/** * @file llvowlsky.cpp * @brief LLVOWLSky class implementation * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "pipeline.h" #include "llvowlsky.h" #include "llsky.h" #include "lldrawpoolwlsky.h" #include "llface.h" #include "llviewercontrol.h" #include "llenvironment.h" #include "llsettingssky.h" constexpr U32 MIN_SKY_DETAIL = 8; constexpr U32 MAX_SKY_DETAIL = 180; inline U32 LLVOWLSky::getNumStacks(void) { return llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail"))); } inline U32 LLVOWLSky::getNumSlices(void) { return 2 * llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail"))); } inline U32 LLVOWLSky::getStripsNumVerts(void) { return (getNumStacks() - 1) * getNumSlices(); } inline U32 LLVOWLSky::getStripsNumIndices(void) { return 2 * ((getNumStacks() - 2) * (getNumSlices() + 1)) + 1 ; } inline U32 LLVOWLSky::getStarsNumVerts(void) { return 1000; } inline U32 LLVOWLSky::getStarsNumIndices(void) { return 1000; } LLVOWLSky::LLVOWLSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp) : LLStaticViewerObject(id, pcode, regionp, TRUE) { initStars(); } void LLVOWLSky::idleUpdate(LLAgent &agent, const F64 &time) { } BOOL LLVOWLSky::isActive(void) const { return FALSE; } LLDrawable * LLVOWLSky::createDrawable(LLPipeline * pipeline) { pipeline->allocDrawable(this); //LLDrawPoolWLSky *poolp = static_cast<LLDrawPoolWLSky *>( gPipeline.getPool(LLDrawPool::POOL_WL_SKY); mDrawable->setRenderType(LLPipeline::RENDER_TYPE_WL_SKY); return mDrawable; } // a tiny helper function for controlling the sky dome tesselation. inline F32 calcPhi(const U32 &i, const F32 &reciprocal_num_stacks) { // Calc: PI/8 * 1-((1-t^4)*(1-t^4)) { 0<t<1 } // Demos: \pi/8*\left(1-((1-x^{4})*(1-x^{4}))\right)\ \left\{0<x\le1\right\} // i should range from [0..SKY_STACKS] so t will range from [0.f .. 1.f] F32 t = float(i) * reciprocal_num_stacks; //SL-16127: remove: / float(getNumStacks()); // ^4 the parameter of the tesselation to bias things toward 0 (the dome's apex) t *= t; t *= t; // invert and square the parameter of the tesselation to bias things toward 1 (the horizon) t = 1.f - t; t = t*t; t = 1.f - t; return (F_PI / 8.f) * t; } void LLVOWLSky::resetVertexBuffers() { mStripsVerts.clear(); mStarsVerts = nullptr; mFsSkyVerts = nullptr; gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE); } void LLVOWLSky::cleanupGL() { mStripsVerts.clear(); mStarsVerts = nullptr; mFsSkyVerts = nullptr; LLDrawPoolWLSky::cleanupGL(); } void LLVOWLSky::restoreGL() { LLDrawPoolWLSky::restoreGL(); gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE); } BOOL LLVOWLSky::updateGeometry(LLDrawable * drawable) { LL_PROFILE_ZONE_SCOPED; LLStrider<LLVector3> vertices; LLStrider<LLVector2> texCoords; LLStrider<U16> indices; if (mFsSkyVerts.isNull()) { mFsSkyVerts = new LLVertexBuffer(LLDrawPoolWLSky::ADV_ATMO_SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW); if (!mFsSkyVerts->allocateBuffer(4, 6, TRUE)) { LL_WARNS() << "Failed to allocate Vertex Buffer on full screen sky update" << LL_ENDL; } BOOL success = mFsSkyVerts->getVertexStrider(vertices) && mFsSkyVerts->getTexCoord0Strider(texCoords) && mFsSkyVerts->getIndexStrider(indices); if(!success) { LL_ERRS() << "Failed updating WindLight fullscreen sky geometry." << LL_ENDL; } *vertices++ = LLVector3(-1.0f, -1.0f, 0.0f); *vertices++ = LLVector3( 1.0f, -1.0f, 0.0f); *vertices++ = LLVector3(-1.0f, 1.0f, 0.0f); *vertices++ = LLVector3( 1.0f, 1.0f, 0.0f); *texCoords++ = LLVector2(0.0f, 0.0f); *texCoords++ = LLVector2(1.0f, 0.0f); *texCoords++ = LLVector2(0.0f, 1.0f); *texCoords++ = LLVector2(1.0f, 1.0f); *indices++ = 0; *indices++ = 1; *indices++ = 2; *indices++ = 1; *indices++ = 3; *indices++ = 2; mFsSkyVerts->flush(); } { const F32 dome_radius = LLEnvironment::instance().getCurrentSky()->getDomeRadius(); const U32 max_buffer_bytes = gSavedSettings.getS32("RenderMaxVBOSize")*1024; const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK; const U32 max_verts = max_buffer_bytes / LLVertexBuffer::calcVertexSize(data_mask); const U32 total_stacks = getNumStacks(); const U32 verts_per_stack = getNumSlices(); // each seg has to have one more row of verts than it has stacks // then round down const U32 stacks_per_seg = (max_verts - verts_per_stack) / verts_per_stack; // round up to a whole number of segments const U32 strips_segments = (total_stacks+stacks_per_seg-1) / stacks_per_seg; mStripsVerts.resize(strips_segments, NULL); #if RELEASE_SHOW_DEBUG LL_INFOS() << "WL Skydome strips in " << strips_segments << " batches." << LL_ENDL; LLTimer timer; timer.start(); #endif for (U32 i = 0; i < strips_segments ;++i) { LLVertexBuffer * segment = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW); mStripsVerts[i] = segment; U32 num_stacks_this_seg = stacks_per_seg; if ((i == strips_segments - 1) && (total_stacks % stacks_per_seg) != 0) { // for the last buffer only allocate what we'll use num_stacks_this_seg = total_stacks % stacks_per_seg; } // figure out what range of the sky we're filling const U32 begin_stack = i * stacks_per_seg; const U32 end_stack = begin_stack + num_stacks_this_seg; llassert(end_stack <= total_stacks); const U32 num_verts_this_seg = verts_per_stack * (num_stacks_this_seg+1); llassert(num_verts_this_seg <= max_verts); const U32 num_indices_this_seg = 1+num_stacks_this_seg*(2+2*verts_per_stack); llassert(num_indices_this_seg * sizeof(U16) <= max_buffer_bytes); bool allocated = segment->allocateBuffer(num_verts_this_seg, num_indices_this_seg, TRUE); #if RELEASE_SHOW_WARNS if( !allocated ) { LL_WARNS() << "Failed to allocate Vertex Buffer on update to " << num_verts_this_seg << " vertices and " << num_indices_this_seg << " indices" << LL_ENDL; } #else (void) allocated; #endif // lock the buffer BOOL success = segment->getVertexStrider(vertices) && segment->getTexCoord0Strider(texCoords) && segment->getIndexStrider(indices); #if RELEASE_SHOW_DEBUG if(!success) { LL_ERRS() << "Failed updating WindLight sky geometry." << LL_ENDL; } #else (void) success; #endif // fill it buildStripsBuffer(begin_stack, end_stack, vertices, texCoords, indices, dome_radius, verts_per_stack, total_stacks); // and unlock the buffer segment->flush(); } #if RELEASE_SHOW_DEBUG LL_INFOS() << "completed in " << llformat("%.2f", timer.getElapsedTimeF32().value()) << "seconds" << LL_ENDL; #endif } updateStarColors(); updateStarGeometry(drawable); LLPipeline::sCompiles++; return TRUE; } void LLVOWLSky::drawStars(void) { // render the stars as a sphere centered at viewer camera if (mStarsVerts.notNull()) { mStarsVerts->setBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK); mStarsVerts->drawArrays(LLRender::TRIANGLES, 0, getStarsNumVerts()*4); } } void LLVOWLSky::drawFsSky(void) { if (mFsSkyVerts.isNull()) { updateGeometry(mDrawable); } LLGLDisable disable_blend(GL_BLEND); mFsSkyVerts->setBuffer(LLDrawPoolWLSky::ADV_ATMO_SKY_VERTEX_DATA_MASK); mFsSkyVerts->drawRange(LLRender::TRIANGLES, 0, mFsSkyVerts->getNumVerts() - 1, mFsSkyVerts->getNumIndices(), 0); gPipeline.addTrianglesDrawn(mFsSkyVerts->getNumIndices(), LLRender::TRIANGLES); LLVertexBuffer::unbind(); } void LLVOWLSky::drawDome(void) { if (mStripsVerts.empty()) { updateGeometry(mDrawable); } LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE); const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK; std::vector< LLPointer<LLVertexBuffer> >::const_iterator strips_vbo_iter, end_strips; end_strips = mStripsVerts.end(); for(strips_vbo_iter = mStripsVerts.begin(); strips_vbo_iter != end_strips; ++strips_vbo_iter) { LLVertexBuffer * strips_segment = strips_vbo_iter->get(); strips_segment->setBuffer(data_mask); strips_segment->drawRange( LLRender::TRIANGLE_STRIP, 0, strips_segment->getNumVerts()-1, strips_segment->getNumIndices(), 0); gPipeline.addTrianglesDrawn(strips_segment->getNumIndices(), LLRender::TRIANGLE_STRIP); } LLVertexBuffer::unbind(); } void LLVOWLSky::initStars() { const F32 DISTANCE_TO_STARS = LLEnvironment::instance().getCurrentSky()->getDomeRadius(); // Initialize star map mStarVertices.resize(getStarsNumVerts()); mStarColors.resize(getStarsNumVerts()); mStarIntensities.resize(getStarsNumVerts()); std::vector<LLVector3>::iterator v_p = mStarVertices.begin(); std::vector<LLColor4>::iterator v_c = mStarColors.begin(); std::vector<F32>::iterator v_i = mStarIntensities.begin(); U32 i; for (i = 0; i < getStarsNumVerts(); ++i) { v_p->mV[VX] = ll_frand() - 0.5f; v_p->mV[VY] = ll_frand() - 0.5f; // we only want stars on the top half of the dome! v_p->mV[VZ] = ll_frand()/2.f; v_p->normVec(); *v_p *= DISTANCE_TO_STARS; *v_i = llmin((F32)pow(ll_frand(),2.f) + 0.1f, 1.f); v_c->mV[VRED] = 0.75f + ll_frand() * 0.25f ; v_c->mV[VGREEN] = 1.f ; v_c->mV[VBLUE] = 0.75f + ll_frand() * 0.25f ; v_c->mV[VALPHA] = 1.f; v_c->clamp(); v_p++; v_c++; v_i++; } } void LLVOWLSky::buildStripsBuffer(U32 begin_stack, U32 end_stack, LLStrider<LLVector3> & vertices, LLStrider<LLVector2> & texCoords, LLStrider<U16> & indices, const F32 dome_radius, const U32& num_slices, const U32& num_stacks) { U32 i, j; F32 phi0, theta, x0, y0, z0; const F32 reciprocal_num_stacks = 1.f / num_stacks; llassert(end_stack <= num_stacks); // stacks are iterated one-indexed since phi(0) was handled by the fan above #if NEW_TESS for(i = begin_stack; i <= end_stack; ++i) #else for(i = begin_stack + 1; i <= end_stack+1; ++i) #endif { phi0 = calcPhi(i, reciprocal_num_stacks); for(j = 0; j < num_slices; ++j) { theta = F_TWO_PI * (float(j) / float(num_slices)); // standard transformation from spherical to // rectangular coordinates x0 = sin(phi0) * cos(theta); y0 = cos(phi0); z0 = sin(phi0) * sin(theta); #if NEW_TESS *vertices++ = LLVector3(x0 * dome_radius, y0 * dome_radius, z0 * dome_radius); #else if (i == num_stacks-2) { *vertices++ = LLVector3(x0*dome_radius, y0*dome_radius-1024.f*2.f, z0*dome_radius); } else if (i == num_stacks-1) { *vertices++ = LLVector3(0, y0*dome_radius-1024.f*2.f, 0); } else { *vertices++ = LLVector3(x0 * dome_radius, y0 * dome_radius, z0 * dome_radius); } #endif // generate planar uv coordinates // note: x and z are transposed in order for things to animate // correctly in the global coordinate system where +x is east and // +y is north *texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f); } } //build triangle strip... *indices++ = 0 ; S32 k = 0 ; for(i = 1; i <= end_stack - begin_stack; ++i) { *indices++ = i * num_slices + k ; k = (k+1) % num_slices ; for(j = 0; j < num_slices ; ++j) { *indices++ = (i-1) * num_slices + k ; *indices++ = i * num_slices + k ; k = (k+1) % num_slices ; } if((--k) < 0) { k = num_slices - 1 ; } *indices++ = i * num_slices + k ; } } void LLVOWLSky::updateStarColors() { std::vector<LLColor4>::iterator v_c = mStarColors.begin(); std::vector<F32>::iterator v_i = mStarIntensities.begin(); std::vector<LLVector3>::iterator v_p = mStarVertices.begin(); const F32 var = 0.15f; const F32 min = 0.5f; //0.75f; //const F32 sunclose_max = 0.6f; //const F32 sunclose_range = 1 - sunclose_max; //F32 below_horizon = - llmin(0.0f, gSky.mVOSkyp->getToSunLast().mV[2]); //F32 brightness_factor = llmin(1.0f, below_horizon * 20); static S32 swap = 0; swap++; if ((swap % 2) == 1) { F32 intensity; // max intensity of each star U32 x; for (x = 0; x < getStarsNumVerts(); ++x) { //F32 sundir_factor = 1; LLVector3 tostar = *v_p; tostar.normVec(); //const F32 how_close_to_sun = tostar * gSky.mVOSkyp->getToSunLast(); //if (how_close_to_sun > sunclose_max) //{ // sundir_factor = (1 - how_close_to_sun) / sunclose_range; //} intensity = *(v_i); F32 alpha = v_c->mV[VALPHA] + (ll_frand() - 0.5f) * var * intensity; if (alpha < min * intensity) { alpha = min * intensity; } if (alpha > intensity) { alpha = intensity; } //alpha *= brightness_factor * sundir_factor; alpha = llclamp(alpha, 0.f, 1.f); v_c->mV[VALPHA] = alpha; v_c++; v_i++; v_p++; } } } BOOL LLVOWLSky::updateStarGeometry(LLDrawable *drawable) { LLStrider<LLVector3> verticesp; LLStrider<LLColor4U> colorsp; LLStrider<LLVector2> texcoordsp; if (mStarsVerts.isNull() || !mStarsVerts->isWriteable()) { mStarsVerts = new LLVertexBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK, GL_DYNAMIC_DRAW); if (!mStarsVerts->allocateBuffer(getStarsNumVerts()*6, 0, TRUE)) { LL_WARNS() << "Failed to allocate Vertex Buffer for Sky to " << getStarsNumVerts() * 6 << " vertices" << LL_ENDL; } } BOOL success = mStarsVerts->getVertexStrider(verticesp) && mStarsVerts->getColorStrider(colorsp) && mStarsVerts->getTexCoord0Strider(texcoordsp); if(!success) { LL_ERRS() << "Failed updating star geometry." << LL_ENDL; } // *TODO: fix LLStrider with a real prefix increment operator so it can be // used as a model of OutputIterator. -Brad // std::copy(mStarVertices.begin(), mStarVertices.end(), verticesp); if (mStarVertices.size() < getStarsNumVerts()) { LL_ERRS() << "Star reference geometry insufficient." << LL_ENDL; } for (U32 vtx = 0; vtx < getStarsNumVerts(); ++vtx) { LLVector3 at = mStarVertices[vtx]; at.normVec(); LLVector3 left = at%LLVector3(0,0,1); LLVector3 up = at%left; F32 sc = 16.0f + (ll_frand() * 20.0f); left *= sc; up *= sc; *(verticesp++) = mStarVertices[vtx]; *(verticesp++) = mStarVertices[vtx]+up; *(verticesp++) = mStarVertices[vtx]+left+up; *(verticesp++) = mStarVertices[vtx]; *(verticesp++) = mStarVertices[vtx]+left+up; *(verticesp++) = mStarVertices[vtx]+left; *(texcoordsp++) = LLVector2(1,0); *(texcoordsp++) = LLVector2(1,1); *(texcoordsp++) = LLVector2(0,1); *(texcoordsp++) = LLVector2(1,0); *(texcoordsp++) = LLVector2(0,1); *(texcoordsp++) = LLVector2(0,0); *(colorsp++) = LLColor4U(mStarColors[vtx]); *(colorsp++) = LLColor4U(mStarColors[vtx]); *(colorsp++) = LLColor4U(mStarColors[vtx]); *(colorsp++) = LLColor4U(mStarColors[vtx]); *(colorsp++) = LLColor4U(mStarColors[vtx]); *(colorsp++) = LLColor4U(mStarColors[vtx]); } mStarsVerts->flush(); return TRUE; }