1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
/**
* @file llplane.h
*
* Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#ifndef LL_LLPLANE_H
#define LL_LLPLANE_H
#include "v3math.h"
#include "v4math.h"
// A simple way to specify a plane is to give its normal,
// and it's nearest approach to the origin.
//
// Given the equation for a plane : A*x + B*y + C*z + D = 0
// The plane normal = [A, B, C]
// The closest approach = D / sqrt(A*A + B*B + C*C)
class LLPlane : public LLVector4
{
public:
LLPlane() {}; // no default constructor
LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); }
LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); }
void setVec(const LLVector3 &p0, F32 d) { LLVector4::setVec(p0[0], p0[1], p0[2], d); }
void setVec(const LLVector3 &p0, const LLVector3 &n)
{
F32 d = -(p0 * n);
setVec(n, d);
}
void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2)
{
LLVector3 u, v, w;
u = p1 - p0;
v = p2 - p0;
w = u % v;
w.normVec();
F32 d = -(w * p0);
setVec(w, d);
}
LLPlane& operator=(const LLVector4& v2) { LLVector4::setVec(v2[0],v2[1],v2[2],v2[3]); return *this;}
F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; }
};
#endif // LL_LLPLANE_H
|