1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
/**
* @file lltracesampler.cpp
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "lltraceaccumulators.h"
#include "lltracethreadrecorder.h"
namespace LLTrace
{
///////////////////////////////////////////////////////////////////////
// AccumulatorBufferGroup
///////////////////////////////////////////////////////////////////////
AccumulatorBufferGroup::AccumulatorBufferGroup()
{}
void AccumulatorBufferGroup::handOffTo(AccumulatorBufferGroup& other)
{
other.mCounts.reset(&mCounts);
other.mSamples.reset(&mSamples);
other.mEvents.reset(&mEvents);
other.mStackTimers.reset(&mStackTimers);
other.mMemStats.reset(&mMemStats);
}
void AccumulatorBufferGroup::makePrimary()
{
mCounts.makePrimary();
mSamples.makePrimary();
mEvents.makePrimary();
mStackTimers.makePrimary();
mMemStats.makePrimary();
ThreadRecorder* thread_recorder = get_thread_recorder().get();
AccumulatorBuffer<TimeBlockAccumulator>& timer_accumulator_buffer = mStackTimers;
// update stacktimer parent pointers
for (S32 i = 0, end_i = mStackTimers.size(); i < end_i; i++)
{
TimeBlockTreeNode* tree_node = thread_recorder->getTimeBlockTreeNode(i);
if (tree_node)
{
timer_accumulator_buffer[i].mParent = tree_node->mParent;
}
}
}
//static
void AccumulatorBufferGroup::clearPrimary()
{
AccumulatorBuffer<CountAccumulator>::clearPrimary();
AccumulatorBuffer<SampleAccumulator>::clearPrimary();
AccumulatorBuffer<EventAccumulator>::clearPrimary();
AccumulatorBuffer<TimeBlockAccumulator>::clearPrimary();
AccumulatorBuffer<MemStatAccumulator>::clearPrimary();
}
bool AccumulatorBufferGroup::isPrimary() const
{
return mCounts.isPrimary();
}
void AccumulatorBufferGroup::append( const AccumulatorBufferGroup& other )
{
mCounts.addSamples(other.mCounts, SEQUENTIAL);
mSamples.addSamples(other.mSamples, SEQUENTIAL);
mEvents.addSamples(other.mEvents, SEQUENTIAL);
mMemStats.addSamples(other.mMemStats, SEQUENTIAL);
mStackTimers.addSamples(other.mStackTimers, SEQUENTIAL);
}
void AccumulatorBufferGroup::merge( const AccumulatorBufferGroup& other)
{
mCounts.addSamples(other.mCounts, NON_SEQUENTIAL);
mSamples.addSamples(other.mSamples, NON_SEQUENTIAL);
mEvents.addSamples(other.mEvents, NON_SEQUENTIAL);
mMemStats.addSamples(other.mMemStats, NON_SEQUENTIAL);
// for now, hold out timers from merge, need to be displayed per thread
//mStackTimers.addSamples(other.mStackTimers, NON_SEQUENTIAL);
}
void AccumulatorBufferGroup::reset(AccumulatorBufferGroup* other)
{
mCounts.reset(other ? &other->mCounts : NULL);
mSamples.reset(other ? &other->mSamples : NULL);
mEvents.reset(other ? &other->mEvents : NULL);
mStackTimers.reset(other ? &other->mStackTimers : NULL);
mMemStats.reset(other ? &other->mMemStats : NULL);
}
void AccumulatorBufferGroup::sync()
{
if (isPrimary())
{
F64SecondsImplicit time_stamp = LLTimer::getTotalSeconds();
mSamples.sync(time_stamp);
mMemStats.sync(time_stamp);
}
}
void SampleAccumulator::addSamples( const SampleAccumulator& other, EBufferAppendType append_type )
{
if (!mHasValue)
{
*this = other;
if (append_type == NON_SEQUENTIAL)
{
// restore own last value state
mLastValue = NaN;
mHasValue = false;
}
}
else if (other.mHasValue)
{
mSum += other.mSum;
if (other.mMin < mMin) { mMin = other.mMin; }
if (other.mMax > mMax) { mMax = other.mMax; }
F64 epsilon = 0.0000001;
if (other.mTotalSamplingTime > epsilon)
{
// combine variance (and hence standard deviation) of 2 different sized sample groups using
// the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm
F64 n_1 = mTotalSamplingTime,
n_2 = other.mTotalSamplingTime;
F64 m_1 = mMean,
m_2 = other.mMean;
F64 v_1 = mSumOfSquares / mTotalSamplingTime,
v_2 = other.mSumOfSquares / other.mTotalSamplingTime;
if (n_1 < epsilon)
{
mSumOfSquares = other.mSumOfSquares;
}
else
{
mSumOfSquares = mTotalSamplingTime
* ((((n_1 - epsilon) * v_1)
+ ((n_2 - epsilon) * v_2)
+ (((n_1 * n_2) / (n_1 + n_2))
* ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2))))
/ (n_1 + n_2 - epsilon));
}
F64 weight = mTotalSamplingTime / (mTotalSamplingTime + other.mTotalSamplingTime);
mNumSamples += other.mNumSamples;
mTotalSamplingTime += other.mTotalSamplingTime;
mMean = (mMean * weight) + (other.mMean * (1.0 - weight));
llassert(mMean < 0 || mMean >= 0);
}
if (append_type == SEQUENTIAL)
{
mLastValue = other.mLastValue;
mLastSampleTimeStamp = other.mLastSampleTimeStamp;
}
}
}
void SampleAccumulator::reset( const SampleAccumulator* other )
{
mLastValue = other ? other->mLastValue : NaN;
mHasValue = other ? other->mHasValue : false;
mNumSamples = 0;
mSum = 0;
mMin = mLastValue;
mMax = mLastValue;
mMean = mLastValue;
LL_ERRS_IF(mHasValue && !(mMean < 0) && !(mMean >= 0)) << "Invalid mean after capturing value" << LL_ENDL;
mSumOfSquares = 0;
mLastSampleTimeStamp = LLTimer::getTotalSeconds();
mTotalSamplingTime = 0;
}
void EventAccumulator::addSamples( const EventAccumulator& other, EBufferAppendType append_type )
{
if (other.mNumSamples)
{
if (!mNumSamples)
{
*this = other;
}
else
{
mSum += other.mSum;
// NOTE: both conditions will hold first time through
if (other.mMin < mMin) { mMin = other.mMin; }
if (other.mMax > mMax) { mMax = other.mMax; }
// combine variance (and hence standard deviation) of 2 different sized sample groups using
// the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm
F64 n_1 = (F64)mNumSamples,
n_2 = (F64)other.mNumSamples;
F64 m_1 = mMean,
m_2 = other.mMean;
F64 v_1 = mSumOfSquares / mNumSamples,
v_2 = other.mSumOfSquares / other.mNumSamples;
mSumOfSquares = (F64)mNumSamples
* ((((n_1 - 1.f) * v_1)
+ ((n_2 - 1.f) * v_2)
+ (((n_1 * n_2) / (n_1 + n_2))
* ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2))))
/ (n_1 + n_2 - 1.f));
F64 weight = (F64)mNumSamples / (F64)(mNumSamples + other.mNumSamples);
mNumSamples += other.mNumSamples;
mMean = mMean * weight + other.mMean * (1.f - weight);
if (append_type == SEQUENTIAL) mLastValue = other.mLastValue;
}
}
}
void EventAccumulator::reset( const EventAccumulator* other )
{
mNumSamples = 0;
mSum = NaN;
mMin = NaN;
mMax = NaN;
mMean = NaN;
mSumOfSquares = 0;
mLastValue = other ? other->mLastValue : NaN;
}
}
|