1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
/**
* @file lleventfilter.h
* @author Nat Goodspeed
* @date 2009-03-05
* @brief Define LLEventFilter: LLEventStream subclass with conditions
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#if ! defined(LL_LLEVENTFILTER_H)
#define LL_LLEVENTFILTER_H
#include "llcallbacklist.h"
#include "llevents.h"
#include "llsdutil.h"
#include "lltimer.h"
#include "stdtypes.h"
#include <functional>
class LLDate;
/**
* Generic base class
*/
class LL_COMMON_API LLEventFilter: public LLEventStream
{
public:
/// construct a standalone LLEventFilter
LLEventFilter(const std::string& name="filter", bool tweak=true):
LLEventStream(name, tweak)
{}
/// construct LLEventFilter and connect it to the specified LLEventPump
LLEventFilter(LLEventPump& source, const std::string& name="filter", bool tweak=true);
/// Post an event to all listeners
virtual bool post(const LLSD& event) = 0;
private:
LLTempBoundListener mSource;
};
/**
* Pass through only events matching a specified pattern
*/
class LLEventMatching: public LLEventFilter
{
public:
/// Pass an LLSD map with keys and values the incoming event must match
LLEventMatching(const LLSD& pattern);
/// instantiate and connect
LLEventMatching(LLEventPump& source, const LLSD& pattern);
/// Only pass through events matching the pattern
virtual bool post(const LLSD& event);
private:
LLSD mPattern;
};
/**
* Wait for an event to be posted. If no such event arrives within a specified
* time, take a specified action.
*
* @NOTE: Caution should be taken when using the LLEventTimeout(LLEventPump &)
* constructor to ensure that the upstream event pump is not an LLEventMaildrop
* or any other kind of store and forward pump which may have events outstanding.
* Using this constructor will cause the upstream event pump to fire any pending
* events and could result in the invocation of a virtual method before the timeout
* has been fully constructed. The timeout should instead be constructed separately
* from the event pump and attached using the listen method.
* See llcoro::suspendUntilEventOnWithTimeout() for an example.
*/
class LL_COMMON_API LLEventTimeout: public LLEventFilter
{
public:
/// construct standalone
LLEventTimeout();
/// construct and connect
LLEventTimeout(LLEventPump& source);
/// Callable, can be constructed with boost::bind()
typedef std::function<void()> Action;
/**
* Start countdown timer for the specified number of @a seconds. Forward
* all events. If any event arrives before timer expires, cancel timer. If
* no event arrives before timer expires, take specified @a action.
*
* This is a one-shot timer. Once it has either expired or been canceled,
* it is inert until another call to actionAfter().
*
* Calling actionAfter() while an existing timer is running cheaply
* replaces that original timer. Thus, a valid use case is to detect
* idleness of some event source by calling actionAfter() on each new
* event. A rapid sequence of events will keep the timer from expiring;
* the first gap in events longer than the specified timer will fire the
* specified Action.
*
* Any post() call cancels the timer. To be satisfied with only a
* particular event, chain on an LLEventMatching that only passes such
* events:
*
* @code
* event ultimate
* source ---> LLEventMatching ---> LLEventTimeout ---> listener
* @endcode
*
* @NOTE
* The implementation relies on frequent calls to
* gIdleCallbacks.callFunctions().
*/
void actionAfter(F32 seconds, const Action& action);
/**
* Like actionAfter(), but where the desired Action is LL_ERRS
* termination. Pass the timeout time and the desired LL_ERRS @a message.
*
* This method is useful when, for instance, some async API guarantees an
* event, whether success or failure, within a stated time window.
* Instantiate an LLEventTimeout listening to that API and call
* errorAfter() on each async request with a timeout comfortably longer
* than the API's time guarantee (much longer than the anticipated
* gIdleCallbacks.callFunctions() granularity).
*
* Then if the async API breaks its promise, the program terminates with
* the specified LL_ERRS @a message. The client of the async API can
* therefore assume the guarantee is upheld.
*
* @NOTE
* errorAfter() is implemented in terms of actionAfter(), so all remarks
* about calling actionAfter() also apply to errorAfter().
*/
void errorAfter(F32 seconds, const std::string& message);
/**
* Like actionAfter(), but where the desired Action is a particular event
* for all listeners. Pass the timeout time and the desired @a event data.
*
* Suppose the timeout should only be satisfied by a particular event, but
* the ultimate listener must see all other incoming events as well, plus
* the timeout @a event if any:
*
* @code
* some LLEventMatching LLEventMatching
* event ---> for particular ---> LLEventTimeout ---> for timeout
* source event event \
* \ \ ultimate
* `-----------------------------------------------------> listener
* @endcode
*
* Since a given listener can listen on more than one LLEventPump, we can
* set things up so it sees the set union of events from LLEventTimeout
* and the original event source. However, as LLEventTimeout passes
* through all incoming events, the "particular event" that satisfies the
* left LLEventMatching would reach the ultimate listener twice. So we add
* an LLEventMatching that only passes timeout events.
*
* @NOTE
* eventAfter() is implemented in terms of actionAfter(), so all remarks
* about calling actionAfter() also apply to eventAfter().
*/
void eventAfter(F32 seconds, const LLSD& event);
/// Pass event through, canceling the countdown timer
virtual bool post(const LLSD& event);
/// Cancel timer without event
void cancel();
/// Is this timer currently running?
bool running() const;
private:
// Use a temp_handle_t so it's canceled on destruction.
LL::Timers::temp_handle_t mTimer;
};
/**
* LLEventBatch: accumulate post() events (LLSD blobs) into an LLSD Array
* until the array reaches a certain size, then call listeners with the Array
* and clear it back to empty.
*/
class LL_COMMON_API LLEventBatch: public LLEventFilter
{
public:
// pass batch size
LLEventBatch(std::size_t size);
// construct and connect
LLEventBatch(LLEventPump& source, std::size_t size);
// force out the pending batch
void flush();
// accumulate an event and flush() when big enough
virtual bool post(const LLSD& event);
// query or reset batch size
std::size_t getSize() const { return mBatchSize; }
void setSize(std::size_t size);
private:
LLSD mBatch;
std::size_t mBatchSize;
};
/**
* LLEventThrottle: construct with a time interval. Regardless of how
* frequently you call post(), LLEventThrottle will pass on an event to
* its listeners no more often than once per specified interval.
*
* A new event after more than the specified interval will immediately be
* passed along to listeners. But subsequent events will be delayed until at
* least one time interval since listeners were last called. Consider the
* sequence below. Suppose we have an LLEventThrottle constructed with an
* interval of 3 seconds. The numbers on the left are timestamps in seconds
* relative to an arbitrary reference point.
*
* 1: post(): event immediately passed to listeners, next no sooner than 4
* 2: post(): deferred: waiting for 3 seconds to elapse
* 3: post(): deferred
* 4: no post() call, but event delivered to listeners; next no sooner than 7
* 6: post(): deferred
* 7: no post() call, but event delivered; next no sooner than 10
* 12: post(): immediately passed to listeners, next no sooner than 15
* 17: post(): immediately passed to listeners, next no sooner than 20
*
* For a deferred event, the LLSD blob delivered to listeners is from the most
* recent deferred post() call. However, a sender may obtain the previous
* event blob by calling pending(), modifying it as desired and post()ing the
* new value. (See LLEventBatchThrottle.) Each time an event is delivered to
* listeners, the pending() value is reset to isUndefined().
*
* You may also call flush() to immediately pass along any deferred events to
* all listeners.
*
* @NOTE This is an abstract base class so that, for testing, we can use an
* alternate "timer" that doesn't actually consume real time. See
* LLEventThrottle.
*/
class LL_COMMON_API LLEventThrottle: public LLEventFilter
{
public:
// pass time interval
LLEventThrottle(F32 interval);
// construct and connect
LLEventThrottle(LLEventPump& source, F32 interval);
// force out any deferred events
void flush();
// retrieve (aggregate) deferred event since last event sent to listeners
LLSD pending() const;
// register an event, may be either passed through or deferred
virtual bool post(const LLSD& event);
// query or reset interval
F32 getInterval() const { return mInterval; }
void setInterval(F32 interval);
// deferred posts
std::size_t getPostCount() const { return mPosts; }
// time until next event would be passed through, 0.0 if now
F32 getDelay() const;
private:
void alarmActionAfter(F32 interval, const LLEventTimeout::Action& action);
bool alarmRunning() const;
void alarmCancel();
void timerSet(F32 interval);
F32 timerGetRemaining() const;
// pending event data from most recent deferred event
LLSD mPending;
// use this to track whether we're within mInterval of last flush()
LLTimer mTimer;
// count post() calls since last flush()
std::size_t mPosts;
// remember throttle interval
F32 mInterval;
// use this to arrange a deferred flush() call
LL::Timers::handle_t mAlarm;
};
/**
* LLEventBatchThrottle: like LLEventThrottle, it's reluctant to pass events
* to listeners more often than once per specified time interval -- but only
* reluctant, since exceeding the specified batch size limit can cause it to
* deliver accumulated events sooner. Like LLEventBatch, it accumulates
* pending events into an LLSD Array, optionally flushing when the batch grows
* to a certain size.
*/
class LLEventBatchThrottle: public LLEventThrottle
{
public:
// pass time interval and (optionally) max batch size; 0 means batch can
// grow arbitrarily large
LLEventBatchThrottle(F32 interval, std::size_t size = 0);
// construct and connect
LLEventBatchThrottle(LLEventPump& source, F32 interval, std::size_t size = 0);
// append a new event to current batch
virtual bool post(const LLSD& event);
// query or reset batch size
std::size_t getSize() const { return mBatchSize; }
void setSize(std::size_t size);
private:
std::size_t mBatchSize;
};
/**
* LLStoreListener self-registers on the LLEventPump of interest, and
* unregisters on destruction. As long as it exists, a particular element is
* extracted from every event that comes through the upstream LLEventPump and
* stored into the target variable.
*
* This is implemented as a subclass of LLEventFilter, though strictly
* speaking it isn't really a "filter" at all: it never passes incoming events
* to its own listeners, if any.
*
* TBD: A variant based on output iterators that stores and then increments
* the iterator. Useful with boost::coroutine2!
*/
template <typename T>
class LLStoreListener: public LLEventFilter
{
public:
// pass target and optional path to element
LLStoreListener(T& target, const LLSD& path=LLSD(), bool consume=false):
LLEventFilter("store"),
mTarget(target),
mPath(path),
mConsume(consume)
{}
// construct and connect
LLStoreListener(LLEventPump& source, T& target, const LLSD& path=LLSD(), bool consume=false):
LLEventFilter(source, "store"),
mTarget(target),
mPath(path),
mConsume(consume)
{}
// Calling post() with an LLSD event extracts the element indicated by
// path, then stores it to mTarget.
virtual bool post(const LLSD& event)
{
LL_PROFILE_ZONE_SCOPED
// Extract the element specified by 'mPath' from 'event'. To perform a
// generic type-appropriate store through mTarget, construct an
// LLSDParam<T> and store that, thus engaging LLSDParam's custom
// conversions.
storeTarget(LLSDParam<T>(llsd::drill(event, mPath)));
return mConsume;
}
private:
// This method disambiguates LLStoreListener<LLSD>. Directly assigning
// some_LLSD_var = LLSDParam<LLSD>(some_LLSD_value);
// is problematic because the compiler has too many choices: LLSD has
// multiple assignment operator overloads, and LLSDParam<LLSD> has a
// templated conversion operator. But LLSDParam<LLSD> can convert to a
// (const LLSD&) parameter, and LLSD::operator=(const LLSD&) works.
void storeTarget(const T& value)
{
mTarget = value;
}
T& mTarget;
const LLSD mPath;
const bool mConsume;
};
/**
* LLVarHolder bundles a target variable of the specified type. We use it as a
* base class so the target variable will be fully constructed by the time a
* subclass constructor tries to pass a reference to some other base class.
*/
template <typename T>
struct LLVarHolder
{
T mVar;
};
/**
* LLCaptureListener isa LLStoreListener that bundles the target variable of
* interest.
*/
template <typename T>
class LLCaptureListener: public LLVarHolder<T>,
public LLStoreListener<T>
{
private:
using holder = LLVarHolder<T>;
using super = LLStoreListener<T>;
public:
LLCaptureListener(const LLSD& path=LLSD(), bool consume=false):
super(*this, holder::mVar, path, consume)
{}
void set(T&& newval=T()) { holder::mVar = std::forward<T>(newval); }
const T& get() const { return holder::mVar; }
operator const T&() { return holder::mVar; }
};
/*****************************************************************************
* LLEventLogProxy
*****************************************************************************/
/**
* LLEventLogProxy is a little different than the other LLEventFilter
* subclasses declared in this header file, in that it completely wraps the
* passed LLEventPump (both input and output) instead of simply processing its
* output. Of course, if someone directly posts to the wrapped LLEventPump by
* looking up its string name in LLEventPumps, LLEventLogProxy can't intercept
* that post() call. But as long as consuming code is willing to access the
* LLEventLogProxy instance instead of the wrapped LLEventPump, all event data
* both post()ed and received is logged.
*
* The proxy role means that LLEventLogProxy intercepts more of LLEventPump's
* API than a typical LLEventFilter subclass.
*/
class LLEventLogProxy: public LLEventFilter
{
typedef LLEventFilter super;
public:
/**
* Construct LLEventLogProxy, wrapping the specified LLEventPump.
* Unlike a typical LLEventFilter subclass, the name parameter is @emph
* not optional because typically you want LLEventLogProxy to completely
* replace the wrapped LLEventPump. So you give the subject LLEventPump
* some other name and give the LLEventLogProxy the name that would have
* been used for the subject LLEventPump.
*/
LLEventLogProxy(LLEventPump& source, const std::string& name, bool tweak=false);
/// register a new listener
LLBoundListener listen_impl(const std::string& name, const LLAwareListener& target,
const NameList& after, const NameList& before);
/// Post an event to all listeners
virtual bool post(const LLSD& event) /* override */;
private:
/// This method intercepts each call to any target listener. We pass it
/// the listener name and the caller's intended target listener plus the
/// posted LLSD event.
bool listener(const LLBoundListener& conn,
const std::string& name,
const LLAwareListener& target,
const LLSD& event) const;
LLEventPump& mPump;
LLSD::Integer mCounter{0};
};
/**
* LLEventPumpHolder<T> is a helper for LLEventLogProxyFor<T>. It simply
* stores an instance of T, presumably a subclass of LLEventPump. We derive
* LLEventLogProxyFor<T> from LLEventPumpHolder<T>, ensuring that
* LLEventPumpHolder's contained mWrappedPump is fully constructed before
* passing it to LLEventLogProxyFor's LLEventLogProxy base class constructor.
* But since LLEventPumpHolder<T> presents none of the LLEventPump API,
* LLEventLogProxyFor<T> inherits its methods unambiguously from
* LLEventLogProxy.
*/
template <class T>
class LLEventPumpHolder
{
protected:
LLEventPumpHolder(const std::string& name, bool tweak=false):
mWrappedPump(name, tweak)
{}
T mWrappedPump;
};
/**
* LLEventLogProxyFor<T> is a wrapper around any of the LLEventPump subclasses.
* Instantiating an LLEventLogProxy<T> instantiates an internal T. Otherwise
* it behaves like LLEventLogProxy.
*/
template <class T>
class LLEventLogProxyFor: private LLEventPumpHolder<T>, public LLEventLogProxy
{
// We derive privately from LLEventPumpHolder because it's an
// implementation detail of LLEventLogProxyFor. The only reason it's a
// base class at all is to guarantee that it's constructed first so we can
// pass it to our LLEventLogProxy base class constructor.
typedef LLEventPumpHolder<T> holder;
typedef LLEventLogProxy super;
public:
LLEventLogProxyFor(const std::string& name, bool tweak=false):
// our wrapped LLEventPump subclass instance gets a name suffix
// because that's not the LLEventPump we want consumers to obtain when
// they ask LLEventPumps for this name
holder(name + "-", tweak),
// it's our LLEventLogProxy that gets the passed name
super(holder::mWrappedPump, name, tweak)
{}
};
#endif /* ! defined(LL_LLEVENTFILTER_H) */
|