1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
/**
* @file llfasttimer_class.cpp
* @brief Implementation of the fast timer.
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llfasttimer.h"
#include "llmemory.h"
#include "llprocessor.h"
#include "llsingleton.h"
#include "lltreeiterators.h"
#include "llsdserialize.h"
#include <boost/bind.hpp>
#if LL_WINDOWS
#include "lltimer.h"
#elif LL_LINUX || LL_SOLARIS
#include <sys/time.h>
#include <sched.h>
#include "lltimer.h"
#elif LL_DARWIN
#include <sys/time.h>
#include "lltimer.h" // get_clock_count()
#else
#error "architecture not supported"
#endif
//////////////////////////////////////////////////////////////////////////////
// statics
S32 LLFastTimer::sCurFrameIndex = -1;
S32 LLFastTimer::sLastFrameIndex = -1;
U64 LLFastTimer::sLastFrameTime = LLFastTimer::getCPUClockCount64();
bool LLFastTimer::sPauseHistory = 0;
bool LLFastTimer::sResetHistory = 0;
LLFastTimer::CurTimerData LLFastTimer::sCurTimerData;
BOOL LLFastTimer::sLog = FALSE;
std::string LLFastTimer::sLogName = "";
BOOL LLFastTimer::sMetricLog = FALSE;
LLMutex* LLFastTimer::sLogLock = NULL;
std::queue<LLSD> LLFastTimer::sLogQueue;
#define USE_RDTSC 0
#if LL_LINUX || LL_SOLARIS
U64 LLFastTimer::sClockResolution = 1000000000; // Nanosecond resolution
#else
U64 LLFastTimer::sClockResolution = 1000000; // Microsecond resolution
#endif
std::vector<LLFastTimer::FrameState>* LLFastTimer::sTimerInfos = NULL;
U64 LLFastTimer::sTimerCycles = 0;
U32 LLFastTimer::sTimerCalls = 0;
// FIXME: move these declarations to the relevant modules
// helper functions
typedef LLTreeDFSPostIter<LLFastTimer::NamedTimer, LLFastTimer::NamedTimer::child_const_iter> timer_tree_bottom_up_iterator_t;
static timer_tree_bottom_up_iterator_t begin_timer_tree_bottom_up(LLFastTimer::NamedTimer& id)
{
return timer_tree_bottom_up_iterator_t(&id,
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1),
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1));
}
static timer_tree_bottom_up_iterator_t end_timer_tree_bottom_up()
{
return timer_tree_bottom_up_iterator_t();
}
typedef LLTreeDFSIter<LLFastTimer::NamedTimer, LLFastTimer::NamedTimer::child_const_iter> timer_tree_dfs_iterator_t;
static timer_tree_dfs_iterator_t begin_timer_tree(LLFastTimer::NamedTimer& id)
{
return timer_tree_dfs_iterator_t(&id,
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1),
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1));
}
static timer_tree_dfs_iterator_t end_timer_tree()
{
return timer_tree_dfs_iterator_t();
}
// factory class that creates NamedTimers via static DeclareTimer objects
class NamedTimerFactory : public LLSingleton<NamedTimerFactory>
{
public:
NamedTimerFactory()
: mActiveTimerRoot(NULL),
mTimerRoot(NULL),
mAppTimer(NULL),
mRootFrameState(NULL)
{}
/*virtual */ void initSingleton()
{
mTimerRoot = new LLFastTimer::NamedTimer("root");
mActiveTimerRoot = new LLFastTimer::NamedTimer("Frame");
mActiveTimerRoot->setCollapsed(false);
mRootFrameState = new LLFastTimer::FrameState(mActiveTimerRoot);
mRootFrameState->mParent = &mTimerRoot->getFrameState();
mActiveTimerRoot->setParent(mTimerRoot);
mAppTimer = new LLFastTimer(mRootFrameState);
}
~NamedTimerFactory()
{
std::for_each(mTimers.begin(), mTimers.end(), DeletePairedPointer());
delete mAppTimer;
delete mActiveTimerRoot;
delete mTimerRoot;
delete mRootFrameState;
}
LLFastTimer::NamedTimer& createNamedTimer(const std::string& name)
{
timer_map_t::iterator found_it = mTimers.find(name);
if (found_it != mTimers.end())
{
return *found_it->second;
}
LLFastTimer::NamedTimer* timer = new LLFastTimer::NamedTimer(name);
timer->setParent(mTimerRoot);
mTimers.insert(std::make_pair(name, timer));
return *timer;
}
LLFastTimer::NamedTimer* getTimerByName(const std::string& name)
{
timer_map_t::iterator found_it = mTimers.find(name);
if (found_it != mTimers.end())
{
return found_it->second;
}
return NULL;
}
LLFastTimer::NamedTimer* getActiveRootTimer() { return mActiveTimerRoot; }
LLFastTimer::NamedTimer* getRootTimer() { return mTimerRoot; }
const LLFastTimer* getAppTimer() { return mAppTimer; }
LLFastTimer::FrameState& getRootFrameState() { return *mRootFrameState; }
typedef std::map<std::string, LLFastTimer::NamedTimer*> timer_map_t;
timer_map_t::iterator beginTimers() { return mTimers.begin(); }
timer_map_t::iterator endTimers() { return mTimers.end(); }
S32 timerCount() { return mTimers.size(); }
private:
timer_map_t mTimers;
LLFastTimer::NamedTimer* mActiveTimerRoot;
LLFastTimer::NamedTimer* mTimerRoot;
LLFastTimer* mAppTimer;
LLFastTimer::FrameState* mRootFrameState;
};
void update_cached_pointers_if_changed()
{
// detect when elements have moved and update cached pointers
static LLFastTimer::FrameState* sFirstTimerAddress = NULL;
if (&*(LLFastTimer::getFrameStateList().begin()) != sFirstTimerAddress)
{
LLFastTimer::DeclareTimer::updateCachedPointers();
}
sFirstTimerAddress = &*(LLFastTimer::getFrameStateList().begin());
}
LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name, bool open )
: mTimer(NamedTimerFactory::instance().createNamedTimer(name))
{
mTimer.setCollapsed(!open);
mFrameState = &mTimer.getFrameState();
update_cached_pointers_if_changed();
}
LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name)
: mTimer(NamedTimerFactory::instance().createNamedTimer(name))
{
mFrameState = &mTimer.getFrameState();
update_cached_pointers_if_changed();
}
// static
void LLFastTimer::DeclareTimer::updateCachedPointers()
{
DeclareTimer::LLInstanceTrackerScopedGuard guard;
// propagate frame state pointers to timer declarations
for (DeclareTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
// update cached pointer
it->mFrameState = &it->mTimer.getFrameState();
}
// also update frame states of timers on stack
LLFastTimer* cur_timerp = LLFastTimer::sCurTimerData.mCurTimer;
while(cur_timerp->mLastTimerData.mCurTimer != cur_timerp)
{
cur_timerp->mFrameState = &cur_timerp->mFrameState->mTimer->getFrameState();
cur_timerp = cur_timerp->mLastTimerData.mCurTimer;
}
}
//static
#if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer
{
return sClockResolution >> 8;
}
#else // windows or x86-mac or x86-linux or x86-solaris
U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer
{
#if USE_RDTSC || !LL_WINDOWS
//getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz
static U64 sCPUClockFrequency = U64(LLProcessorInfo().getCPUFrequency()*1000000.0);
// we drop the low-order byte in our timers, so report a lower frequency
#else
// If we're not using RDTSC, each fasttimer tick is just a performance counter tick.
// Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency())
// since that would change displayed MHz stats for CPUs
static bool firstcall = true;
static U64 sCPUClockFrequency;
if (firstcall)
{
QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency);
firstcall = false;
}
#endif
return sCPUClockFrequency >> 8;
}
#endif
LLFastTimer::FrameState::FrameState(LLFastTimer::NamedTimer* timerp)
: mActiveCount(0),
mCalls(0),
mSelfTimeCounter(0),
mParent(NULL),
mLastCaller(NULL),
mMoveUpTree(false),
mTimer(timerp)
{}
LLFastTimer::NamedTimer::NamedTimer(const std::string& name)
: mName(name),
mCollapsed(true),
mParent(NULL),
mTotalTimeCounter(0),
mCountAverage(0),
mCallAverage(0),
mNeedsSorting(false)
{
info_list_t& frame_state_list = getFrameStateList();
mFrameStateIndex = frame_state_list.size();
getFrameStateList().push_back(FrameState(this));
mCountHistory = new U32[HISTORY_NUM];
memset(mCountHistory, 0, sizeof(U32) * HISTORY_NUM);
mCallHistory = new U32[HISTORY_NUM];
memset(mCallHistory, 0, sizeof(U32) * HISTORY_NUM);
}
LLFastTimer::NamedTimer::~NamedTimer()
{
delete[] mCountHistory;
delete[] mCallHistory;
}
std::string LLFastTimer::NamedTimer::getToolTip(S32 history_idx)
{
if (history_idx < 0)
{
// by default, show average number of calls
return llformat("%s (%d calls)", getName().c_str(), (S32)getCallAverage());
}
else
{
return llformat("%s (%d calls)", getName().c_str(), (S32)getHistoricalCalls(history_idx));
}
}
void LLFastTimer::NamedTimer::setParent(NamedTimer* parent)
{
llassert_always(parent != this);
llassert_always(parent != NULL);
if (mParent)
{
// subtract our accumulated from previous parent
for (S32 i = 0; i < HISTORY_NUM; i++)
{
mParent->mCountHistory[i] -= mCountHistory[i];
}
// subtract average timing from previous parent
mParent->mCountAverage -= mCountAverage;
std::vector<NamedTimer*>& children = mParent->getChildren();
std::vector<NamedTimer*>::iterator found_it = std::find(children.begin(), children.end(), this);
if (found_it != children.end())
{
children.erase(found_it);
}
}
mParent = parent;
if (parent)
{
getFrameState().mParent = &parent->getFrameState();
parent->getChildren().push_back(this);
parent->mNeedsSorting = true;
}
}
S32 LLFastTimer::NamedTimer::getDepth()
{
S32 depth = 0;
NamedTimer* timerp = mParent;
while(timerp)
{
depth++;
timerp = timerp->mParent;
}
return depth;
}
// static
void LLFastTimer::NamedTimer::processTimes()
{
if (sCurFrameIndex < 0) return;
buildHierarchy();
accumulateTimings();
}
// sort timer info structs by depth first traversal order
struct SortTimersDFS
{
bool operator()(const LLFastTimer::FrameState& i1, const LLFastTimer::FrameState& i2)
{
return i1.mTimer->getFrameStateIndex() < i2.mTimer->getFrameStateIndex();
}
};
// sort child timers by name
struct SortTimerByName
{
bool operator()(const LLFastTimer::NamedTimer* i1, const LLFastTimer::NamedTimer* i2)
{
return i1->getName() < i2->getName();
}
};
//static
void LLFastTimer::NamedTimer::buildHierarchy()
{
if (sCurFrameIndex < 0 ) return;
// set up initial tree
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
if (&timer == NamedTimerFactory::instance().getRootTimer()) continue;
// bootstrap tree construction by attaching to last timer to be on stack
// when this timer was called
if (timer.getFrameState().mLastCaller && timer.mParent == NamedTimerFactory::instance().getRootTimer())
{
timer.setParent(timer.getFrameState().mLastCaller->mTimer);
// no need to push up tree on first use, flag can be set spuriously
timer.getFrameState().mMoveUpTree = false;
}
}
}
// bump timers up tree if they've been flagged as being in the wrong place
// do this in a bottom up order to promote descendants first before promoting ancestors
// this preserves partial order derived from current frame's observations
for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree_bottom_up();
++it)
{
NamedTimer* timerp = *it;
// skip root timer
if (timerp == NamedTimerFactory::instance().getRootTimer()) continue;
if (timerp->getFrameState().mMoveUpTree)
{
// since ancestors have already been visited, reparenting won't affect tree traversal
//step up tree, bringing our descendants with us
//llinfos << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() <<
// " to child of " << timerp->getParent()->getParent()->getName() << llendl;
timerp->setParent(timerp->getParent()->getParent());
timerp->getFrameState().mMoveUpTree = false;
// don't bubble up any ancestors until descendants are done bubbling up
it.skipAncestors();
}
}
// sort timers by time last called, so call graph makes sense
for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree();
++it)
{
NamedTimer* timerp = (*it);
if (timerp->mNeedsSorting)
{
std::sort(timerp->getChildren().begin(), timerp->getChildren().end(), SortTimerByName());
}
timerp->mNeedsSorting = false;
}
}
//static
void LLFastTimer::NamedTimer::accumulateTimings()
{
U32 cur_time = getCPUClockCount32();
// walk up stack of active timers and accumulate current time while leaving timing structures active
LLFastTimer* cur_timer = sCurTimerData.mCurTimer;
// root defined by parent pointing to self
CurTimerData* cur_data = &sCurTimerData;
while(cur_timer->mLastTimerData.mCurTimer != cur_timer)
{
U32 cumulative_time_delta = cur_time - cur_timer->mStartTime;
U32 self_time_delta = cumulative_time_delta - cur_data->mChildTime;
cur_data->mChildTime = 0;
cur_timer->mFrameState->mSelfTimeCounter += self_time_delta;
cur_timer->mStartTime = cur_time;
cur_data = &cur_timer->mLastTimerData;
cur_data->mChildTime += cumulative_time_delta;
cur_timer = cur_timer->mLastTimerData.mCurTimer;
}
// traverse tree in DFS post order, or bottom up
for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getActiveRootTimer());
it != end_timer_tree_bottom_up();
++it)
{
NamedTimer* timerp = (*it);
timerp->mTotalTimeCounter = timerp->getFrameState().mSelfTimeCounter;
for (child_const_iter child_it = timerp->beginChildren(); child_it != timerp->endChildren(); ++child_it)
{
timerp->mTotalTimeCounter += (*child_it)->mTotalTimeCounter;
}
S32 cur_frame = sCurFrameIndex;
if (cur_frame >= 0)
{
// update timer history
int hidx = cur_frame % HISTORY_NUM;
timerp->mCountHistory[hidx] = timerp->mTotalTimeCounter;
timerp->mCountAverage = ((U64)timerp->mCountAverage * cur_frame + timerp->mTotalTimeCounter) / (cur_frame+1);
timerp->mCallHistory[hidx] = timerp->getFrameState().mCalls;
timerp->mCallAverage = ((U64)timerp->mCallAverage * cur_frame + timerp->getFrameState().mCalls) / (cur_frame+1);
}
}
}
// static
void LLFastTimer::NamedTimer::resetFrame()
{
if (sLog)
{ //output current frame counts to performance log
static S32 call_count = 0;
if (call_count % 100 == 0)
{
llinfos << "countsPerSecond (32 bit): " << countsPerSecond() << llendl;
llinfos << "get_clock_count (64 bit): " << get_clock_count() << llendl;
llinfos << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << llendl;
llinfos << "getCPUClockCount32() " << getCPUClockCount32() << llendl;
llinfos << "getCPUClockCount64() " << getCPUClockCount64() << llendl;
llinfos << "elapsed sec " << ((F64)getCPUClockCount64())/((F64)LLProcessorInfo().getCPUFrequency()*1000000.0) << llendl;
}
call_count++;
F64 iclock_freq = 1000.0 / countsPerSecond(); // good place to calculate clock frequency
F64 total_time = 0;
LLSD sd;
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (NamedTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
FrameState& info = timer.getFrameState();
sd[timer.getName()]["Time"] = (LLSD::Real) (info.mSelfTimeCounter*iclock_freq);
sd[timer.getName()]["Calls"] = (LLSD::Integer) info.mCalls;
// computing total time here because getting the root timer's getCountHistory
// doesn't work correctly on the first frame
total_time = total_time + info.mSelfTimeCounter * iclock_freq;
}
}
sd["Total"]["Time"] = (LLSD::Real) total_time;
sd["Total"]["Calls"] = (LLSD::Integer) 1;
{
LLMutexLock lock(sLogLock);
sLogQueue.push(sd);
}
}
// tag timers by position in depth first traversal of tree
S32 index = 0;
for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree();
++it)
{
NamedTimer* timerp = (*it);
timerp->mFrameStateIndex = index;
index++;
llassert_always(timerp->mFrameStateIndex < (S32)getFrameStateList().size());
}
// sort timers by dfs traversal order to improve cache coherency
std::sort(getFrameStateList().begin(), getFrameStateList().end(), SortTimersDFS());
// update pointers into framestatelist now that we've sorted it
DeclareTimer::updateCachedPointers();
// reset for next frame
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (NamedTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
FrameState& info = timer.getFrameState();
info.mSelfTimeCounter = 0;
info.mCalls = 0;
info.mLastCaller = NULL;
info.mMoveUpTree = false;
// update parent pointer in timer state struct
if (timer.mParent)
{
info.mParent = &timer.mParent->getFrameState();
}
}
}
//sTimerCycles = 0;
//sTimerCalls = 0;
}
//static
void LLFastTimer::NamedTimer::reset()
{
resetFrame(); // reset frame data
// walk up stack of active timers and reset start times to current time
// effectively zeroing out any accumulated time
U32 cur_time = getCPUClockCount32();
// root defined by parent pointing to self
CurTimerData* cur_data = &sCurTimerData;
LLFastTimer* cur_timer = cur_data->mCurTimer;
while(cur_timer->mLastTimerData.mCurTimer != cur_timer)
{
cur_timer->mStartTime = cur_time;
cur_data->mChildTime = 0;
cur_data = &cur_timer->mLastTimerData;
cur_timer = cur_data->mCurTimer;
}
// reset all history
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (NamedTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
if (&timer != NamedTimerFactory::instance().getRootTimer())
{
timer.setParent(NamedTimerFactory::instance().getRootTimer());
}
timer.mCountAverage = 0;
timer.mCallAverage = 0;
memset(timer.mCountHistory, 0, sizeof(U32) * HISTORY_NUM);
memset(timer.mCallHistory, 0, sizeof(U32) * HISTORY_NUM);
}
}
sLastFrameIndex = 0;
sCurFrameIndex = 0;
}
//static
LLFastTimer::info_list_t& LLFastTimer::getFrameStateList()
{
if (!sTimerInfos)
{
sTimerInfos = new info_list_t();
}
return *sTimerInfos;
}
U32 LLFastTimer::NamedTimer::getHistoricalCount(S32 history_index) const
{
S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM;
return mCountHistory[history_idx];
}
U32 LLFastTimer::NamedTimer::getHistoricalCalls(S32 history_index ) const
{
S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM;
return mCallHistory[history_idx];
}
LLFastTimer::FrameState& LLFastTimer::NamedTimer::getFrameState() const
{
llassert_always(mFrameStateIndex >= 0);
if (this == NamedTimerFactory::instance().getActiveRootTimer())
{
return NamedTimerFactory::instance().getRootFrameState();
}
return getFrameStateList()[mFrameStateIndex];
}
// static
LLFastTimer::NamedTimer& LLFastTimer::NamedTimer::getRootNamedTimer()
{
return *NamedTimerFactory::instance().getActiveRootTimer();
}
std::vector<LLFastTimer::NamedTimer*>::const_iterator LLFastTimer::NamedTimer::beginChildren()
{
return mChildren.begin();
}
std::vector<LLFastTimer::NamedTimer*>::const_iterator LLFastTimer::NamedTimer::endChildren()
{
return mChildren.end();
}
std::vector<LLFastTimer::NamedTimer*>& LLFastTimer::NamedTimer::getChildren()
{
return mChildren;
}
//static
void LLFastTimer::nextFrame()
{
countsPerSecond(); // good place to calculate clock frequency
U64 frame_time = getCPUClockCount64();
if ((frame_time - sLastFrameTime) >> 8 > 0xffffffff)
{
llinfos << "Slow frame, fast timers inaccurate" << llendl;
}
if (sPauseHistory)
{
sResetHistory = true;
}
else if (sResetHistory)
{
sLastFrameIndex = 0;
sCurFrameIndex = 0;
sResetHistory = false;
}
else // not paused
{
NamedTimer::processTimes();
sLastFrameIndex = sCurFrameIndex++;
}
// get ready for next frame
NamedTimer::resetFrame();
sLastFrameTime = frame_time;
}
//static
void LLFastTimer::dumpCurTimes()
{
// accumulate timings, etc.
NamedTimer::processTimes();
F64 clock_freq = (F64)countsPerSecond();
F64 iclock_freq = 1000.0 / clock_freq; // clock_ticks -> milliseconds
// walk over timers in depth order and output timings
for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree();
++it)
{
NamedTimer* timerp = (*it);
F64 total_time_ms = ((F64)timerp->getHistoricalCount(0) * iclock_freq);
// Don't bother with really brief times, keep output concise
if (total_time_ms < 0.1) continue;
std::ostringstream out_str;
for (S32 i = 0; i < timerp->getDepth(); i++)
{
out_str << "\t";
}
out_str << timerp->getName() << " "
<< std::setprecision(3) << total_time_ms << " ms, "
<< timerp->getHistoricalCalls(0) << " calls";
llinfos << out_str.str() << llendl;
}
}
//static
void LLFastTimer::reset()
{
NamedTimer::reset();
}
//static
void LLFastTimer::writeLog(std::ostream& os)
{
while (!sLogQueue.empty())
{
LLSD& sd = sLogQueue.front();
LLSDSerialize::toXML(sd, os);
LLMutexLock lock(sLogLock);
sLogQueue.pop();
}
}
//static
const LLFastTimer::NamedTimer* LLFastTimer::getTimerByName(const std::string& name)
{
return NamedTimerFactory::instance().getTimerByName(name);
}
LLFastTimer::LLFastTimer(LLFastTimer::FrameState* state)
: mFrameState(state)
{
U32 start_time = getCPUClockCount32();
mStartTime = start_time;
mFrameState->mActiveCount++;
LLFastTimer::sCurTimerData.mCurTimer = this;
LLFastTimer::sCurTimerData.mFrameState = mFrameState;
LLFastTimer::sCurTimerData.mChildTime = 0;
mLastTimerData = LLFastTimer::sCurTimerData;
}
//////////////////////////////////////////////////////////////////////////////
//
// Important note: These implementations must be FAST!
//
#if LL_WINDOWS
//
// Windows implementation of CPU clock
//
//
// NOTE: put back in when we aren't using platform sdk anymore
//
// because MS has different signatures for these functions in winnt.h
// need to rename them to avoid conflicts
//#define _interlockedbittestandset _renamed_interlockedbittestandset
//#define _interlockedbittestandreset _renamed_interlockedbittestandreset
//#include <intrin.h>
//#undef _interlockedbittestandset
//#undef _interlockedbittestandreset
//inline U32 LLFastTimer::getCPUClockCount32()
//{
// U64 time_stamp = __rdtsc();
// return (U32)(time_stamp >> 8);
//}
//
//// return full timer value, *not* shifted by 8 bits
//inline U64 LLFastTimer::getCPUClockCount64()
//{
// return __rdtsc();
//}
// shift off lower 8 bits for lower resolution but longer term timing
// on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing
#if USE_RDTSC
U32 LLFastTimer::getCPUClockCount32()
{
U32 ret_val;
__asm
{
_emit 0x0f
_emit 0x31
shr eax,8
shl edx,24
or eax, edx
mov dword ptr [ret_val], eax
}
return ret_val;
}
// return full timer value, *not* shifted by 8 bits
U64 LLFastTimer::getCPUClockCount64()
{
U64 ret_val;
__asm
{
_emit 0x0f
_emit 0x31
mov eax,eax
mov edx,edx
mov dword ptr [ret_val+4], edx
mov dword ptr [ret_val], eax
}
return ret_val;
}
std::string LLFastTimer::sClockType = "rdtsc";
#else
//LL_COMMON_API U64 get_clock_count(); // in lltimer.cpp
// These use QueryPerformanceCounter, which is arguably fine and also works on amd architectures.
U32 LLFastTimer::getCPUClockCount32()
{
return (U32)(get_clock_count()>>8);
}
U64 LLFastTimer::getCPUClockCount64()
{
return get_clock_count();
}
std::string LLFastTimer::sClockType = "QueryPerformanceCounter";
#endif
#endif
#if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
//
// Linux and Solaris implementation of CPU clock - non-x86.
// This is accurate but SLOW! Only use out of desperation.
//
// Try to use the MONOTONIC clock if available, this is a constant time counter
// with nanosecond resolution (but not necessarily accuracy) and attempts are
// made to synchronize this value between cores at kernel start. It should not
// be affected by CPU frequency. If not available use the REALTIME clock, but
// this may be affected by NTP adjustments or other user activity affecting
// the system time.
U64 LLFastTimer::getCPUClockCount64()
{
struct timespec tp;
#ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time?
if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME
#endif
clock_gettime(CLOCK_REALTIME,&tp);
return (tp.tv_sec*LLFastTimer::sClockResolution)+tp.tv_nsec;
}
U32 LLFastTimer::getCPUClockCount32()
{
return (U32)(LLFastTimer::getCPUClockCount64() >> 8);
}
std::string LLFastTimer::sClockType = "clock_gettime";
#endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
#if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__))
//
// Mac+Linux+Solaris FAST x86 implementation of CPU clock
U32 LLFastTimer::getCPUClockCount32()
{
U64 x;
__asm__ volatile (".byte 0x0f, 0x31": "=A"(x));
return (U32)(x >> 8);
}
U64 LLFastTimer::getCPUClockCount64()
{
U64 x;
__asm__ volatile (".byte 0x0f, 0x31": "=A"(x));
return x;
}
std::string LLFastTimer::sClockType = "rdtsc";
#endif
|