1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
/**
* @file llfasttimer.cpp
* @brief Implementation of the fast timer.
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llfasttimer.h"
#include "llmemory.h"
#include "llprocessor.h"
#include "llsingleton.h"
#include "lltreeiterators.h"
#include "llsdserialize.h"
#include "llunits.h"
#include "llsd.h"
#include "lltracerecording.h"
#include "lltracethreadrecorder.h"
#include <boost/bind.hpp>
#include <queue>
#if LL_WINDOWS
#include "lltimer.h"
#elif LL_LINUX || LL_SOLARIS
#include <sys/time.h>
#include <sched.h>
#include "lltimer.h"
#elif LL_DARWIN
#include <sys/time.h>
#include "lltimer.h" // get_clock_count()
#else
#error "architecture not supported"
#endif
namespace LLTrace
{
//////////////////////////////////////////////////////////////////////////////
// statics
bool BlockTimer::sLog = false;
std::string BlockTimer::sLogName = "";
bool BlockTimer::sMetricLog = false;
#if LL_LINUX || LL_SOLARIS
U64 BlockTimer::sClockResolution = 1000000000; // Nanosecond resolution
#else
U64 BlockTimer::sClockResolution = 1000000; // Microsecond resolution
#endif
static LLMutex* sLogLock = NULL;
static std::queue<LLSD> sLogQueue;
block_timer_tree_df_iterator_t begin_block_timer_tree_df(BlockTimerStatHandle& id)
{
return block_timer_tree_df_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_df_iterator_t end_block_timer_tree_df()
{
return block_timer_tree_df_iterator_t();
}
block_timer_tree_df_post_iterator_t begin_block_timer_tree_df_post(BlockTimerStatHandle& id)
{
return block_timer_tree_df_post_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_df_post_iterator_t end_block_timer_tree_df_post()
{
return block_timer_tree_df_post_iterator_t();
}
block_timer_tree_bf_iterator_t begin_block_timer_tree_bf(BlockTimerStatHandle& id)
{
return block_timer_tree_bf_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_bf_iterator_t end_block_timer_tree_bf()
{
return block_timer_tree_bf_iterator_t();
}
block_timer_tree_df_iterator_t begin_timer_tree(BlockTimerStatHandle& id)
{
return block_timer_tree_df_iterator_t(&id,
boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1),
boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1));
}
block_timer_tree_df_iterator_t end_timer_tree()
{
return block_timer_tree_df_iterator_t();
}
// sort child timers by name
struct SortTimerByName
{
bool operator()(const BlockTimerStatHandle* i1, const BlockTimerStatHandle* i2)
{
return i1->getName() < i2->getName();
}
};
static BlockTimerStatHandle sRootTimer("root", NULL);
BlockTimerStatHandle& BlockTimer::getRootTimeBlock()
{
return sRootTimer;
}
void BlockTimer::pushLog(LLSD log)
{
LLMutexLock lock(sLogLock);
sLogQueue.push(log);
}
void BlockTimer::setLogLock(LLMutex* lock)
{
sLogLock = lock;
}
//static
#if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
U64 BlockTimer::countsPerSecond()
{
return sClockResolution;
}
#else // windows or x86-mac or x86-linux or x86-solaris
U64 BlockTimer::countsPerSecond()
{
#if LL_FASTTIMER_USE_RDTSC || !LL_WINDOWS
//getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz
static LLUnit<U64, LLUnits::Hertz> sCPUClockFrequency = LLProcessorInfo().getCPUFrequency();
return sCPUClockFrequency.value();
#else
// If we're not using RDTSC, each fasttimer tick is just a performance counter tick.
// Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency())
// since that would change displayed MHz stats for CPUs
static bool firstcall = true;
static U64 sCPUClockFrequency;
if (firstcall)
{
QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency);
firstcall = false;
}
return sCPUClockFrequency.value();
#endif
}
#endif
BlockTimerStatHandle::BlockTimerStatHandle(const char* name, const char* description)
: StatType<TimeBlockAccumulator>(name, description)
{}
TimeBlockTreeNode& BlockTimerStatHandle::getTreeNode() const
{
TimeBlockTreeNode* nodep = LLTrace::get_thread_recorder()->getTimeBlockTreeNode(getIndex());
llassert(nodep);
return *nodep;
}
void BlockTimer::bootstrapTimerTree()
{
for (BlockTimerStatHandle::instance_tracker_t::instance_iter it = BlockTimerStatHandle::instance_tracker_t::beginInstances(), end_it = BlockTimerStatHandle::instance_tracker_t::endInstances();
it != end_it;
++it)
{
BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(*it);
if (&timer == &BlockTimer::getRootTimeBlock()) continue;
// bootstrap tree construction by attaching to last timer to be on stack
// when this timer was called
if (timer.getParent() == &BlockTimer::getRootTimeBlock())
{
TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator();
if (accumulator.mLastCaller)
{
timer.setParent(accumulator.mLastCaller);
accumulator.mParent = accumulator.mLastCaller;
}
// no need to push up tree on first use, flag can be set spuriously
accumulator.mMoveUpTree = false;
}
}
}
// bump timers up tree if they have been flagged as being in the wrong place
// do this in a bottom up order to promote descendants first before promoting ancestors
// this preserves partial order derived from current frame's observations
void BlockTimer::incrementalUpdateTimerTree()
{
for(block_timer_tree_df_post_iterator_t it = begin_block_timer_tree_df_post(BlockTimer::getRootTimeBlock());
it != end_block_timer_tree_df_post();
++it)
{
BlockTimerStatHandle* timerp = *it;
// sort timers by time last called, so call graph makes sense
TimeBlockTreeNode& tree_node = timerp->getTreeNode();
if (tree_node.mNeedsSorting)
{
std::sort(tree_node.mChildren.begin(), tree_node.mChildren.end(), SortTimerByName());
}
// skip root timer
if (timerp != &BlockTimer::getRootTimeBlock())
{
TimeBlockAccumulator& accumulator = timerp->getCurrentAccumulator();
if (accumulator.mMoveUpTree)
{
// since ancestors have already been visited, re-parenting won't affect tree traversal
//step up tree, bringing our descendants with us
LL_DEBUGS("FastTimers") << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() <<
" to child of " << timerp->getParent()->getParent()->getName() << LL_ENDL;
timerp->setParent(timerp->getParent()->getParent());
accumulator.mParent = timerp->getParent();
accumulator.mMoveUpTree = false;
// don't bubble up any ancestors until descendants are done bubbling up
// as ancestors may call this timer only on certain paths, so we want to resolve
// child-most block locations before their parents
it.skipAncestors();
}
}
}
}
void BlockTimer::updateTimes()
{
// walk up stack of active timers and accumulate current time while leaving timing structures active
BlockTimerStackRecord* stack_record = LLThreadLocalSingletonPointer<BlockTimerStackRecord>::getInstance();
if (!stack_record) return;
U64 cur_time = getCPUClockCount64();
BlockTimer* cur_timer = stack_record->mActiveTimer;
TimeBlockAccumulator* accumulator = &stack_record->mTimeBlock->getCurrentAccumulator();
while(cur_timer
&& cur_timer->mParentTimerData.mActiveTimer != cur_timer) // root defined by parent pointing to self
{
U64 cumulative_time_delta = cur_time - cur_timer->mStartTime;
cur_timer->mStartTime = cur_time;
accumulator->mTotalTimeCounter += cumulative_time_delta;
accumulator->mSelfTimeCounter += cumulative_time_delta - stack_record->mChildTime;
stack_record->mChildTime = 0;
stack_record = &cur_timer->mParentTimerData;
accumulator = &stack_record->mTimeBlock->getCurrentAccumulator();
cur_timer = stack_record->mActiveTimer;
stack_record->mChildTime += cumulative_time_delta;
}
}
static LLTrace::BlockTimerStatHandle FTM_PROCESS_TIMES("Process FastTimer Times");
// not thread safe, so only call on main thread
//static
void BlockTimer::processTimes()
{
LL_RECORD_BLOCK_TIME(FTM_PROCESS_TIMES);
get_clock_count(); // good place to calculate clock frequency
// set up initial tree
bootstrapTimerTree();
incrementalUpdateTimerTree();
updateTimes();
// reset for next frame
for (BlockTimerStatHandle::instance_tracker_t::instance_iter it = BlockTimerStatHandle::instance_tracker_t::beginInstances(),
end_it = BlockTimerStatHandle::instance_tracker_t::endInstances();
it != end_it;
++it)
{
BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(*it);
TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator();
accumulator.mLastCaller = NULL;
accumulator.mMoveUpTree = false;
}
}
std::vector<BlockTimerStatHandle*>::iterator BlockTimerStatHandle::beginChildren()
{
return getTreeNode().mChildren.begin();
}
std::vector<BlockTimerStatHandle*>::iterator BlockTimerStatHandle::endChildren()
{
return getTreeNode().mChildren.end();
}
std::vector<BlockTimerStatHandle*>& BlockTimerStatHandle::getChildren()
{
return getTreeNode().mChildren;
}
bool BlockTimerStatHandle::hasChildren()
{
return ! getTreeNode().mChildren.empty();
}
// static
void BlockTimer::logStats()
{
// get ready for next frame
if (sLog)
{ //output current frame counts to performance log
static S32 call_count = 0;
if (call_count % 100 == 0)
{
LL_DEBUGS("FastTimers") << "countsPerSecond: " << countsPerSecond() << LL_ENDL;
LL_DEBUGS("FastTimers") << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << LL_ENDL;
LL_DEBUGS("FastTimers") << "getCPUClockCount32() " << getCPUClockCount32() << LL_ENDL;
LL_DEBUGS("FastTimers") << "getCPUClockCount64() " << getCPUClockCount64() << LL_ENDL;
LL_DEBUGS("FastTimers") << "elapsed sec " << ((F64)getCPUClockCount64() / (F64HertzImplicit)LLProcessorInfo().getCPUFrequency()) << LL_ENDL;
}
call_count++;
F64Seconds total_time(0);
LLSD sd;
{
for (BlockTimerStatHandle::instance_tracker_t::instance_iter it = BlockTimerStatHandle::instance_tracker_t::beginInstances(),
end_it = BlockTimerStatHandle::instance_tracker_t::endInstances();
it != end_it;
++it)
{
BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(*it);
LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording();
sd[timer.getName()]["Time"] = (LLSD::Real) (frame_recording.getLastRecording().getSum(timer).value());
sd[timer.getName()]["Calls"] = (LLSD::Integer) (frame_recording.getLastRecording().getSum(timer.callCount()));
// computing total time here because getting the root timer's getCountHistory
// doesn't work correctly on the first frame
total_time += frame_recording.getLastRecording().getSum(timer);
}
}
sd["Total"]["Time"] = (LLSD::Real) total_time.value();
sd["Total"]["Calls"] = (LLSD::Integer) 1;
{
LLMutexLock lock(sLogLock);
sLogQueue.push(sd);
}
}
}
//static
void BlockTimer::dumpCurTimes()
{
LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording();
LLTrace::Recording& last_frame_recording = frame_recording.getLastRecording();
// walk over timers in depth order and output timings
for(block_timer_tree_df_iterator_t it = begin_timer_tree(BlockTimer::getRootTimeBlock());
it != end_timer_tree();
++it)
{
BlockTimerStatHandle* timerp = (*it);
F64Seconds total_time = last_frame_recording.getSum(*timerp);
U32 num_calls = last_frame_recording.getSum(timerp->callCount());
// Don't bother with really brief times, keep output concise
if (total_time < F32Milliseconds(0.1f)) continue;
std::ostringstream out_str;
BlockTimerStatHandle* parent_timerp = timerp;
while(parent_timerp && parent_timerp != parent_timerp->getParent())
{
out_str << "\t";
parent_timerp = parent_timerp->getParent();
}
out_str << timerp->getName() << " "
<< std::setprecision(3) << total_time.valueInUnits<LLUnits::Milliseconds>() << " ms, "
<< num_calls << " calls";
LL_INFOS() << out_str.str() << LL_ENDL;
}
}
//static
void BlockTimer::writeLog(std::ostream& os)
{
while (!sLogQueue.empty())
{
LLSD& sd = sLogQueue.front();
LLSDSerialize::toXML(sd, os);
LLMutexLock lock(sLogLock);
sLogQueue.pop();
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// TimeBlockAccumulator
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TimeBlockAccumulator::TimeBlockAccumulator()
: mTotalTimeCounter(0),
mSelfTimeCounter(0),
mCalls(0),
mLastCaller(NULL),
mActiveCount(0),
mMoveUpTree(false),
mParent(NULL)
{}
void TimeBlockAccumulator::addSamples( const TimeBlockAccumulator& other, EBufferAppendType append_type )
{
// we can't merge two unrelated time block samples, as that will screw with the nested timings
// due to the call hierarchy of each thread
llassert(append_type == SEQUENTIAL);
mTotalTimeCounter += other.mTotalTimeCounter;
mSelfTimeCounter += other.mSelfTimeCounter;
mCalls += other.mCalls;
mLastCaller = other.mLastCaller;
mActiveCount = other.mActiveCount;
mMoveUpTree = other.mMoveUpTree;
mParent = other.mParent;
}
void TimeBlockAccumulator::reset( const TimeBlockAccumulator* other )
{
mCalls = 0;
mSelfTimeCounter = 0;
mTotalTimeCounter = 0;
if (other)
{
mLastCaller = other->mLastCaller;
mActiveCount = other->mActiveCount;
mMoveUpTree = other->mMoveUpTree;
mParent = other->mParent;
}
}
F64Seconds BlockTimer::getElapsedTime()
{
U64 total_time = getCPUClockCount64() - mStartTime;
return F64Seconds((F64)total_time / (F64)BlockTimer::countsPerSecond());
}
} // namespace LLTrace
|