1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
/**
* @file llsingleton_test.cpp
* @date 2011-08-11
* @brief Unit test for the LLSingleton class
*
* $LicenseInfo:firstyear=2011&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2011, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llunit.h"
#include "../test/lltut.h"
namespace LLUnits
{
// using powers of 2 to allow strict floating point equality
LL_DECLARE_BASE_UNIT(Quatloos, "Quat");
LL_DECLARE_DERIVED_UNIT(Quatloos, * 4, Latinum, "Lat");
LL_DECLARE_DERIVED_UNIT(Latinum, / 16, Solari, "Sol");
}
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Quatloos);
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Latinum);
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Solari);
namespace tut
{
using namespace LLUnits;
struct units
{
};
typedef test_group<units> units_t;
typedef units_t::object units_object_t;
tut::units_t tut_singleton("LLUnit");
// storage type conversions
template<> template<>
void units_object_t::test<1>()
{
LLUnit<F32, Quatloos> float_quatloos;
ensure("default float unit is zero", float_quatloos == F32Quatloos(0.f));
LLUnit<F32, Quatloos> float_initialize_quatloos(1);
ensure("non-zero initialized unit", float_initialize_quatloos == F32Quatloos(1.f));
LLUnit<S32, Quatloos> int_quatloos;
ensure("default int unit is zero", int_quatloos == S32Quatloos(0));
int_quatloos = S32Quatloos(42);
ensure("int assignment is preserved", int_quatloos == S32Quatloos(42));
float_quatloos = int_quatloos;
ensure("float assignment from int preserves value", float_quatloos == F32Quatloos(42.f));
int_quatloos = float_quatloos;
ensure("int assignment from float preserves value", int_quatloos == S32Quatloos(42));
float_quatloos = F32Quatloos(42.1f);
int_quatloos = float_quatloos;
ensure("int units truncate float units on assignment", int_quatloos == S32Quatloos(42));
LLUnit<U32, Quatloos> unsigned_int_quatloos(float_quatloos);
ensure("unsigned int can be initialized from signed int", unsigned_int_quatloos == S32Quatloos(42));
S32Solari int_solari(1);
float_quatloos = int_solari;
ensure("fractional units are preserved in conversion from integer to float type", float_quatloos == F32Quatloos(0.25f));
int_quatloos = S32Quatloos(1);
F32Solari float_solari = int_quatloos;
ensure("can convert with fractional intermediates from integer to float type", float_solari == F32Solari(4.f));
}
// conversions to/from base unit
template<> template<>
void units_object_t::test<2>()
{
LLUnit<F32, Quatloos> quatloos(1.f);
LLUnit<F32, Latinum> latinum_bars(quatloos);
ensure("conversion between units is automatic via initialization", latinum_bars == F32Latinum(1.f / 4.f));
latinum_bars = S32Latinum(256);
quatloos = latinum_bars;
ensure("conversion between units is automatic via assignment, and bidirectional", quatloos == S32Quatloos(1024));
LLUnit<S32, Quatloos> single_quatloo(1);
LLUnit<F32, Latinum> quarter_latinum = single_quatloo;
ensure("division of integer unit preserves fractional values when converted to float unit", quarter_latinum == F32Latinum(0.25f));
}
// conversions across non-base units
template<> template<>
void units_object_t::test<3>()
{
LLUnit<F32, Quatloos> quatloos(1024);
LLUnit<F32, Solari> solari(quatloos);
ensure("conversions can work between indirectly related units: Quatloos -> Latinum -> Solari", solari == S32Solari(4096));
LLUnit<F32, Latinum> latinum_bars = solari;
ensure("Non base units can be converted between each other", latinum_bars == S32Latinum(256));
}
// math operations
template<> template<>
void units_object_t::test<4>()
{
// exercise math operations
LLUnit<F32, Quatloos> quatloos(1.f);
quatloos *= 4.f;
ensure(quatloos == S32Quatloos(4));
quatloos = quatloos * 2;
ensure(quatloos == S32Quatloos(8));
quatloos = 2.f * quatloos;
ensure(quatloos == S32Quatloos(16));
quatloos += F32Quatloos(4.f);
ensure(quatloos == S32Quatloos(20));
quatloos += S32Quatloos(4);
ensure(quatloos == S32Quatloos(24));
quatloos = quatloos + S32Quatloos(4);
ensure(quatloos == S32Quatloos(28));
quatloos = S32Quatloos(4) + quatloos;
ensure(quatloos == S32Quatloos(32));
quatloos += quatloos * 3;
ensure(quatloos == S32Quatloos(128));
quatloos -= quatloos / 4 * 3;
ensure(quatloos == S32Quatloos(32));
quatloos = quatloos - S32Quatloos(8);
ensure(quatloos == S32Quatloos(24));
quatloos -= S32Quatloos(4);
ensure(quatloos == S32Quatloos(20));
quatloos -= F32Quatloos(4.f);
ensure(quatloos == S32Quatloos(16));
quatloos /= 2.f;
ensure(quatloos == S32Quatloos(8));
quatloos = quatloos / 4;
ensure(quatloos == S32Quatloos(2));
F32 ratio = quatloos / LLUnit<F32, Quatloos>(2.f);
ensure(ratio == 1);
ratio = quatloos / LLUnit<F32, Solari>(8.f);
ensure(ratio == 1);
quatloos += LLUnit<F32, Solari>(8.f);
ensure(quatloos == S32Quatloos(4));
quatloos -= LLUnit<F32, Latinum>(1.f);
ensure(quatloos == S32Quatloos(0));
}
// comparison operators
template<> template<>
void units_object_t::test<5>()
{
LLUnit<S32, Quatloos> quatloos(1);
ensure("can perform less than comparison against same type", quatloos < S32Quatloos(2));
ensure("can perform less than comparison against different storage type", quatloos < F32Quatloos(2.f));
ensure("can perform less than comparison against different units", quatloos < S32Latinum(5));
ensure("can perform less than comparison against different storage type and units", quatloos < F32Latinum(5.f));
ensure("can perform greater than comparison against same type", quatloos > S32Quatloos(0));
ensure("can perform greater than comparison against different storage type", quatloos > F32Quatloos(0.f));
ensure("can perform greater than comparison against different units", quatloos > S32Latinum(0));
ensure("can perform greater than comparison against different storage type and units", quatloos > F32Latinum(0.f));
}
bool accept_explicit_quatloos(S32Quatloos q)
{
return true;
}
bool accept_implicit_quatloos(S32Quatloos q)
{
return true;
}
// signature compatibility
template<> template<>
void units_object_t::test<6>()
{
S32Quatloos quatloos(1);
ensure("can pass unit values as argument", accept_explicit_quatloos(S32Quatloos(1)));
ensure("can pass unit values as argument", accept_explicit_quatloos(quatloos));
}
// implicit units
template<> template<>
void units_object_t::test<7>()
{
LLUnit<F32, Quatloos> quatloos;
LLUnitImplicit<F32, Quatloos> quatloos_implicit = quatloos + S32Quatloos(1);
ensure("can initialize implicit unit from explicit", quatloos_implicit == 1);
quatloos = quatloos_implicit;
ensure("can assign implicit unit to explicit unit", quatloos == S32Quatloos(1));
quatloos += quatloos_implicit;
ensure("can perform math operation using mixture of implicit and explicit units", quatloos == S32Quatloos(2));
// math operations on implicits
quatloos_implicit = 1;
ensure(quatloos_implicit == 1);
quatloos_implicit += 2;
ensure(quatloos_implicit == 3);
quatloos_implicit *= 2;
ensure(quatloos_implicit == 6);
quatloos_implicit -= 1;
ensure(quatloos_implicit == 5);
quatloos_implicit /= 5;
ensure(quatloos_implicit == 1);
quatloos_implicit = quatloos_implicit + 3 + quatloos_implicit;
ensure(quatloos_implicit == 5);
quatloos_implicit = 10 - quatloos_implicit - 1;
ensure(quatloos_implicit == 4);
quatloos_implicit = 2 * quatloos_implicit * 2;
ensure(quatloos_implicit == 16);
F32 one_half = quatloos_implicit / (quatloos_implicit * 2);
ensure(one_half == 0.5f);
// implicit conversion to POD
F32 float_val = quatloos_implicit;
ensure("implicit units convert implicitly to regular values", float_val == 16);
S32 int_val = quatloos_implicit;
ensure("implicit units convert implicitly to regular values", int_val == 16);
// conversion of implicits
LLUnitImplicit<F32, Latinum> latinum_implicit(2);
ensure("implicit units of different types are comparable", latinum_implicit * 2 == quatloos_implicit);
}
// precision tests
template<> template<>
void units_object_t::test<8>()
{
U32Bytes max_bytes(U32_MAX);
S32Megabytes mega_bytes = max_bytes;
ensure("max available precision is used when converting units", mega_bytes == (S32Megabytes)4095);
mega_bytes = (S32Megabytes)-5 + (U32Megabytes)1;
ensure("can mix signed and unsigned in units addition", mega_bytes == (S32Megabytes)-4);
mega_bytes = (U32Megabytes)5 + (S32Megabytes)-1;
ensure("can mix unsigned and signed in units addition", mega_bytes == (S32Megabytes)4);
}
}
|