1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
/**
* @file llskiplist.h
* @brief skip list implementation
*
* Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#ifndef LL_LLSKIPLIST_H
#define LL_LLSKIPLIST_H
#include "llerror.h"
//#include "vmath.h"
// NOTA BENE: Insert first needs to be < NOT <=
template <class DATA_TYPE, S32 BINARY_DEPTH = 10>
class LLSkipList
{
public:
typedef BOOL (*compare)(const DATA_TYPE& first, const DATA_TYPE& second);
typedef compare insert_func;
typedef compare equals_func;
void init();
// basic constructor
LLSkipList();
// basic constructor including sorter
LLSkipList(insert_func insert_first, equals_func equals);
~LLSkipList();
inline void setInsertFirst(insert_func insert_first);
inline void setEquals(equals_func equals);
inline BOOL addData(const DATA_TYPE& data);
inline BOOL checkData(const DATA_TYPE& data);
// returns number of items in the list
inline S32 getLength() const; // NOT a constant time operation, traverses entire list!
inline BOOL moveData(const DATA_TYPE& data, LLSkipList *newlist);
inline BOOL removeData(const DATA_TYPE& data);
// remove all nodes from the list but do not delete data
inline void removeAllNodes();
// place mCurrentp on first node
inline void resetList();
// return the data currently pointed to, set mCurentOperatingp to that node and bump mCurrentp
inline DATA_TYPE getCurrentData();
// same as getCurrentData() but a more intuitive name for the operation
inline DATA_TYPE getNextData();
// remove the Node at mCurentOperatingp
// leave mCurrentp and mCurentOperatingp on the next entry
inline void removeCurrentData();
// reset the list and return the data currently pointed to, set mCurentOperatingp to that node and bump mCurrentp
inline DATA_TYPE getFirstData();
class LLSkipNode
{
public:
LLSkipNode()
: mData(0)
{
S32 i;
for (i = 0; i < BINARY_DEPTH; i++)
{
mForward[i] = NULL;
}
}
LLSkipNode(DATA_TYPE data)
: mData(data)
{
S32 i;
for (i = 0; i < BINARY_DEPTH; i++)
{
mForward[i] = NULL;
}
}
~LLSkipNode()
{
}
DATA_TYPE mData;
LLSkipNode *mForward[BINARY_DEPTH];
private:
// Disallow copying of LLSkipNodes by not implementing these methods.
LLSkipNode(const LLSkipNode &);
LLSkipNode &operator=(const LLSkipNode &);
};
static BOOL defaultEquals(const DATA_TYPE& first, const DATA_TYPE& second)
{
return first == second;
}
private:
LLSkipNode mHead;
LLSkipNode *mUpdate[BINARY_DEPTH];
LLSkipNode *mCurrentp;
LLSkipNode *mCurrentOperatingp;
S32 mLevel;
insert_func mInsertFirst;
equals_func mEquals;
private:
// Disallow copying of LLSkipNodes by not implementing these methods.
LLSkipList(const LLSkipList &);
LLSkipList &operator=(const LLSkipList &);
};
///////////////////////
//
// Implementation
//
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline void LLSkipList<DATA_TYPE, BINARY_DEPTH>::init()
{
if (BINARY_DEPTH < 2)
{
llerrs << "Trying to create skip list with too little depth, "
"must be 2 or greater" << llendl;
}
S32 i;
for (i = 0; i < BINARY_DEPTH; i++)
{
mHead.mForward[i] = NULL;
mUpdate[i] = NULL;
}
mLevel = 1;
mCurrentp = *(mHead.mForward);
mCurrentOperatingp = *(mHead.mForward);
}
// basic constructor
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline LLSkipList<DATA_TYPE, BINARY_DEPTH>::LLSkipList()
: mInsertFirst(NULL),
mEquals(defaultEquals)
{
init();
}
// basic constructor including sorter
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline LLSkipList<DATA_TYPE, BINARY_DEPTH>::LLSkipList(insert_func insert,
equals_func equals)
: mInsertFirst(insert),
mEquals(equals)
{
init();
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline LLSkipList<DATA_TYPE, BINARY_DEPTH>::~LLSkipList()
{
removeAllNodes();
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline void LLSkipList<DATA_TYPE, BINARY_DEPTH>::setInsertFirst(insert_func insert_first)
{
mInsertFirst = insert_first;
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline void LLSkipList<DATA_TYPE, BINARY_DEPTH>::setEquals(equals_func equals)
{
mEquals = equals;
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline BOOL LLSkipList<DATA_TYPE, BINARY_DEPTH>::addData(const DATA_TYPE& data)
{
S32 level;
LLSkipNode *current = &mHead;
LLSkipNode *temp;
// find the pointer one in front of the one we want
if (mInsertFirst)
{
for (level = mLevel - 1; level >= 0; level--)
{
temp = *(current->mForward + level);
while ( (temp)
&&(mInsertFirst(temp->mData, data)))
{
current = temp;
temp = *(current->mForward + level);
}
*(mUpdate + level) = current;
}
}
else
{
for (level = mLevel - 1; level >= 0; level--)
{
temp = *(current->mForward + level);
while ( (temp)
&&(temp->mData < data))
{
current = temp;
temp = *(current->mForward + level);
}
*(mUpdate + level) = current;
}
}
// we're now just in front of where we want to be . . . take one step forward
current = *current->mForward;
// now add the new node
S32 newlevel;
for (newlevel = 1; newlevel <= mLevel && newlevel < BINARY_DEPTH; newlevel++)
{
if (ll_frand() < 0.5f)
break;
}
LLSkipNode *snode = new LLSkipNode(data);
if (newlevel > mLevel)
{
mHead.mForward[mLevel] = NULL;
mUpdate[mLevel] = &mHead;
mLevel = newlevel;
}
for (level = 0; level < newlevel; level++)
{
snode->mForward[level] = mUpdate[level]->mForward[level];
mUpdate[level]->mForward[level] = snode;
}
return TRUE;
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline BOOL LLSkipList<DATA_TYPE, BINARY_DEPTH>::checkData(const DATA_TYPE& data)
{
S32 level;
LLSkipNode *current = &mHead;
LLSkipNode *temp;
// find the pointer one in front of the one we want
if (mInsertFirst)
{
for (level = mLevel - 1; level >= 0; level--)
{
temp = *(current->mForward + level);
while ( (temp)
&&(mInsertFirst(temp->mData, data)))
{
current = temp;
temp = *(current->mForward + level);
}
*(mUpdate + level) = current;
}
}
else
{
for (level = mLevel - 1; level >= 0; level--)
{
temp = *(current->mForward + level);
while ( (temp)
&&(temp->mData < data))
{
current = temp;
temp = *(current->mForward + level);
}
*(mUpdate + level) = current;
}
}
// we're now just in front of where we want to be . . . take one step forward
current = *current->mForward;
if (current)
{
return mEquals(current->mData, data);
}
return FALSE;
}
// returns number of items in the list
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline S32 LLSkipList<DATA_TYPE, BINARY_DEPTH>::getLength() const
{
U32 length = 0;
for (LLSkipNode* temp = *(mHead.mForward); temp != NULL; temp = temp->mForward[0])
{
length++;
}
return length;
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline BOOL LLSkipList<DATA_TYPE, BINARY_DEPTH>::moveData(const DATA_TYPE& data, LLSkipList *newlist)
{
BOOL removed = removeData(data);
BOOL added = newlist->addData(data);
return removed && added;
}
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline BOOL LLSkipList<DATA_TYPE, BINARY_DEPTH>::removeData(const DATA_TYPE& data)
{
S32 level;
LLSkipNode *current = &mHead;
LLSkipNode *temp;
// find the pointer one in front of the one we want
if (mInsertFirst)
{
for (level = mLevel - 1; level >= 0; level--)
{
temp = *(current->mForward + level);
while ( (temp)
&&(mInsertFirst(temp->mData, data)))
{
current = temp;
temp = *(current->mForward + level);
}
*(mUpdate + level) = current;
}
}
else
{
for (level = mLevel - 1; level >= 0; level--)
{
temp = *(current->mForward + level);
while ( (temp)
&&(temp->mData < data))
{
current = temp;
temp = *(current->mForward + level);
}
*(mUpdate + level) = current;
}
}
// we're now just in front of where we want to be . . . take one step forward
current = *current->mForward;
if (!current)
{
// empty list or beyond the end!
return FALSE;
}
// is this the one we want?
if (!mEquals(current->mData, data))
{
// nope!
return FALSE;
}
else
{
// do we need to fix current or currentop?
if (current == mCurrentp)
{
mCurrentp = current->mForward[0];
}
if (current == mCurrentOperatingp)
{
mCurrentOperatingp = current->mForward[0];
}
// yes it is! change pointers as required
for (level = 0; level < mLevel; level++)
{
if (mUpdate[level]->mForward[level] != current)
{
// cool, we've fixed all the pointers!
break;
}
mUpdate[level]->mForward[level] = current->mForward[level];
}
// clean up cuurent
delete current;
// clean up mHead
while ( (mLevel > 1)
&&(!mHead.mForward[mLevel - 1]))
{
mLevel--;
}
}
return TRUE;
}
// remove all nodes from the list but do not delete data
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline void LLSkipList<DATA_TYPE, BINARY_DEPTH>::removeAllNodes()
{
LLSkipNode *temp;
// reset mCurrentp
mCurrentp = *(mHead.mForward);
while (mCurrentp)
{
temp = mCurrentp->mForward[0];
delete mCurrentp;
mCurrentp = temp;
}
S32 i;
for (i = 0; i < BINARY_DEPTH; i++)
{
mHead.mForward[i] = NULL;
mUpdate[i] = NULL;
}
mCurrentp = *(mHead.mForward);
mCurrentOperatingp = *(mHead.mForward);
}
// place mCurrentp on first node
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline void LLSkipList<DATA_TYPE, BINARY_DEPTH>::resetList()
{
mCurrentp = *(mHead.mForward);
mCurrentOperatingp = *(mHead.mForward);
}
// return the data currently pointed to, set mCurentOperatingp to that node and bump mCurrentp
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline DATA_TYPE LLSkipList<DATA_TYPE, BINARY_DEPTH>::getCurrentData()
{
if (mCurrentp)
{
mCurrentOperatingp = mCurrentp;
mCurrentp = mCurrentp->mForward[0];
return mCurrentOperatingp->mData;
}
else
{
//return NULL; // causes compile warning
return (DATA_TYPE)0; // equivalent, but no warning
}
}
// same as getCurrentData() but a more intuitive name for the operation
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline DATA_TYPE LLSkipList<DATA_TYPE, BINARY_DEPTH>::getNextData()
{
if (mCurrentp)
{
mCurrentOperatingp = mCurrentp;
mCurrentp = mCurrentp->mForward[0];
return mCurrentOperatingp->mData;
}
else
{
//return NULL; // causes compile warning
return (DATA_TYPE)0; // equivalent, but no warning
}
}
// remove the Node at mCurentOperatingp
// leave mCurrentp and mCurentOperatingp on the next entry
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline void LLSkipList<DATA_TYPE, BINARY_DEPTH>::removeCurrentData()
{
if (mCurrentOperatingp)
{
removeData(mCurrentOperatingp->mData);
}
}
// reset the list and return the data currently pointed to, set mCurentOperatingp to that node and bump mCurrentp
template <class DATA_TYPE, S32 BINARY_DEPTH>
inline DATA_TYPE LLSkipList<DATA_TYPE, BINARY_DEPTH>::getFirstData()
{
mCurrentp = *(mHead.mForward);
mCurrentOperatingp = *(mHead.mForward);
if (mCurrentp)
{
mCurrentOperatingp = mCurrentp;
mCurrentp = mCurrentp->mForward[0];
return mCurrentOperatingp->mData;
}
else
{
//return NULL; // causes compile warning
return (DATA_TYPE)0; // equivalent, but no warning
}
}
#endif
|