1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
|
/**
* @file m4math.cpp
* @brief LLMatrix4 class implementation.
*
* Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#include "linden_common.h"
//#include "vmath.h"
#include "v3math.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llquaternion.h"
// LLMatrix4
// Constructors
LLMatrix4::LLMatrix4(const F32 *mat)
{
mMatrix[0][0] = mat[0];
mMatrix[0][1] = mat[1];
mMatrix[0][2] = mat[2];
mMatrix[0][3] = mat[3];
mMatrix[1][0] = mat[4];
mMatrix[1][1] = mat[5];
mMatrix[1][2] = mat[6];
mMatrix[1][3] = mat[7];
mMatrix[2][0] = mat[8];
mMatrix[2][1] = mat[9];
mMatrix[2][2] = mat[10];
mMatrix[2][3] = mat[11];
mMatrix[3][0] = mat[12];
mMatrix[3][1] = mat[13];
mMatrix[3][2] = mat[14];
mMatrix[3][3] = mat[15];
}
LLMatrix4::LLMatrix4(const LLMatrix3 &mat, const LLVector4 &vec)
{
mMatrix[0][0] = mat.mMatrix[0][0];
mMatrix[0][1] = mat.mMatrix[0][1];
mMatrix[0][2] = mat.mMatrix[0][2];
mMatrix[0][3] = 0.f;
mMatrix[1][0] = mat.mMatrix[1][0];
mMatrix[1][1] = mat.mMatrix[1][1];
mMatrix[1][2] = mat.mMatrix[1][2];
mMatrix[1][3] = 0.f;
mMatrix[2][0] = mat.mMatrix[2][0];
mMatrix[2][1] = mat.mMatrix[2][1];
mMatrix[2][2] = mat.mMatrix[2][2];
mMatrix[2][3] = 0.f;
mMatrix[3][0] = vec.mV[0];
mMatrix[3][1] = vec.mV[1];
mMatrix[3][2] = vec.mV[2];
mMatrix[3][3] = 1.f;
}
LLMatrix4::LLMatrix4(const LLMatrix3 &mat)
{
mMatrix[0][0] = mat.mMatrix[0][0];
mMatrix[0][1] = mat.mMatrix[0][1];
mMatrix[0][2] = mat.mMatrix[0][2];
mMatrix[0][3] = 0.f;
mMatrix[1][0] = mat.mMatrix[1][0];
mMatrix[1][1] = mat.mMatrix[1][1];
mMatrix[1][2] = mat.mMatrix[1][2];
mMatrix[1][3] = 0.f;
mMatrix[2][0] = mat.mMatrix[2][0];
mMatrix[2][1] = mat.mMatrix[2][1];
mMatrix[2][2] = mat.mMatrix[2][2];
mMatrix[2][3] = 0.f;
mMatrix[3][0] = 0.f;
mMatrix[3][1] = 0.f;
mMatrix[3][2] = 0.f;
mMatrix[3][3] = 1.f;
}
LLMatrix4::LLMatrix4(const LLQuaternion &q)
{
*this = initRotation(q);
}
LLMatrix4::LLMatrix4(const LLQuaternion &q, const LLVector4 &pos)
{
*this = initRotTrans(q, pos);
}
LLMatrix4::LLMatrix4(const F32 angle, const LLVector4 &vec, const LLVector4 &pos)
{
initRotTrans(LLQuaternion(angle, vec), pos);
}
LLMatrix4::LLMatrix4(const F32 angle, const LLVector4 &vec)
{
initRotation(LLQuaternion(angle, vec));
mMatrix[3][0] = 0.f;
mMatrix[3][1] = 0.f;
mMatrix[3][2] = 0.f;
mMatrix[3][3] = 1.f;
}
LLMatrix4::LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &pos)
{
LLMatrix3 mat(roll, pitch, yaw);
initRotTrans(LLQuaternion(mat), pos);
}
LLMatrix4::LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw)
{
LLMatrix3 mat(roll, pitch, yaw);
initRotation(LLQuaternion(mat));
mMatrix[3][0] = 0.f;
mMatrix[3][1] = 0.f;
mMatrix[3][2] = 0.f;
mMatrix[3][3] = 1.f;
}
LLMatrix4::~LLMatrix4(void)
{
}
// Clear and Assignment Functions
const LLMatrix4& LLMatrix4::zero()
{
mMatrix[0][0] = 0.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[0][3] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 0.f;
mMatrix[1][2] = 0.f;
mMatrix[1][3] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 0.f;
mMatrix[2][3] = 0.f;
mMatrix[3][0] = 0.f;
mMatrix[3][1] = 0.f;
mMatrix[3][2] = 0.f;
mMatrix[3][3] = 0.f;
return *this;
}
// various useful mMatrix functions
const LLMatrix4& LLMatrix4::transpose()
{
LLMatrix4 mat;
mat.mMatrix[0][0] = mMatrix[0][0];
mat.mMatrix[1][0] = mMatrix[0][1];
mat.mMatrix[2][0] = mMatrix[0][2];
mat.mMatrix[3][0] = mMatrix[0][3];
mat.mMatrix[0][1] = mMatrix[1][0];
mat.mMatrix[1][1] = mMatrix[1][1];
mat.mMatrix[2][1] = mMatrix[1][2];
mat.mMatrix[3][1] = mMatrix[1][3];
mat.mMatrix[0][2] = mMatrix[2][0];
mat.mMatrix[1][2] = mMatrix[2][1];
mat.mMatrix[2][2] = mMatrix[2][2];
mat.mMatrix[3][2] = mMatrix[2][3];
mat.mMatrix[0][3] = mMatrix[3][0];
mat.mMatrix[1][3] = mMatrix[3][1];
mat.mMatrix[2][3] = mMatrix[3][2];
mat.mMatrix[3][3] = mMatrix[3][3];
*this = mat;
return *this;
}
F32 LLMatrix4::determinant() const
{
llerrs << "Not implemented!" << llendl;
return 0.f;
}
// Only works for pure orthonormal, homogeneous transform matrices.
const LLMatrix4& LLMatrix4::invert(void)
{
// transpose the rotation part
F32 temp;
temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
// rotate the translation part by the new rotation
// (temporarily store in empty column of matrix)
U32 j;
for (j=0; j<3; j++)
{
mMatrix[j][VW] = mMatrix[VW][VX] * mMatrix[VX][j] +
mMatrix[VW][VY] * mMatrix[VY][j] +
mMatrix[VW][VZ] * mMatrix[VZ][j];
}
// negate and copy the temporary vector back to the tranlation row
mMatrix[VW][VX] = -mMatrix[VX][VW];
mMatrix[VW][VY] = -mMatrix[VY][VW];
mMatrix[VW][VZ] = -mMatrix[VZ][VW];
// zero the empty column again
mMatrix[VX][VW] = mMatrix[VY][VW] = mMatrix[VZ][VW] = 0.0f;
return *this;
}
LLVector4 LLMatrix4::getFwdRow4() const
{
return LLVector4(mMatrix[VX][VX], mMatrix[VX][VY], mMatrix[VX][VZ], mMatrix[VX][VW]);
}
LLVector4 LLMatrix4::getLeftRow4() const
{
return LLVector4(mMatrix[VY][VX], mMatrix[VY][VY], mMatrix[VY][VZ], mMatrix[VY][VW]);
}
LLVector4 LLMatrix4::getUpRow4() const
{
return LLVector4(mMatrix[VZ][VX], mMatrix[VZ][VY], mMatrix[VZ][VZ], mMatrix[VZ][VW]);
}
// SJB: This code is correct for a logicly stored (non-transposed) matrix;
// Our matrices are stored transposed, OpenGL style, so this generates the
// INVERSE quaternion (-x, -y, -z, w)!
// Because we use similar logic in LLQuaternion::getMatrix3,
// we are internally consistant so everything works OK :)
LLQuaternion LLMatrix4::quaternion() const
{
LLQuaternion quat;
F32 tr, s, q[4];
U32 i, j, k;
U32 nxt[3] = {1, 2, 0};
tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
// check the diagonal
if (tr > 0.f)
{
s = (F32)sqrt (tr + 1.f);
quat.mQ[VS] = s / 2.f;
s = 0.5f / s;
quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
}
else
{
// diagonal is negative
i = 0;
if (mMatrix[1][1] > mMatrix[0][0])
i = 1;
if (mMatrix[2][2] > mMatrix[i][i])
i = 2;
j = nxt[i];
k = nxt[j];
s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
q[i] = s * 0.5f;
if (s != 0.f)
s = 0.5f / s;
q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
quat.setQuat(q);
}
return quat;
}
void LLMatrix4::initRows(const LLVector4 &row0,
const LLVector4 &row1,
const LLVector4 &row2,
const LLVector4 &row3)
{
mMatrix[0][0] = row0.mV[0];
mMatrix[0][1] = row0.mV[1];
mMatrix[0][2] = row0.mV[2];
mMatrix[0][3] = row0.mV[3];
mMatrix[1][0] = row1.mV[0];
mMatrix[1][1] = row1.mV[1];
mMatrix[1][2] = row1.mV[2];
mMatrix[1][3] = row1.mV[3];
mMatrix[2][0] = row2.mV[0];
mMatrix[2][1] = row2.mV[1];
mMatrix[2][2] = row2.mV[2];
mMatrix[2][3] = row2.mV[3];
mMatrix[3][0] = row3.mV[0];
mMatrix[3][1] = row3.mV[1];
mMatrix[3][2] = row3.mV[2];
mMatrix[3][3] = row3.mV[3];
}
const LLMatrix4& LLMatrix4::initRotation(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLMatrix3 mat(angle, x, y, z);
return initMatrix(mat);
}
const LLMatrix4& LLMatrix4::initRotation(F32 angle, const LLVector4 &vec)
{
LLMatrix3 mat(angle, vec);
return initMatrix(mat);
}
const LLMatrix4& LLMatrix4::initRotation(const F32 roll, const F32 pitch, const F32 yaw)
{
LLMatrix3 mat(roll, pitch, yaw);
return initMatrix(mat);
}
const LLMatrix4& LLMatrix4::initRotation(const LLQuaternion &q)
{
LLMatrix3 mat(q);
return initMatrix(mat);
}
// Position and Rotation
const LLMatrix4& LLMatrix4::initRotTrans(const F32 angle, const F32 rx, const F32 ry, const F32 rz,
const F32 tx, const F32 ty, const F32 tz)
{
LLMatrix3 mat(angle, rx, ry, rz);
LLVector3 translation(tx, ty, tz);
initMatrix(mat);
setTranslation(translation);
return (*this);
}
const LLMatrix4& LLMatrix4::initRotTrans(const F32 angle, const LLVector3 &axis, const LLVector3&translation)
{
LLMatrix3 mat(angle, axis);
initMatrix(mat);
setTranslation(translation);
return (*this);
}
const LLMatrix4& LLMatrix4::initRotTrans(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &translation)
{
LLMatrix3 mat(roll, pitch, yaw);
initMatrix(mat);
setTranslation(translation);
return (*this);
}
/*
const LLMatrix4& LLMatrix4::initRotTrans(const LLVector4 &fwd,
const LLVector4 &left,
const LLVector4 &up,
const LLVector4 &translation)
{
LLMatrix3 mat(fwd, left, up);
initMatrix(mat);
setTranslation(translation);
return (*this);
}
*/
const LLMatrix4& LLMatrix4::initRotTrans(const LLQuaternion &q, const LLVector4 &translation)
{
LLMatrix3 mat(q);
initMatrix(mat);
setTranslation(translation);
return (*this);
}
const LLMatrix4& LLMatrix4::initAll(const LLVector3 &scale, const LLQuaternion &q, const LLVector3 &pos)
{
F32 sx, sy, sz;
F32 xx, xy, xz, xw, yy, yz, yw, zz, zw;
sx = scale.mV[0];
sy = scale.mV[1];
sz = scale.mV[2];
xx = q.mQ[VX] * q.mQ[VX];
xy = q.mQ[VX] * q.mQ[VY];
xz = q.mQ[VX] * q.mQ[VZ];
xw = q.mQ[VX] * q.mQ[VW];
yy = q.mQ[VY] * q.mQ[VY];
yz = q.mQ[VY] * q.mQ[VZ];
yw = q.mQ[VY] * q.mQ[VW];
zz = q.mQ[VZ] * q.mQ[VZ];
zw = q.mQ[VZ] * q.mQ[VW];
mMatrix[0][0] = (1.f - 2.f * ( yy + zz )) *sx;
mMatrix[0][1] = ( 2.f * ( xy + zw )) *sx;
mMatrix[0][2] = ( 2.f * ( xz - yw )) *sx;
mMatrix[1][0] = ( 2.f * ( xy - zw )) *sy;
mMatrix[1][1] = (1.f - 2.f * ( xx + zz )) *sy;
mMatrix[1][2] = ( 2.f * ( yz + xw )) *sy;
mMatrix[2][0] = ( 2.f * ( xz + yw )) *sz;
mMatrix[2][1] = ( 2.f * ( yz - xw )) *sz;
mMatrix[2][2] = (1.f - 2.f * ( xx + yy )) *sz;
mMatrix[3][0] = pos.mV[0];
mMatrix[3][1] = pos.mV[1];
mMatrix[3][2] = pos.mV[2];
mMatrix[3][3] = 1.0;
// TODO -- should we set the translation portion to zero?
return (*this);
}
// Rotate exisitng mMatrix
const LLMatrix4& LLMatrix4::rotate(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLVector4 vec4(x, y, z);
LLMatrix4 mat(angle, vec4);
*this *= mat;
return *this;
}
const LLMatrix4& LLMatrix4::rotate(const F32 angle, const LLVector4 &vec)
{
LLMatrix4 mat(angle, vec);
*this *= mat;
return *this;
}
const LLMatrix4& LLMatrix4::rotate(const F32 roll, const F32 pitch, const F32 yaw)
{
LLMatrix4 mat(roll, pitch, yaw);
*this *= mat;
return *this;
}
const LLMatrix4& LLMatrix4::rotate(const LLQuaternion &q)
{
LLMatrix4 mat(q);
*this *= mat;
return *this;
}
const LLMatrix4& LLMatrix4::translate(const LLVector3 &vec)
{
mMatrix[3][0] += vec.mV[0];
mMatrix[3][1] += vec.mV[1];
mMatrix[3][2] += vec.mV[2];
return (*this);
}
void LLMatrix4::setFwdRow(const LLVector3 &row)
{
mMatrix[VX][VX] = row.mV[VX];
mMatrix[VX][VY] = row.mV[VY];
mMatrix[VX][VZ] = row.mV[VZ];
}
void LLMatrix4::setLeftRow(const LLVector3 &row)
{
mMatrix[VY][VX] = row.mV[VX];
mMatrix[VY][VY] = row.mV[VY];
mMatrix[VY][VZ] = row.mV[VZ];
}
void LLMatrix4::setUpRow(const LLVector3 &row)
{
mMatrix[VZ][VX] = row.mV[VX];
mMatrix[VZ][VY] = row.mV[VY];
mMatrix[VZ][VZ] = row.mV[VZ];
}
void LLMatrix4::setFwdCol(const LLVector3 &col)
{
mMatrix[VX][VX] = col.mV[VX];
mMatrix[VY][VX] = col.mV[VY];
mMatrix[VZ][VX] = col.mV[VZ];
}
void LLMatrix4::setLeftCol(const LLVector3 &col)
{
mMatrix[VX][VY] = col.mV[VX];
mMatrix[VY][VY] = col.mV[VY];
mMatrix[VZ][VY] = col.mV[VZ];
}
void LLMatrix4::setUpCol(const LLVector3 &col)
{
mMatrix[VX][VZ] = col.mV[VX];
mMatrix[VY][VZ] = col.mV[VY];
mMatrix[VZ][VZ] = col.mV[VZ];
}
const LLMatrix4& LLMatrix4::setTranslation(const F32 tx, const F32 ty, const F32 tz)
{
mMatrix[VW][VX] = tx;
mMatrix[VW][VY] = ty;
mMatrix[VW][VZ] = tz;
return (*this);
}
const LLMatrix4& LLMatrix4::setTranslation(const LLVector3 &translation)
{
mMatrix[VW][VX] = translation.mV[VX];
mMatrix[VW][VY] = translation.mV[VY];
mMatrix[VW][VZ] = translation.mV[VZ];
return (*this);
}
const LLMatrix4& LLMatrix4::setTranslation(const LLVector4 &translation)
{
mMatrix[VW][VX] = translation.mV[VX];
mMatrix[VW][VY] = translation.mV[VY];
mMatrix[VW][VZ] = translation.mV[VZ];
return (*this);
}
// LLMatrix3 Extraction and Setting
LLMatrix3 LLMatrix4::getMat3() const
{
LLMatrix3 retmat;
retmat.mMatrix[0][0] = mMatrix[0][0];
retmat.mMatrix[0][1] = mMatrix[0][1];
retmat.mMatrix[0][2] = mMatrix[0][2];
retmat.mMatrix[1][0] = mMatrix[1][0];
retmat.mMatrix[1][1] = mMatrix[1][1];
retmat.mMatrix[1][2] = mMatrix[1][2];
retmat.mMatrix[2][0] = mMatrix[2][0];
retmat.mMatrix[2][1] = mMatrix[2][1];
retmat.mMatrix[2][2] = mMatrix[2][2];
return retmat;
}
const LLMatrix4& LLMatrix4::initMatrix(const LLMatrix3 &mat)
{
mMatrix[0][0] = mat.mMatrix[0][0];
mMatrix[0][1] = mat.mMatrix[0][1];
mMatrix[0][2] = mat.mMatrix[0][2];
mMatrix[0][3] = 0.f;
mMatrix[1][0] = mat.mMatrix[1][0];
mMatrix[1][1] = mat.mMatrix[1][1];
mMatrix[1][2] = mat.mMatrix[1][2];
mMatrix[1][3] = 0.f;
mMatrix[2][0] = mat.mMatrix[2][0];
mMatrix[2][1] = mat.mMatrix[2][1];
mMatrix[2][2] = mat.mMatrix[2][2];
mMatrix[2][3] = 0.f;
mMatrix[3][0] = 0.f;
mMatrix[3][1] = 0.f;
mMatrix[3][2] = 0.f;
mMatrix[3][3] = 1.f;
return (*this);
}
const LLMatrix4& LLMatrix4::initMatrix(const LLMatrix3 &mat, const LLVector4 &translation)
{
mMatrix[0][0] = mat.mMatrix[0][0];
mMatrix[0][1] = mat.mMatrix[0][1];
mMatrix[0][2] = mat.mMatrix[0][2];
mMatrix[0][3] = 0.f;
mMatrix[1][0] = mat.mMatrix[1][0];
mMatrix[1][1] = mat.mMatrix[1][1];
mMatrix[1][2] = mat.mMatrix[1][2];
mMatrix[1][3] = 0.f;
mMatrix[2][0] = mat.mMatrix[2][0];
mMatrix[2][1] = mat.mMatrix[2][1];
mMatrix[2][2] = mat.mMatrix[2][2];
mMatrix[2][3] = 0.f;
mMatrix[3][0] = translation.mV[0];
mMatrix[3][1] = translation.mV[1];
mMatrix[3][2] = translation.mV[2];
mMatrix[3][3] = 1.f;
return (*this);
}
// LLMatrix4 Operators
/* Not implemented to help enforce code consistency with the syntax of
row-major notation. This is a Good Thing.
LLVector4 operator*(const LLMatrix4 &a, const LLVector4 &b)
{
// Operate "to the right" on column-vector b
LLVector4 vec;
vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
a.mMatrix[VY][VX] * b.mV[VY] +
a.mMatrix[VZ][VX] * b.mV[VZ] +
a.mMatrix[VW][VX] * b.mV[VW];
vec.mV[VY] = a.mMatrix[VX][VY] * b.mV[VX] +
a.mMatrix[VY][VY] * b.mV[VY] +
a.mMatrix[VZ][VY] * b.mV[VZ] +
a.mMatrix[VW][VY] * b.mV[VW];
vec.mV[VZ] = a.mMatrix[VX][VZ] * b.mV[VX] +
a.mMatrix[VY][VZ] * b.mV[VY] +
a.mMatrix[VZ][VZ] * b.mV[VZ] +
a.mMatrix[VW][VZ] * b.mV[VW];
vec.mV[VW] = a.mMatrix[VX][VW] * b.mV[VX] +
a.mMatrix[VY][VW] * b.mV[VY] +
a.mMatrix[VZ][VW] * b.mV[VZ] +
a.mMatrix[VW][VW] * b.mV[VW];
return vec;
}
*/
// Operates "to the left" on row-vector a
//
// This used to be in the header file but was not actually inlined in practice.
// When avatar vertex programs are off, this function is a hot spot in profiles
// due to software skinning in LLViewerJointMesh::updateGeometry(). JC
LLVector3 operator*(const LLVector3 &a, const LLMatrix4 &b)
{
// This is better than making a temporary LLVector3. This eliminates an
// unnecessary LLVector3() constructor and also helps the compiler to
// realize that the output floats do not alias the input floats, hence
// eliminating redundant loads of a.mV[0], etc. JC
return LLVector3(a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX] +
b.mMatrix[VW][VX],
a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY] +
b.mMatrix[VW][VY],
a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ] +
b.mMatrix[VW][VZ]);
}
LLVector4 operator*(const LLVector4 &a, const LLMatrix4 &b)
{
// Operate "to the left" on row-vector a
return LLVector4(a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX] +
a.mV[VW] * b.mMatrix[VW][VX],
a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY] +
a.mV[VW] * b.mMatrix[VW][VY],
a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ] +
a.mV[VW] * b.mMatrix[VW][VZ],
a.mV[VX] * b.mMatrix[VX][VW] +
a.mV[VY] * b.mMatrix[VY][VW] +
a.mV[VZ] * b.mMatrix[VZ][VW] +
a.mV[VW] * b.mMatrix[VW][VW]);
}
LLVector4 rotate_vector(const LLVector4 &a, const LLMatrix4 &b)
{
// Rotates but does not translate
// Operate "to the left" on row-vector a
LLVector4 vec;
vec.mV[VX] = a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX];
vec.mV[VY] = a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY];
vec.mV[VZ] = a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ];
// vec.mV[VW] = a.mV[VX] * b.mMatrix[VX][VW] +
// a.mV[VY] * b.mMatrix[VY][VW] +
// a.mV[VZ] * b.mMatrix[VZ][VW] +
vec.mV[VW] = a.mV[VW];
return vec;
}
LLVector3 rotate_vector(const LLVector3 &a, const LLMatrix4 &b)
{
// Rotates but does not translate
// Operate "to the left" on row-vector a
LLVector3 vec;
vec.mV[VX] = a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX];
vec.mV[VY] = a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY];
vec.mV[VZ] = a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ];
return vec;
}
bool operator==(const LLMatrix4 &a, const LLMatrix4 &b)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
if (a.mMatrix[j][i] != b.mMatrix[j][i])
return FALSE;
}
}
return TRUE;
}
bool operator!=(const LLMatrix4 &a, const LLMatrix4 &b)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
if (a.mMatrix[j][i] != b.mMatrix[j][i])
return TRUE;
}
}
return FALSE;
}
const LLMatrix4& operator*=(LLMatrix4 &a, F32 k)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
a.mMatrix[j][i] *= k;
}
}
return a;
}
std::ostream& operator<<(std::ostream& s, const LLMatrix4 &a)
{
s << "{ "
<< a.mMatrix[VX][VX] << ", "
<< a.mMatrix[VX][VY] << ", "
<< a.mMatrix[VX][VZ] << ", "
<< a.mMatrix[VX][VW]
<< "; "
<< a.mMatrix[VY][VX] << ", "
<< a.mMatrix[VY][VY] << ", "
<< a.mMatrix[VY][VZ] << ", "
<< a.mMatrix[VY][VW]
<< "; "
<< a.mMatrix[VZ][VX] << ", "
<< a.mMatrix[VZ][VY] << ", "
<< a.mMatrix[VZ][VZ] << ", "
<< a.mMatrix[VZ][VW]
<< "; "
<< a.mMatrix[VW][VX] << ", "
<< a.mMatrix[VW][VY] << ", "
<< a.mMatrix[VW][VZ] << ", "
<< a.mMatrix[VW][VW]
<< " }";
return s;
}
|