1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
/**
* @file m3math.cpp
* @brief LLMatrix3 class implementation.
*
* Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#include "linden_common.h"
//#include "vmath.h"
#include "v3math.h"
#include "v3dmath.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llquaternion.h"
// LLMatrix3
// ji
// LLMatrix3 = |00 01 02 |
// |10 11 12 |
// |20 21 22 |
// LLMatrix3 = |fx fy fz | forward-axis
// |lx ly lz | left-axis
// |ux uy uz | up-axis
// Constructors
LLMatrix3::LLMatrix3(const LLQuaternion &q)
{
*this = q.getMatrix3();
}
LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec)
{
LLQuaternion quat(angle, vec);
*this = setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec)
{
LLVector3 vec_f;
vec_f.setVec(vec);
LLQuaternion quat(angle, vec_f);
*this = setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec)
{
LLQuaternion quat(angle, vec);
*this = setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLVector3 vec(x, y, z);
LLQuaternion quat(angle, vec);
*this = setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw)
{
// Rotates RH about x-axis by 'roll' then
// rotates RH about the old y-axis by 'pitch' then
// rotates RH about the original z-axis by 'yaw'.
// .
// /|\ yaw axis
// | __.
// ._ ___| /| pitch axis
// _||\ \\ |-. /
// \|| \_______\_|__\_/_______
// | _ _ o o o_o_o_o o /_\_ ________\ roll axis
// // /_______/ /__________> /
// /_,-' // /
// /__,-'
F32 cx, sx, cy, sy, cz, sz;
F32 cxsy, sxsy;
cx = (F32)cos(roll); //A
sx = (F32)sin(roll); //B
cy = (F32)cos(pitch); //C
sy = (F32)sin(pitch); //D
cz = (F32)cos(yaw); //E
sz = (F32)sin(yaw); //F
cxsy = cx * sy; //AD
sxsy = sx * sy; //BD
mMatrix[0][0] = cy * cz;
mMatrix[1][0] = -cy * sz;
mMatrix[2][0] = sy;
mMatrix[0][1] = sxsy * cz + cx * sz;
mMatrix[1][1] = -sxsy * sz + cx * cz;
mMatrix[2][1] = -sx * cy;
mMatrix[0][2] = -cxsy * cz + sx * sz;
mMatrix[1][2] = cxsy * sz + sx * cz;
mMatrix[2][2] = cx * cy;
}
// From Matrix and Quaternion FAQ
void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const
{
F64 angle_x, angle_y, angle_z;
F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z
F64 sx, sz; // sine of angle_x, angle_y, angle_z
angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f));
cy = cos(angle_y);
if (fabs(cy) > 0.005) // non-zero
{
// no gimbal lock
cx = mMatrix[2][2] / cy;
sx = - mMatrix[2][1] / cy;
angle_x = (F32) atan2(sx, cx);
cz = mMatrix[0][0] / cy;
sz = - mMatrix[1][0] / cy;
angle_z = (F32) atan2(sz, cz);
}
else
{
// yup, gimbal lock
angle_x = 0;
// some tricky math thereby avoided, see article
cz = mMatrix[1][1];
sz = mMatrix[0][1];
angle_z = atan2(sz, cz);
}
*roll = (F32)angle_x;
*pitch = (F32)angle_y;
*yaw = (F32)angle_z;
}
// Clear and Assignment Functions
const LLMatrix3& LLMatrix3::identity()
{
mMatrix[0][0] = 1.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 1.f;
mMatrix[1][2] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 1.f;
return (*this);
}
const LLMatrix3& LLMatrix3::zero()
{
mMatrix[0][0] = 0.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 0.f;
mMatrix[1][2] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 0.f;
return (*this);
}
// various useful mMatrix functions
const LLMatrix3& LLMatrix3::transpose()
{
// transpose the matrix
F32 temp;
temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
return *this;
}
F32 LLMatrix3::determinant() const
{
// Is this a useful method when we assume the matrices are valid rotation
// matrices throughout this implementation?
return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) +
mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) +
mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]);
}
// This is identical to the transMat3() method because we assume a rotation matrix
const LLMatrix3& LLMatrix3::invert()
{
// transpose the matrix
F32 temp;
temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
return *this;
}
// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized
const LLMatrix3& LLMatrix3::adjointTranspose()
{
LLMatrix3 adjoint_transpose;
adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ;
adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ;
adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ;
adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ;
adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ;
adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ;
adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ;
adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ;
adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ;
*this = adjoint_transpose;
return *this;
}
// SJB: This code is correct for a logicly stored (non-transposed) matrix;
// Our matrices are stored transposed, OpenGL style, so this generates the
// INVERSE quaternion (-x, -y, -z, w)!
// Because we use similar logic in LLQuaternion::getMatrix3,
// we are internally consistant so everything works OK :)
LLQuaternion LLMatrix3::quaternion() const
{
LLQuaternion quat;
F32 tr, s, q[4];
U32 i, j, k;
U32 nxt[3] = {1, 2, 0};
tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
// check the diagonal
if (tr > 0.f)
{
s = (F32)sqrt (tr + 1.f);
quat.mQ[VS] = s / 2.f;
s = 0.5f / s;
quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
}
else
{
// diagonal is negative
i = 0;
if (mMatrix[1][1] > mMatrix[0][0])
i = 1;
if (mMatrix[2][2] > mMatrix[i][i])
i = 2;
j = nxt[i];
k = nxt[j];
s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
q[i] = s * 0.5f;
if (s != 0.f)
s = 0.5f / s;
q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
quat.setQuat(q);
}
return quat;
}
// These functions take Rotation arguments
const LLMatrix3& LLMatrix3::setRot(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLMatrix3 mat(angle, x, y, z);
*this = mat;
return *this;
}
const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec)
{
LLMatrix3 mat(angle, vec);
*this = mat;
return *this;
}
const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw)
{
LLMatrix3 mat(roll, pitch, yaw);
*this = mat;
return *this;
}
const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q)
{
LLMatrix3 mat(q);
*this = mat;
return *this;
}
const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up)
{
mMatrix[0][0] = fwd.mV[0];
mMatrix[0][1] = fwd.mV[1];
mMatrix[0][2] = fwd.mV[2];
mMatrix[1][0] = left.mV[0];
mMatrix[1][1] = left.mV[1];
mMatrix[1][2] = left.mV[2];
mMatrix[2][0] = up.mV[0];
mMatrix[2][1] = up.mV[1];
mMatrix[2][2] = up.mV[2];
return *this;
}
// Rotate exisitng mMatrix
const LLMatrix3& LLMatrix3::rotate(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLMatrix3 mat(angle, x, y, z);
*this *= mat;
return *this;
}
const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec)
{
LLMatrix3 mat(angle, vec);
*this *= mat;
return *this;
}
const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw)
{
LLMatrix3 mat(roll, pitch, yaw);
*this *= mat;
return *this;
}
const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q)
{
LLMatrix3 mat(q);
*this *= mat;
return *this;
}
LLVector3 LLMatrix3::getFwdRow() const
{
return LLVector3(mMatrix[VX]);
}
LLVector3 LLMatrix3::getLeftRow() const
{
return LLVector3(mMatrix[VY]);
}
LLVector3 LLMatrix3::getUpRow() const
{
return LLVector3(mMatrix[VZ]);
}
const LLMatrix3& LLMatrix3::orthogonalize()
{
LLVector3 x_axis(mMatrix[VX]);
LLVector3 y_axis(mMatrix[VY]);
LLVector3 z_axis(mMatrix[VZ]);
x_axis.normVec();
y_axis -= x_axis * (x_axis * y_axis);
y_axis.normVec();
z_axis = x_axis % y_axis;
setRows(x_axis, y_axis, z_axis);
return (*this);
}
// LLMatrix3 Operators
LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
LLMatrix3 mat;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
a.mMatrix[j][1] * b.mMatrix[1][i] +
a.mMatrix[j][2] * b.mMatrix[2][i];
}
}
return mat;
}
/* Not implemented to help enforce code consistency with the syntax of
row-major notation. This is a Good Thing.
LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b)
{
LLVector3 vec;
// matrix operates "from the left" on column vector
vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
a.mMatrix[VX][VY] * b.mV[VY] +
a.mMatrix[VX][VZ] * b.mV[VZ];
vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] +
a.mMatrix[VY][VY] * b.mV[VY] +
a.mMatrix[VY][VZ] * b.mV[VZ];
vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] +
a.mMatrix[VZ][VY] * b.mV[VY] +
a.mMatrix[VZ][VZ] * b.mV[VZ];
return vec;
}
*/
LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b)
{
// matrix operates "from the right" on row vector
return LLVector3(
a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX],
a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY],
a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ] );
}
LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b)
{
// matrix operates "from the right" on row vector
return LLVector3d(
a.mdV[VX] * b.mMatrix[VX][VX] +
a.mdV[VY] * b.mMatrix[VY][VX] +
a.mdV[VZ] * b.mMatrix[VZ][VX],
a.mdV[VX] * b.mMatrix[VX][VY] +
a.mdV[VY] * b.mMatrix[VY][VY] +
a.mdV[VZ] * b.mMatrix[VZ][VY],
a.mdV[VX] * b.mMatrix[VX][VZ] +
a.mdV[VY] * b.mMatrix[VY][VZ] +
a.mdV[VZ] * b.mMatrix[VZ][VZ] );
}
bool operator==(const LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
if (a.mMatrix[j][i] != b.mMatrix[j][i])
return FALSE;
}
}
return TRUE;
}
bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
if (a.mMatrix[j][i] != b.mMatrix[j][i])
return TRUE;
}
}
return FALSE;
}
const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
LLMatrix3 mat;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
a.mMatrix[j][1] * b.mMatrix[1][i] +
a.mMatrix[j][2] * b.mMatrix[2][i];
}
}
a = mat;
return a;
}
std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a)
{
s << "{ "
<< a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; "
<< a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; "
<< a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ]
<< " }";
return s;
}
|