summaryrefslogtreecommitdiff
path: root/indra/llmath/llplane.h
blob: 0db1d31d80cb5564b79851611eec38fde35e913e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/** 
 * @file llplane.h
 *
 * Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
 * $License$
 */

#ifndef LL_LLPLANE_H
#define LL_LLPLANE_H

#include "v3math.h"
#include "v4math.h"

// A simple way to specify a plane is to give its normal,
// and it's nearest approach to the origin.
// 
// Given the equation for a plane : A*x + B*y + C*z + D = 0
// The plane normal = [A, B, C]
// The closest approach = D / sqrt(A*A + B*B + C*C)

class LLPlane : public LLVector4
{
public:
	LLPlane() {}; // no default constructor
	LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); }
	LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); }
	void setVec(const LLVector3 &p0, F32 d) { LLVector4::setVec(p0[0], p0[1], p0[2], d); }
	void setVec(const LLVector3 &p0, const LLVector3 &n)
	{
		F32 d = -(p0 * n);
		setVec(n, d);
	}
	void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2)
	{
		LLVector3 u, v, w;
		u = p1 - p0;
		v = p2 - p0;
		w = u % v;
		w.normVec();
		F32 d = -(w * p0);
		setVec(w, d);
	}
	LLPlane& operator=(const LLVector4& v2) {  LLVector4::setVec(v2[0],v2[1],v2[2],v2[3]); return *this;}
	F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; }
};



#endif // LL_LLPLANE_H