        return false;
    }
    // Ax + By, + Cz + D = 0
    // D = - (plane_point * plane_normal)
    // N = line_direction * plane_normal
    // intersection = line_point - ((D + plane_normal * line_point) / N) * line_direction
    intersection = line_point - ((plane_normal * line_point - plane_point * plane_normal) / N) * line_direction;
    return true;
}


bool ray_plane(const LLVector3 &ray_point, const LLVector3 &ray_direction,
               const LLVector3 &plane_point, const LLVector3 plane_normal,
               LLVector3 &intersection)
{
    F32 N = ray_direction * plane_normal;
    if (0.0f == N)
    {
        // ray is perpendicular to plane normal
        // so it is either entirely on plane, or not on plane at all
        return false;
    }
    // Ax + By, + Cz + D = 0
    // D = - (plane_point * plane_normal)
    // N = ray_direction * plane_normal
    // intersection = ray_point - ((D + plane_normal * ray_point) / N) * ray_direction
    F32 alpha = -(plane_normal * ray_point - plane_point * plane_normal) / N;
    if (alpha < 0.0f)
    {
        // ray points away from plane
        return false;
    }
    intersection = ray_point + alpha * ray_direction;
    return true;
}


bool ray_circle(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                const LLVector3 &circle_center, const LLVector3 plane_normal, F32 circle_radius,
                LLVector3 &intersection)
{
    if (ray_plane(ray_point, ray_direction, circle_center, plane_normal, intersection))
    {
        if (circle_radius >= (intersection - circle_center).magVec())
        {
            return true;
        }
    }
    return false;
}


bool ray_triangle(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                  const LLVector3 &point_0, const LLVector3 &point_1, const LLVector3 &point_2,
                  LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 side_01 = point_1 - point_0;
    LLVector3 side_12 = point_2 - point_1;

    intersection_normal = side_01 % side_12;
    intersection_normal.normVec();

    if (ray_plane(ray_point, ray_direction, point_0, intersection_normal, intersection))
    {
        LLVector3 side_20 = point_0 - point_2;
        if (intersection_normal * (side_01 % (intersection - point_0)) >= 0.0f  &&
            intersection_normal * (side_12 % (intersection - point_1)) >= 0.0f  &&
            intersection_normal * (side_20 % (intersection - point_2)) >= 0.0f)
        {
            return true;
        }
    }
    return false;
}


// assumes a parallelogram
bool ray_quadrangle(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                    const LLVector3 &point_0, const LLVector3 &point_1, const LLVector3 &point_2,
                    LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 side_01 = point_1 - point_0;
    LLVector3 side_12 = point_2 - point_1;

    intersection_normal = side_01 % side_12;
    intersection_normal.normVec();

    if (ray_plane(ray_point, ray_direction, point_0, intersection_normal, intersection))
    {
        LLVector3 point_3 = point_0 + (side_12);
        LLVector3 side_23 = point_3 - point_2;
        LLVector3 side_30 = point_0 - point_3;
        if (intersection_normal * (side_01 % (intersection - point_0)) >= 0.0f  &&
            intersection_normal * (side_12 % (intersection - point_1)) >= 0.0f  &&
            intersection_normal * (side_23 % (intersection - point_2)) >= 0.0f  &&
            intersection_normal * (side_30 % (intersection - point_3)) >= 0.0f)
        {
            return true;
        }
    }
    return false;
}


bool ray_sphere(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                const LLVector3 &sphere_center, F32 sphere_radius,
                LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_to_sphere = sphere_center - ray_point;
    F32 dot = ray_to_sphere * ray_direction;

    LLVector3 closest_approach = dot * ray_direction - ray_to_sphere;

    F32 shortest_distance = closest_approach.magVecSquared();
    F32 radius_squared = sphere_radius * sphere_radius;
    if (shortest_distance > radius_squared)
    {
        return false;
    }

    F32 half_chord = (F32) sqrt(radius_squared - shortest_distance);
    closest_approach = sphere_center + closest_approach;            // closest_approach now in absolute coordinates
    intersection = closest_approach + half_chord * ray_direction;
    dot = ray_direction * (intersection - ray_point);
    if (dot < 0.0f)
    {
        // ray shoots away from sphere and is not inside it
        return false;
    }

    shortest_distance = ray_direction * ((closest_approach - half_chord * ray_direction) - ray_point);
    if (shortest_distance > 0.0f)
    {
        // ray enters sphere
        intersection = intersection - (2.0f * half_chord) * ray_direction;
    }
    else
    {
        // do nothing
        // ray starts inside sphere and intersects as it leaves the sphere
    }

    intersection_normal = intersection - sphere_center;
    if (sphere_radius > 0.0f)
    {
        intersection_normal *= 1.0f / sphere_radius;
    }
    else
    {
        intersection_normal.setVec(0.0f, 0.0f, 0.0f);
    }

    return true;
}


bool ray_cylinder(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                  const LLVector3 &cyl_center, const LLVector3 &cyl_scale, const LLQuaternion &cyl_rotation,
                  LLVector3 &intersection, LLVector3 &intersection_normal)
{
    // calculate the centers of the cylinder caps in the absolute frame
    LLVector3 cyl_top(0.0f, 0.0f, 0.5f * cyl_scale.mV[VZ]);
    LLVector3 cyl_bottom(0.0f, 0.0f, -cyl_top.mV[VZ]);
    cyl_top = (cyl_top * cyl_rotation) + cyl_center;
    cyl_bottom = (cyl_bottom * cyl_rotation) + cyl_center;

    // we only handle cylinders with circular cross-sections at the moment
    F32 cyl_radius = 0.5f * llmax(cyl_scale.mV[VX], cyl_scale.mV[VY]);  // HACK until scaled cylinders are supported

    // This implementation is based on the intcyl() function from Graphics_Gems_IV, page 361
    LLVector3   cyl_axis;                               // axis direction (bottom toward top)
    LLVector3   ray_to_cyl;                             // ray_point to cyl_top
    F32         shortest_distance;                      // shortest distance from ray to axis
    F32         cyl_length;
    LLVector3   shortest_direction;
    LLVector3   temp_vector;

    cyl_axis = cyl_bottom - cyl_top;
    cyl_length = cyl_axis.normVec();
    ray_to_cyl = ray_point - cyl_bottom;
    shortest_direction = ray_direction % cyl_axis;
    shortest_distance = shortest_direction.normVec();   // recycle shortest_distance

    // check for ray parallel to cylinder axis
    if (0.0f == shortest_distance)
    {
        // ray is parallel to cylinder axis
        temp_vector = ray_to_cyl - (ray_to_cyl * cyl_axis) * cyl_axis;
        shortest_distance = temp_vector.magVec();
        if (shortest_distance <= cyl_radius)
        {
            shortest_distance = ray_to_cyl * cyl_axis;
            F32 dot = ray_direction * cyl_axis;

            if (shortest_distance > 0.0)
            {
                if (dot > 0.0f)
                {
                    // ray points away from cylinder bottom
                    return false;
                }
                // ray hit bottom of cylinder from outside
                intersection = ray_point - shortest_distance * cyl_axis;
                intersection_normal = cyl_axis;

            }
            else if (shortest_distance > -cyl_length)
            {
                // ray starts inside cylinder
                if (dot < 0.0f)
                {
                    // ray hit top from inside
                    intersection = ray_point - (cyl_length + shortest_distance) * cyl_axis;
                    intersection_normal = -cyl_axis;
                }
                else
                {
                    // ray hit bottom from inside
                    intersection = ray_point - shortest_distance * cyl_axis;
                    intersection_normal = cyl_axis;
                }
            }
            else
            {
                if (dot < 0.0f)
                {
                    // ray points away from cylinder bottom
                    return false;
                }
                // ray hit top from outside
                intersection = ray_point - (shortest_distance + cyl_length) * cyl_axis;
                intersection_normal = -cyl_axis;
            }
            return true;
        }
        return false;
    }

    // check for intersection with infinite cylinder
    shortest_distance = (F32) fabs(ray_to_cyl * shortest_direction);
    if (shortest_distance <= cyl_radius)
    {
        F32         dist_to_closest_point;              // dist from ray_point to closest_point
        F32         half_chord_length;                  // half length of intersection chord
        F32         in, out;                            // distances to entering/exiting points
        temp_vector = ray_to_cyl % cyl_axis;
        dist_to_closest_point = - (temp_vector * shortest_direction);
        temp_vector = shortest_direction % cyl_axis;
        temp_vector.normVec();
        half_chord_length = (F32) fabs( sqrt(cyl_radius*cyl_radius - shortest_distance * shortest_distance) /
                            (ray_direction * temp_vector) );

        out = dist_to_closest_point + half_chord_length;    // dist to exiting point
        if (out < 0.0f)
        {
            // cylinder is behind the ray, so we return false
            return false;
        }

        in = dist_to_closest_point - half_chord_length;     // dist to entering point
        if (in < 0.0f)
        {
            // ray_point is inside the cylinder
            // so we store the exiting intersection
            intersection = ray_point + out * ray_direction;
            shortest_distance = out;
        }
        else
        {
            // ray hit cylinder from outside
            // so we store the entering intersection
            intersection = ray_point + in * ray_direction;
            shortest_distance = in;
        }

        // calculate the normal at intersection
        if (0.0f == cyl_radius)
        {
            intersection_normal.setVec(0.0f, 0.0f, 0.0f);
        }
        else
        {
            temp_vector = intersection - cyl_bottom;
            intersection_normal = temp_vector - (temp_vector * cyl_axis) * cyl_axis;
            intersection_normal.normVec();
        }

        // check for intersection with end caps
        // calculate intersection of ray and top plane
        if (line_plane(ray_point, ray_direction, cyl_top, -cyl_axis, temp_vector))  // NOTE side-effect: changing temp_vector
        {
            shortest_distance = (temp_vector - ray_point).magVec();
            if ( (ray_direction * cyl_axis) > 0.0f)
            {
                // ray potentially enters the cylinder at top
                if (shortest_distance > out)
                {
                    // ray missed the finite cylinder
                    return false;
                }
                if (shortest_distance > in)
                {
                    // ray intersects cylinder at top plane
                    intersection = temp_vector;
                    intersection_normal = -cyl_axis;
                    return true;
                }
            }
            else
            {
                // ray potentially exits the cylinder at top
                if (shortest_distance < in)
                {
                    // missed the finite cylinder
                    return false;
                }
            }

            // calculate intersection of ray and bottom plane
            line_plane(ray_point, ray_direction, cyl_bottom, cyl_axis, temp_vector); // NOTE side-effect: changing temp_vector
            shortest_distance = (temp_vector - ray_point).magVec();
            if ( (ray_direction * cyl_axis) < 0.0)
            {
                // ray potentially enters the cylinder at bottom
                if (shortest_distance > out)
                {
                    // ray missed the finite cylinder
                    return false;
                }
                if (shortest_distance > in)
                {
                    // ray intersects cylinder at bottom plane
                    intersection = temp_vector;
                    intersection_normal = cyl_axis;
                    return true;
                }
            }
            else
            {
                // ray potentially exits the cylinder at bottom
                if (shortest_distance < in)
                {
                    // ray missed the finite cylinder
                    return false;
                }
            }

        }
        else
        {
            // ray is parallel to end cap planes
            temp_vector = cyl_bottom - ray_point;
            shortest_distance = temp_vector * cyl_axis;
            if (shortest_distance < 0.0f  ||  shortest_distance > cyl_length)
            {
                // ray missed finite cylinder
                return false;
            }
        }

        return true;
    }

    return false;
}


U32 ray_box(const LLVector3 &ray_point, const LLVector3 &ray_direction,
            const LLVector3 &box_center, const LLVector3 &box_scale, const LLQuaternion &box_rotation,
            LLVector3 &intersection, LLVector3 &intersection_normal)
{

    // Need to rotate into box frame
    LLQuaternion into_box_frame(box_rotation);      // rotates things from box frame to absolute
    into_box_frame.conjQuat();                      // now rotates things into box frame
    LLVector3 line_point = (ray_point - box_center) * into_box_frame;
    LLVector3 line_direction = ray_direction * into_box_frame;

    // Suppose we have a plane:  Ax + By + Cz + D = 0
    // then, assuming [A, B, C] is a unit vector:
    //
    //    plane_normal = [A, B, C]
    //    D = - (plane_normal * plane_point)
    //
    // Suppose we have a line:  X = line_point + alpha * line_direction
    //
    // the intersection of the plane and line determines alpha
    //
    //    alpha = - (D + plane_normal * line_point) / (plane_normal * line_direction)

    LLVector3 line_plane_intersection;

    F32 pointX = line_point.mV[VX];
    F32 pointY = line_point.mV[VY];
    F32 pointZ = line_point.mV[VZ];

    F32 dirX = line_direction.mV[VX];
    F32 dirY = line_direction.mV[VY];
    F32 dirZ = line_direction.mV[VZ];

    // we'll be using the half-scales of the box
    F32 boxX = 0.5f * box_scale.mV[VX];
    F32 boxY = 0.5f * box_scale.mV[VY];
    F32 boxZ = 0.5f * box_scale.mV[VZ];

    // check to see if line_point is OUTSIDE the box
    if (pointX < -boxX ||
        pointX >  boxX ||
        pointY < -boxY ||
        pointY >  boxY ||
        pointZ < -boxZ ||
        pointZ >  boxZ)
    {
        // -------------- point is OUTSIDE the box ----------------

        // front
        if (pointX > 0.0f  &&  dirX < 0.0f)
        {
            // plane_normal                = [ 1, 0, 0]
            // plane_normal*line_point     = pointX
            // plane_normal*line_direction = dirX
            // D                           = -boxX
            // alpha                       = - (-boxX + pointX) / dirX
            line_plane_intersection = line_point - ((pointX - boxX) / dirX) * line_direction;
            if (line_plane_intersection.mV[VY] <  boxY &&
                line_plane_intersection.mV[VY] > -boxY &&
                line_plane_intersection.mV[VZ] <  boxZ &&
                line_plane_intersection.mV[VZ] > -boxZ )
            {
                intersection = (line_plane_intersection * box_rotation) + box_center;
                intersection_normal = LLVector3(1.0f, 0.0f, 0.0f) * box_rotation;
                return FRONT_SIDE;
            }
        }

        // back
        if (pointX < 0.0f  &&  dirX > 0.0f)
        {
            // plane_normal                = [ -1, 0, 0]
            // plane_normal*line_point     = -pX
            // plane_normal*line_direction = -direction.mV[VX]
            // D                           = -bX
            // alpha                       = - (-bX - pX) / (-dirX)
            line_plane_intersection = line_point - ((boxX + pointX)/ dirX) * line_direction;
            if (line_plane_intersection.mV[VY] <  boxY &&
                line_plane_intersection.mV[VY] > -boxY &&
                line_plane_intersection.mV[VZ] <  boxZ &&
                line_plane_intersection.mV[VZ] > -boxZ )
            {
                intersection = (line_plane_intersection * box_rotation) + box_center;
                intersection_normal = LLVector3(-1.0f, 0.0f, 0.0f) * box_rotation;
                return BACK_SIDE;
            }
        }

        // left
        if (pointY > 0.0f  &&  dirY < 0.0f)
        {
            // plane_normal                = [0, 1, 0]
            // plane_normal*line_point     = pointY
            // plane_normal*line_direction = dirY
            // D                           = -boxY
            // alpha                       = - (-boxY + pointY) / dirY
            line_plane_intersection = line_point + ((boxY - pointY)/dirY) * line_direction;

            if (line_plane_intersection.mV[VX] <  boxX &&
                line_plane_intersection.mV[VX] > -boxX &&
                line_plane_intersection.mV[VZ] <  boxZ &&
                line_plane_intersection.mV[VZ] > -boxZ )
            {
                intersection = (line_plane_intersection * box_rotation) + box_center;
                intersection_normal = LLVector3(0.0f, 1.0f, 0.0f) * box_rotation;
                return LEFT_SIDE;
            }
        }

        // right
        if (pointY < 0.0f  &&  dirY > 0.0f)
        {
            // plane_normal                = [0, -1, 0]
            // plane_normal*line_point     = -pointY
            // plane_normal*line_direction = -dirY
            // D                           = -boxY
            // alpha                       = - (-boxY - pointY) / (-dirY)
            line_plane_intersection = line_point - ((boxY + pointY)/dirY) * line_direction;
            if (line_plane_intersection.mV[VX] <  boxX &&
                line_plane_intersection.mV[VX] > -boxX &&
                line_plane_intersection.mV[VZ] <  boxZ &&
                line_plane_intersection.mV[VZ] > -boxZ )
            {
                intersection = (line_plane_intersection * box_rotation) + box_center;
                intersection_normal = LLVector3(0.0f, -1.0f, 0.0f) * box_rotation;
                return RIGHT_SIDE;
            }
        }

        // top
        if (pointZ > 0.0f  &&  dirZ < 0.0f)
        {
            // plane_normal                = [0, 0, 1]
            // plane_normal*line_point     = pointZ
            // plane_normal*line_direction = dirZ
            // D                           = -boxZ
            // alpha                       = - (-boxZ + pointZ) / dirZ
            line_plane_intersection = line_point - ((pointZ - boxZ)/dirZ) * line_direction;
            if (line_plane_intersection.mV[VX] <  boxX &&
                line_plane_intersection.mV[VX] > -boxX &&
                line_plane_intersection.mV[VY] <  boxY &&
                line_plane_intersection.mV[VY] > -boxY )
            {
                intersection = (line_plane_intersection * box_rotation) + box_center;
                intersection_normal = LLVector3(0.0f, 0.0f, 1.0f) * box_rotation;
                return TOP_SIDE;
            }
        }

        // bottom
        if (pointZ < 0.0f  &&  dirZ > 0.0f)
        {
            // plane_normal                = [0, 0, -1]
            // plane_normal*line_point     = -pointZ
            // plane_normal*line_direction = -dirZ
            // D                           = -boxZ
            // alpha                       = - (-boxZ - pointZ) / (-dirZ)
            line_plane_intersection = line_point - ((boxZ + pointZ)/dirZ) * line_direction;
            if (line_plane_intersection.mV[VX] <  boxX &&
                line_plane_intersection.mV[VX] > -boxX &&
                line_plane_intersection.mV[VY] <  boxY &&
                line_plane_intersection.mV[VY] > -boxY )
            {
                intersection = (line_plane_intersection * box_rotation) + box_center;
                intersection_normal = LLVector3(0.0f, 0.0f, -1.0f) * box_rotation;
                return BOTTOM_SIDE;
            }
        }
        return NO_SIDE;
    }

    // -------------- point is INSIDE the box ----------------

    // front
    if (dirX > 0.0f)
    {
        // plane_normal                = [ 1, 0, 0]
        // plane_normal*line_point     = pointX
        // plane_normal*line_direction = dirX
        // D                           = -boxX
        // alpha                       = - (-boxX + pointX) / dirX
        line_plane_intersection = line_point - ((pointX - boxX) / dirX) * line_direction;
        if (line_plane_intersection.mV[VY] <  boxY &&
            line_plane_intersection.mV[VY] > -boxY &&
            line_plane_intersection.mV[VZ] <  boxZ &&
            line_plane_intersection.mV[VZ] > -boxZ )
        {
            intersection = (line_plane_intersection * box_rotation) + box_center;
            intersection_normal = LLVector3(1.0f, 0.0f, 0.0f) * box_rotation;
            return FRONT_SIDE;
        }
    }

    // back
    if (dirX < 0.0f)
    {
        // plane_normal                = [ -1, 0, 0]
        // plane_normal*line_point     = -pX
        // plane_normal*line_direction = -direction.mV[VX]
        // D                           = -bX
        // alpha                       = - (-bX - pX) / (-dirX)
        line_plane_intersection = line_point - ((boxX + pointX)/ dirX) * line_direction;
        if (line_plane_intersection.mV[VY] <  boxY &&
            line_plane_intersection.mV[VY] > -boxY &&
            line_plane_intersection.mV[VZ] <  boxZ &&
            line_plane_intersection.mV[VZ] > -boxZ )
        {
            intersection = (line_plane_intersection * box_rotation) + box_center;
            intersection_normal = LLVector3(-1.0f, 0.0f, 0.0f) * box_rotation;
            return BACK_SIDE;
        }
    }

    // left
    if (dirY > 0.0f)
    {
        // plane_normal                = [0, 1, 0]
        // plane_normal*line_point     = pointY
        // plane_normal*line_direction = dirY
        // D                           = -boxY
        // alpha                       = - (-boxY + pointY) / dirY
        line_plane_intersection = line_point + ((boxY - pointY)/dirY) * line_direction;

        if (line_plane_intersection.mV[VX] <  boxX &&
            line_plane_intersection.mV[VX] > -boxX &&
            line_plane_intersection.mV[VZ] <  boxZ &&
            line_plane_intersection.mV[VZ] > -boxZ )
        {
            intersection = (line_plane_intersection * box_rotation) + box_center;
            intersection_normal = LLVector3(0.0f, 1.0f, 0.0f) * box_rotation;
            return LEFT_SIDE;
        }
    }

    // right
    if (dirY < 0.0f)
    {
        // plane_normal                = [0, -1, 0]
        // plane_normal*line_point     = -pointY
        // plane_normal*line_direction = -dirY
        // D                           = -boxY
        // alpha                       = - (-boxY - pointY) / (-dirY)
        line_plane_intersection = line_point - ((boxY + pointY)/dirY) * line_direction;
        if (line_plane_intersection.mV[VX] <  boxX &&
            line_plane_intersection.mV[VX] > -boxX &&
            line_plane_intersection.mV[VZ] <  boxZ &&
            line_plane_intersection.mV[VZ] > -boxZ )
        {
            intersection = (line_plane_intersection * box_rotation) + box_center;
            intersection_normal = LLVector3(0.0f, -1.0f, 0.0f) * box_rotation;
            return RIGHT_SIDE;
        }
    }

    // top
    if (dirZ > 0.0f)
    {
        // plane_normal                = [0, 0, 1]
        // plane_normal*line_point     = pointZ
        // plane_normal*line_direction = dirZ
        // D                           = -boxZ
        // alpha                       = - (-boxZ + pointZ) / dirZ
        line_plane_intersection = line_point - ((pointZ - boxZ)/dirZ) * line_direction;
        if (line_plane_intersection.mV[VX] <  boxX &&
            line_plane_intersection.mV[VX] > -boxX &&
            line_plane_intersection.mV[VY] <  boxY &&
            line_plane_intersection.mV[VY] > -boxY )
        {
            intersection = (line_plane_intersection * box_rotation) + box_center;
            intersection_normal = LLVector3(0.0f, 0.0f, 1.0f) * box_rotation;
            return TOP_SIDE;
        }
    }

    // bottom
    if (dirZ < 0.0f)
    {
        // plane_normal                = [0, 0, -1]
        // plane_normal*line_point     = -pointZ
        // plane_normal*line_direction = -dirZ
        // D                           = -boxZ
        // alpha                       = - (-boxZ - pointZ) / (-dirZ)
        line_plane_intersection = line_point - ((boxZ + pointZ)/dirZ) * line_direction;
        if (line_plane_intersection.mV[VX] <  boxX &&
            line_plane_intersection.mV[VX] > -boxX &&
            line_plane_intersection.mV[VY] <  boxY &&
            line_plane_intersection.mV[VY] > -boxY )
        {
            intersection = (line_plane_intersection * box_rotation) + box_center;
            intersection_normal = LLVector3(0.0f, 0.0f, -1.0f) * box_rotation;
            return BOTTOM_SIDE;
        }
    }

    // should never get here unless line instersects at tangent point on edge or corner
    // however such cases will be EXTREMELY rare
    return NO_SIDE;
}


bool ray_prism(const LLVector3 &ray_point, const LLVector3 &ray_direction,
               const LLVector3 &prism_center, const LLVector3 &prism_scale, const LLQuaternion &prism_rotation,
               LLVector3 &intersection, LLVector3 &intersection_normal)
{
    //      (0)              Z
    //      /| \             .
    //    (1)|  \           /|\  _.Y
    //     | \   \           |   /|
    //     | |\   \          |  /
    //     | | \(0)\         | /
    //     | |  \   \        |/
    //     | |   \   \      (*)----> X
    //     |(3)---\---(2)
    //     |/      \  /
    //    (4)-------(5)

    // need to calculate the points of the prism so we can run ray tests with each face
    F32 x = prism_scale.mV[VX];
    F32 y = prism_scale.mV[VY];
    F32 z = prism_scale.mV[VZ];

    F32 tx = x * 2.0f / 3.0f;
    F32 ty = y * 0.5f;
    F32 tz = z * 2.0f / 3.0f;

    LLVector3 point0(tx-x,  ty, tz);
    LLVector3 point1(tx-x, -ty, tz);
    LLVector3 point2(tx,    ty, tz-z);
    LLVector3 point3(tx-x,  ty, tz-z);
    LLVector3 point4(tx-x, -ty, tz-z);
    LLVector3 point5(tx,   -ty, tz-z);

    // transform these points into absolute frame
    point0 = (point0 * prism_rotation) + prism_center;
    point1 = (point1 * prism_rotation) + prism_center;
    point2 = (point2 * prism_rotation) + prism_center;
    point3 = (point3 * prism_rotation) + prism_center;
    point4 = (point4 * prism_rotation) + prism_center;
    point5 = (point5 * prism_rotation) + prism_center;

    // test ray intersection for each face
    bool b_hit = false;
    LLVector3 face_intersection, face_normal;
    F32 distance_squared = 0.0f;
    F32 temp;

    // face 0
    if (ray_direction * ( (point0 - point2) % (point5 - point2)) < 0.0f  &&
        ray_quadrangle(ray_point, ray_direction, point5, point2, point0, intersection, intersection_normal))
    {
        distance_squared = (ray_point - intersection).magVecSquared();
        b_hit = true;
    }

    // face 1
    if (ray_direction * ( (point0 - point3) % (point2 - point3)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point2, point3, point0, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 2
    if (ray_direction * ( (point1 - point4) % (point3 - point4)) < 0.0f  &&
        ray_quadrangle(ray_point, ray_direction, point3, point4, point1, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 3
    if (ray_direction * ( (point5 - point4) % (point1 - point4)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point1, point4, point5, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 4
    if (ray_direction * ( (point4 - point5) % (point2 - point5)) < 0.0f  &&
        ray_quadrangle(ray_point, ray_direction, point2, point5, point4, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    return b_hit;
}


bool ray_tetrahedron(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                     const LLVector3 &t_center, const LLVector3 &t_scale, const LLQuaternion &t_rotation,
                     LLVector3 &intersection, LLVector3 &intersection_normal)
{
    F32 a = 0.5f * F_SQRT3;             // height of unit triangle
    F32 b = 1.0f / F_SQRT3;             // distance of center of unit triangle to each point
    F32 c = F_SQRT2 / F_SQRT3;          // height of unit tetrahedron
    F32 d = 0.5f * F_SQRT3 / F_SQRT2;   // distance of center of tetrahedron to each point

    // if we want the tetrahedron to have unit height (c = 1.0) then we need to divide
    // each constant by hieght of a unit tetrahedron
    F32 oo_c = 1.0f / c;
    a = a * oo_c;
    b = b * oo_c;
    c = 1.0f;
    d = d * oo_c;
    F32 e = 0.5f * oo_c;

    LLVector3 point0(              0.0f,                    0.0f,  t_scale.mV[VZ] * d);
    LLVector3 point1(t_scale.mV[VX] * b,                    0.0f,  t_scale.mV[VZ] * (d-c));
    LLVector3 point2(t_scale.mV[VX] * (b-a),  e * t_scale.mV[VY],  t_scale.mV[VZ] * (d-c));
    LLVector3 point3(t_scale.mV[VX] * (b-a), -e * t_scale.mV[VY],  t_scale.mV[VZ] * (d-c));

    // transform these points into absolute frame
    point0 = (point0 * t_rotation) + t_center;
    point1 = (point1 * t_rotation) + t_center;
    point2 = (point2 * t_rotation) + t_center;
    point3 = (point3 * t_rotation) + t_center;

    // test ray intersection for each face
    bool b_hit = false;
    LLVector3 face_intersection, face_normal;
    F32 distance_squared = 1.0e12f;
    F32 temp;

    // face 0
    if (ray_direction * ( (point2 - point1) % (point0 - point1)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point1, point2, point0, intersection, intersection_normal))
    {
        distance_squared = (ray_point - intersection).magVecSquared();
        b_hit = true;
    }

    // face 1
    if (ray_direction * ( (point3 - point2) % (point0 - point2)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point2, point3, point0, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 2
    if (ray_direction * ( (point1 - point3) % (point0 - point3)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point3, point1, point0, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 3
    if (ray_direction * ( (point2 - point3) % (point1 - point3)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point3, point2, point1, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    return b_hit;
}


bool ray_pyramid(const LLVector3 &ray_point, const LLVector3 &ray_direction,
                 const LLVector3 &p_center, const LLVector3 &p_scale, const LLQuaternion &p_rotation,
                 LLVector3 &intersection, LLVector3 &intersection_normal)
{
    // center of mass of pyramid is located 1/4 its height from the base
    F32 x = 0.5f * p_scale.mV[VX];
    F32 y = 0.5f * p_scale.mV[VY];
    F32 z = 0.25f * p_scale.mV[VZ];

    LLVector3 point0(0.0f, 0.0f,  p_scale.mV[VZ] - z);
    LLVector3 point1( x,  y, -z);
    LLVector3 point2(-x,  y, -z);
    LLVector3 point3(-x, -y, -z);
    LLVector3 point4( x, -y, -z);

    // transform these points into absolute frame
    point0 = (point0 * p_rotation) + p_center;
    point1 = (point1 * p_rotation) + p_center;
    point2 = (point2 * p_rotation) + p_center;
    point3 = (point3 * p_rotation) + p_center;
    point4 = (point4 * p_rotation) + p_center;

    // test ray intersection for each face
    bool b_hit = false;
    LLVector3 face_intersection, face_normal;
    F32 distance_squared = 1.0e12f;
    F32 temp;

    // face 0
    if (ray_direction * ( (point1 - point4) % (point0 - point4)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point4, point1, point0, intersection, intersection_normal))
    {
        distance_squared = (ray_point - intersection).magVecSquared();
        b_hit = true;
    }

    // face 1
    if (ray_direction * ( (point2 - point1) % (point0 - point1)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point1, point2, point0, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 2
    if (ray_direction * ( (point3 - point2) % (point0 - point2)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point2, point3, point0, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 3
    if (ray_direction * ( (point4 - point3) % (point0 - point3)) < 0.0f  &&
        ray_triangle(ray_point, ray_direction, point3, point4, point0, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                distance_squared = temp;
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            distance_squared = (ray_point - face_intersection).magVecSquared();
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    // face 4
    if (ray_direction * ( (point3 - point4) % (point2 - point4)) < 0.0f  &&
        ray_quadrangle(ray_point, ray_direction, point4, point3, point2, face_intersection, face_normal))
    {
        if (b_hit)
        {
            temp = (ray_point - face_intersection).magVecSquared();
            if (temp < distance_squared)
            {
                intersection = face_intersection;
                intersection_normal = face_normal;
            }
        }
        else
        {
            intersection = face_intersection;
            intersection_normal = face_normal;
            b_hit = true;
        }
    }

    return b_hit;
}


bool linesegment_circle(const LLVector3 &point_a, const LLVector3 &point_b,
                        const LLVector3 &circle_center, const LLVector3 plane_normal, F32 circle_radius,
                        LLVector3 &intersection)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_circle(point_a, ray_direction, circle_center, plane_normal, circle_radius, intersection))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


bool linesegment_triangle(const LLVector3 &point_a, const LLVector3 &point_b,
                          const LLVector3 &point_0, const LLVector3 &point_1, const LLVector3 &point_2,
                          LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_triangle(point_a, ray_direction, point_0, point_1, point_2, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


bool linesegment_quadrangle(const LLVector3 &point_a, const LLVector3 &point_b,
                            const LLVector3 &point_0, const LLVector3 &point_1, const LLVector3 &point_2,
                            LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_quadrangle(point_a, ray_direction, point_0, point_1, point_2, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


bool linesegment_sphere(const LLVector3 &point_a, const LLVector3 &point_b,
                const LLVector3 &sphere_center, F32 sphere_radius,
                LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_sphere(point_a, ray_direction, sphere_center, sphere_radius, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


bool linesegment_cylinder(const LLVector3 &point_a, const LLVector3 &point_b,
                  const LLVector3 &cyl_center, const LLVector3 &cyl_scale, const LLQuaternion &cyl_rotation,
                  LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_cylinder(point_a, ray_direction, cyl_center, cyl_scale, cyl_rotation, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


U32 linesegment_box(const LLVector3 &point_a, const LLVector3 &point_b,
                    const LLVector3 &box_center, const LLVector3 &box_scale, const LLQuaternion &box_rotation,
                    LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 direction = point_b - point_a;
    if (direction.isNull())
    {
        return NO_SIDE;
    }

    F32 segment_length = direction.normVec();
    U32 box_side = ray_box(point_a, direction, box_center, box_scale, box_rotation, intersection, intersection_normal);
    if (NO_SIDE == box_side  ||  segment_length < (intersection - point_a).magVec())
    {
        return NO_SIDE;
    }

    return box_side;
}


bool linesegment_prism(const LLVector3 &point_a, const LLVector3 &point_b,
                       const LLVector3 &prism_center, const LLVector3 &prism_scale, const LLQuaternion &prism_rotation,
                       LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_prism(point_a, ray_direction, prism_center, prism_scale, prism_rotation, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


bool linesegment_tetrahedron(const LLVector3 &point_a, const LLVector3 &point_b,
                             const LLVector3 &t_center, const LLVector3 &t_scale, const LLQuaternion &t_rotation,
                             LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_tetrahedron(point_a, ray_direction, t_center, t_scale, t_rotation, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}


bool linesegment_pyramid(const LLVector3 &point_a, const LLVector3 &point_b,
                         const LLVector3 &p_center, const LLVector3 &p_scale, const LLQuaternion &p_rotation,
                         LLVector3 &intersection, LLVector3 &intersection_normal)
{
    LLVector3 ray_direction = point_b - point_a;
    F32 segment_length = ray_direction.normVec();

    if (ray_pyramid(point_a, ray_direction, p_center, p_scale, p_rotation, intersection, intersection_normal))
    {
        if (segment_length >= (point_a - intersection).magVec())
        {
            return true;
        }
    }
    return false;
}