1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/**
* @file llsphere.cpp
* @author Andrew Meadows
* @brief Simple line class that can compute nearest approach between two lines
*
* Copyright (c) 2006-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#include "linden_common.h"
#include "llsphere.h"
LLSphere::LLSphere()
: mCenter(0.f, 0.f, 0.f),
mRadius(0.f)
{ }
LLSphere::LLSphere( const LLVector3& center, F32 radius)
{
set(center, radius);
}
void LLSphere::set( const LLVector3& center, F32 radius )
{
mCenter = center;
setRadius(radius);
}
void LLSphere::setCenter( const LLVector3& center)
{
mCenter = center;
}
void LLSphere::setRadius( F32 radius)
{
if (radius < 0.f)
{
radius = -radius;
}
mRadius = radius;
}
const LLVector3& LLSphere::getCenter() const
{
return mCenter;
}
F32 LLSphere::getRadius() const
{
return mRadius;
}
// returns 'TRUE' if this sphere completely contains other_sphere
BOOL LLSphere::contains(const LLSphere& other_sphere) const
{
F32 separation = (mCenter - other_sphere.mCenter).length();
return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE;
}
// returns 'TRUE' if this sphere completely contains other_sphere
BOOL LLSphere::overlaps(const LLSphere& other_sphere) const
{
F32 separation = (mCenter - other_sphere.mCenter).length();
return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE;
}
// returns overlap
// negative overlap is closest approach
F32 LLSphere::getOverlap(const LLSphere& other_sphere) const
{
// separation is distance from other_sphere's edge and this center
return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius;
}
bool LLSphere::operator==(const LLSphere& rhs) const
{
// TODO? -- use approximate equality for centers?
return (mRadius == rhs.mRadius
&& mCenter == rhs.mCenter);
}
std::ostream& operator<<( std::ostream& output_stream, const LLSphere& sphere)
{
output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}";
return output_stream;
}
// static
// removes any spheres that are contained in others
void LLSphere::collapse(std::vector<LLSphere>& sphere_list)
{
std::vector<LLSphere>::iterator first_itr = sphere_list.begin();
while (first_itr != sphere_list.end())
{
bool delete_from_front = false;
std::vector<LLSphere>::iterator second_itr = first_itr;
++second_itr;
while (second_itr != sphere_list.end())
{
if (second_itr->contains(*first_itr))
{
delete_from_front = true;
break;
}
else if (first_itr->contains(*second_itr))
{
sphere_list.erase(second_itr++);
}
else
{
++second_itr;
}
}
if (delete_from_front)
{
sphere_list.erase(first_itr++);
}
else
{
++first_itr;
}
}
}
// static
// returns the bounding sphere that contains both spheres
LLSphere LLSphere::getBoundingSphere(const LLSphere& first_sphere, const LLSphere& second_sphere)
{
LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter;
// HACK -- it is possible to get enough floating point error in the
// other getBoundingSphere() method that we have to add some slop
// at the end. Unfortunately, this breaks the link-order invarience
// for the linkability tests... unless we also apply the same slop
// here.
F32 half_milimeter = 0.0005f;
F32 distance = direction.length();
if (0.f == distance)
{
direction.setVec(1.f, 0.f, 0.f);
}
else
{
direction.normVec();
}
// the 'edge' is measured from the first_sphere's center
F32 max_edge = 0.f;
F32 min_edge = 0.f;
max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter);
min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter);
F32 radius = 0.5f * (max_edge - min_edge);
LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction;
return LLSphere(center, radius);
}
// static
// returns the bounding sphere that contains an arbitrary set of spheres
LLSphere LLSphere::getBoundingSphere(const std::vector<LLSphere>& sphere_list)
{
// this algorithm can get relatively inaccurate when the sphere
// collection is 'small' (contained within a bounding sphere of about
// 2 meters or less)
// TODO -- improve the accuracy for small collections of spheres
LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f );
S32 sphere_count = sphere_list.size();
if (1 == sphere_count)
{
// trivial case -- single sphere
std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin();
bounding_sphere = *sphere_itr;
}
else if (2 == sphere_count)
{
// trivial case -- two spheres
std::vector<LLSphere>::const_iterator first_sphere = sphere_list.begin();
std::vector<LLSphere>::const_iterator second_sphere = first_sphere;
++second_sphere;
bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere);
}
else if (sphere_count > 0)
{
// non-trivial case -- we will approximate the solution
//
// NOTE -- there is a fancy/fast way to do this for large
// numbers of arbirary N-dimensional spheres -- you can look it
// up on the net. We're dealing with 3D spheres at collection
// sizes of 256 spheres or smaller, so we just use this
// brute force method.
// TODO -- perhaps would be worthwile to test for the solution where
// the largest spanning radius just happens to work. That is, where
// there are really two spheres that determine the bounding sphere,
// and all others are contained therein.
// compute the AABB
std::vector<LLSphere>::const_iterator first_itr = sphere_list.begin();
LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f);
LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f);
{
std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin();
for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr)
{
LLVector3 center = sphere_itr->getCenter();
F32 radius = sphere_itr->getRadius();
for (S32 i=0; i<3; ++i)
{
if (center.mV[i] + radius > max_corner.mV[i])
{
max_corner.mV[i] = center.mV[i] + radius;
}
if (center.mV[i] - radius < min_corner.mV[i])
{
min_corner.mV[i] = center.mV[i] - radius;
}
}
}
}
// get the starting center and radius from the AABB
LLVector3 diagonal = max_corner - min_corner;
F32 bounding_radius = 0.5f * diagonal.length();
LLVector3 bounding_center = 0.5f * (max_corner + min_corner);
// compute the starting step-size
F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ]));
F32 step_length = bounding_radius - minimum_radius;
S32 step_count = 0;
S32 max_step_count = 12;
F32 half_milimeter = 0.0005f;
// wander the center around in search of tighter solutions
S32 last_dx = 2; // 2 is out of bounds --> no match
S32 last_dy = 2;
S32 last_dz = 2;
while (step_length > half_milimeter
&& step_count < max_step_count)
{
// the algorithm for testing the maximum radius could be expensive enough
// that it makes sense to NOT duplicate testing when possible, so we keep
// track of where we last tested, and only test the new points
S32 best_dx = 0;
S32 best_dy = 0;
S32 best_dz = 0;
// sample near the center of the box
bool found_better_center = false;
for (S32 dx = -1; dx < 2; ++dx)
{
for (S32 dy = -1; dy < 2; ++dy)
{
for (S32 dz = -1; dz < 2; ++dz)
{
if (dx == 0 && dy == 0 && dz == 0)
{
continue;
}
// count the number of indecies that match the last_*'s
S32 match_count = 0;
if (last_dx == dx) ++match_count;
if (last_dy == dy) ++match_count;
if (last_dz == dz) ++match_count;
if (match_count == 2)
{
// we've already tested this point
continue;
}
LLVector3 center = bounding_center;
center.mV[VX] += (F32) dx * step_length;
center.mV[VY] += (F32) dy * step_length;
center.mV[VZ] += (F32) dz * step_length;
// compute the radius of the bounding sphere
F32 max_radius = 0.f;
std::vector<LLSphere>::const_iterator sphere_itr;
for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr)
{
F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius();
if (radius > max_radius)
{
max_radius = radius;
}
}
if (max_radius < bounding_radius)
{
best_dx = dx;
best_dy = dy;
best_dz = dz;
bounding_center = center;
bounding_radius = max_radius;
found_better_center = true;
}
}
}
}
if (found_better_center)
{
// remember where we came from so we can avoid retesting
last_dx = -best_dx;
last_dy = -best_dy;
last_dz = -best_dz;
}
else
{
// reduce the step size
step_length *= 0.5f;
//++step_count;
// reset the last_*'s
last_dx = 2; // 2 is out of bounds --> no match
last_dy = 2;
last_dz = 2;
}
}
// HACK -- it is possible to get enough floating point error for the
// bounding sphere to too small on the order of 10e-6, but we only need
// it to be accurate to within about half a millimeter
bounding_radius += half_milimeter;
// this algorithm can get relatively inaccurate when the sphere
// collection is 'small' (contained within a bounding sphere of about
// 2 meters or less)
// TODO -- fix this
/* debug code
{
std::vector<LLSphere>::const_iterator sphere_itr;
for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr)
{
F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius();
if (radius + 0.1f > bounding_radius)
{
std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl;
}
}
std::cout << "\n" << std::endl;
}
*/
bounding_sphere.set(bounding_center, bounding_radius);
}
return bounding_sphere;
}
|