1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/**
* @file lljointsolverrp3.cpp
* @brief Implementation of LLJointSolverRP3 class.
*
* Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
* $License$
*/
//-----------------------------------------------------------------------------
// Header Files
//-----------------------------------------------------------------------------
#include "linden_common.h"
#include "lljointsolverrp3.h"
#include "llmath.h"
#define F_EPSILON 0.00001f
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
LLJointSolverRP3::LLJointSolverRP3()
{
mJointA = NULL;
mJointB = NULL;
mJointC = NULL;
mJointGoal = NULL;
mLengthAB = 1.0f;
mLengthBC = 1.0f;
mPoleVector.setVec( 1.0f, 0.0f, 0.0f );
mbUseBAxis = FALSE;
mTwist = 0.0f;
mFirstTime = TRUE;
}
//-----------------------------------------------------------------------------
// Destructor
//-----------------------------------------------------------------------------
/*virtual*/ LLJointSolverRP3::~LLJointSolverRP3()
{
}
//-----------------------------------------------------------------------------
// setupJoints()
//-----------------------------------------------------------------------------
void LLJointSolverRP3::setupJoints( LLJoint* jointA,
LLJoint* jointB,
LLJoint* jointC,
LLJoint* jointGoal )
{
mJointA = jointA;
mJointB = jointB;
mJointC = jointC;
mJointGoal = jointGoal;
mLengthAB = mJointB->getPosition().magVec();
mLengthBC = mJointC->getPosition().magVec();
mJointABaseRotation = jointA->getRotation();
mJointBBaseRotation = jointB->getRotation();
}
//-----------------------------------------------------------------------------
// getPoleVector()
//-----------------------------------------------------------------------------
const LLVector3& LLJointSolverRP3::getPoleVector()
{
return mPoleVector;
}
//-----------------------------------------------------------------------------
// setPoleVector()
//-----------------------------------------------------------------------------
void LLJointSolverRP3::setPoleVector( const LLVector3& poleVector )
{
mPoleVector = poleVector;
mPoleVector.normVec();
}
//-----------------------------------------------------------------------------
// setPoleVector()
//-----------------------------------------------------------------------------
void LLJointSolverRP3::setBAxis( const LLVector3& bAxis )
{
mBAxis = bAxis;
mBAxis.normVec();
mbUseBAxis = TRUE;
}
//-----------------------------------------------------------------------------
// getTwist()
//-----------------------------------------------------------------------------
F32 LLJointSolverRP3::getTwist()
{
return mTwist;
}
//-----------------------------------------------------------------------------
// setTwist()
//-----------------------------------------------------------------------------
void LLJointSolverRP3::setTwist( F32 twist )
{
mTwist = twist;
}
//-----------------------------------------------------------------------------
// solve()
//-----------------------------------------------------------------------------
void LLJointSolverRP3::solve()
{
// llinfos << llendl;
// llinfos << "LLJointSolverRP3::solve()" << llendl;
//-------------------------------------------------------------------------
// setup joints in their base rotations
//-------------------------------------------------------------------------
mJointA->setRotation( mJointABaseRotation );
mJointB->setRotation( mJointBBaseRotation );
//-------------------------------------------------------------------------
// get joint positions in world space
//-------------------------------------------------------------------------
LLVector3 aPos = mJointA->getWorldPosition();
LLVector3 bPos = mJointB->getWorldPosition();
LLVector3 cPos = mJointC->getWorldPosition();
LLVector3 gPos = mJointGoal->getWorldPosition();
// llinfos << "bPosLocal = " << mJointB->getPosition() << llendl;
// llinfos << "cPosLocal = " << mJointC->getPosition() << llendl;
// llinfos << "bRotLocal = " << mJointB->getRotation() << llendl;
// llinfos << "cRotLocal = " << mJointC->getRotation() << llendl;
// llinfos << "aPos : " << aPos << llendl;
// llinfos << "bPos : " << bPos << llendl;
// llinfos << "cPos : " << cPos << llendl;
// llinfos << "gPos : " << gPos << llendl;
//-------------------------------------------------------------------------
// get the poleVector in world space
//-------------------------------------------------------------------------
LLMatrix4 worldJointAParentMat;
if ( mJointA->getParent() )
{
worldJointAParentMat = mJointA->getParent()->getWorldMatrix();
}
LLVector3 poleVec = rotate_vector( mPoleVector, worldJointAParentMat );
//-------------------------------------------------------------------------
// compute the following:
// vector from A to B
// vector from B to C
// vector from A to C
// vector from A to G (goal)
//-------------------------------------------------------------------------
LLVector3 abVec = bPos - aPos;
LLVector3 bcVec = cPos - bPos;
LLVector3 acVec = cPos - aPos;
LLVector3 agVec = gPos - aPos;
// llinfos << "abVec : " << abVec << llendl;
// llinfos << "bcVec : " << bcVec << llendl;
// llinfos << "acVec : " << acVec << llendl;
// llinfos << "agVec : " << agVec << llendl;
//-------------------------------------------------------------------------
// compute needed lengths of those vectors
//-------------------------------------------------------------------------
F32 abLen = abVec.magVec();
F32 bcLen = bcVec.magVec();
F32 agLen = agVec.magVec();
// llinfos << "abLen : " << abLen << llendl;
// llinfos << "bcLen : " << bcLen << llendl;
// llinfos << "agLen : " << agLen << llendl;
//-------------------------------------------------------------------------
// compute component vector of (A->B) orthogonal to (A->C)
//-------------------------------------------------------------------------
LLVector3 abacCompOrthoVec = abVec - acVec * ((abVec * acVec)/(acVec * acVec));
// llinfos << "abacCompOrthoVec : " << abacCompOrthoVec << llendl
//-------------------------------------------------------------------------
// compute the normal of the original ABC plane (and store for later)
//-------------------------------------------------------------------------
LLVector3 abcNorm;
if (!mbUseBAxis)
{
if( are_parallel(abVec, bcVec, 0.001f) )
{
// the current solution is maxed out, so we use the axis that is
// orthogonal to both poleVec and A->B
if ( are_parallel(poleVec, abVec, 0.001f) )
{
// ACK! the problem is singular
if ( are_parallel(poleVec, agVec, 0.001f) )
{
// the solutions is also singular
return;
}
else
{
abcNorm = poleVec % agVec;
}
}
else
{
abcNorm = poleVec % abVec;
}
}
else
{
abcNorm = abVec % bcVec;
}
}
else
{
abcNorm = mBAxis * mJointB->getWorldRotation();
}
//-------------------------------------------------------------------------
// compute rotation of B
//-------------------------------------------------------------------------
// angle between A->B and B->C
F32 abbcAng = angle_between(abVec, bcVec);
// vector orthogonal to A->B and B->C
LLVector3 abbcOrthoVec = abVec % bcVec;
if (abbcOrthoVec.magVecSquared() < 0.001f)
{
abbcOrthoVec = poleVec % abVec;
abacCompOrthoVec = poleVec;
}
abbcOrthoVec.normVec();
F32 agLenSq = agLen * agLen;
// angle arm for extension
F32 cosTheta = (agLenSq - abLen*abLen - bcLen*bcLen) / (2.0f * abLen * bcLen);
if (cosTheta > 1.0f)
cosTheta = 1.0f;
else if (cosTheta < -1.0f)
cosTheta = -1.0f;
F32 theta = acos(cosTheta);
LLQuaternion bRot(theta - abbcAng, abbcOrthoVec);
// llinfos << "abbcAng : " << abbcAng << llendl;
// llinfos << "abbcOrthoVec : " << abbcOrthoVec << llendl;
// llinfos << "agLenSq : " << agLenSq << llendl;
// llinfos << "cosTheta : " << cosTheta << llendl;
// llinfos << "theta : " << theta << llendl;
// llinfos << "bRot : " << bRot << llendl;
// llinfos << "theta abbcAng theta-abbcAng: " << theta*180.0/F_PI << " " << abbcAng*180.0f/F_PI << " " << (theta - abbcAng)*180.0f/F_PI << llendl;
//-------------------------------------------------------------------------
// compute rotation that rotates new A->C to A->G
//-------------------------------------------------------------------------
// rotate B->C by bRot
bcVec = bcVec * bRot;
// update A->C
acVec = abVec + bcVec;
LLQuaternion cgRot;
cgRot.shortestArc( acVec, agVec );
// llinfos << "bcVec : " << bcVec << llendl;
// llinfos << "acVec : " << acVec << llendl;
// llinfos << "cgRot : " << cgRot << llendl;
// update A->B and B->C with rotation from C to G
abVec = abVec * cgRot;
bcVec = bcVec * cgRot;
abcNorm = abcNorm * cgRot;
acVec = abVec + bcVec;
//-------------------------------------------------------------------------
// compute the normal of the APG plane
//-------------------------------------------------------------------------
if (are_parallel(agVec, poleVec, 0.001f))
{
// the solution plane is undefined ==> we're done
return;
}
LLVector3 apgNorm = poleVec % agVec;
apgNorm.normVec();
if (!mbUseBAxis)
{
//---------------------------------------------------------------------
// compute the normal of the new ABC plane
// (only necessary if we're NOT using mBAxis)
//---------------------------------------------------------------------
if( are_parallel(abVec, bcVec, 0.001f) )
{
// G is either too close or too far away
// we'll use the old ABCnormal
}
else
{
abcNorm = abVec % bcVec;
}
abcNorm.normVec();
}
//-------------------------------------------------------------------------
// calcuate plane rotation
//-------------------------------------------------------------------------
LLQuaternion pRot;
if ( are_parallel( abcNorm, apgNorm, 0.001f) )
{
if (abcNorm * apgNorm < 0.0f)
{
// we must be PI radians off ==> rotate by PI around agVec
pRot.setQuat(F_PI, agVec);
}
else
{
// we're done
}
}
else
{
pRot.shortestArc( abcNorm, apgNorm );
}
// llinfos << "abcNorm = " << abcNorm << llendl;
// llinfos << "apgNorm = " << apgNorm << llendl;
// llinfos << "pRot = " << pRot << llendl;
//-------------------------------------------------------------------------
// compute twist rotation
//-------------------------------------------------------------------------
LLQuaternion twistRot( mTwist, agVec );
// llinfos << "twist : " << mTwist*180.0/F_PI << llendl;
// llinfos << "agNormVec: " << agNormVec << llendl;
// llinfos << "twistRot : " << twistRot << llendl;
//-------------------------------------------------------------------------
// compute rotation of A
//-------------------------------------------------------------------------
LLQuaternion aRot = cgRot * pRot * twistRot;
//-------------------------------------------------------------------------
// apply the rotations
//-------------------------------------------------------------------------
mJointB->setWorldRotation( mJointB->getWorldRotation() * bRot );
mJointA->setWorldRotation( mJointA->getWorldRotation() * aRot );
}
// End
|