/** * @file llvowlsky.cpp * @brief LLVOWLSky class implementation * * $LicenseInfo:firstyear=2007&license=viewergpl$ * * Copyright (c) 2007-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "pipeline.h" #include "llvowlsky.h" #include "llsky.h" #include "lldrawpoolwlsky.h" #include "llface.h" #include "llwlparammanager.h" #include "llviewercontrol.h" #define DOME_SLICES 1 const F32 LLVOWLSky::DISTANCE_TO_STARS = (HORIZON_DIST - 10.f)*0.25f; const U32 LLVOWLSky::MIN_SKY_DETAIL = 3; const U32 LLVOWLSky::MAX_SKY_DETAIL = 180; inline U32 LLVOWLSky::getNumStacks(void) { return gSavedSettings.getU32("WLSkyDetail"); } inline U32 LLVOWLSky::getNumSlices(void) { return 2 * gSavedSettings.getU32("WLSkyDetail"); } inline U32 LLVOWLSky::getFanNumVerts(void) { return getNumSlices() + 1; } inline U32 LLVOWLSky::getFanNumIndices(void) { return getNumSlices() * 3; } inline U32 LLVOWLSky::getStripsNumVerts(void) { return (getNumStacks() - 1) * getNumSlices(); } inline U32 LLVOWLSky::getStripsNumIndices(void) { return 2 * ((getNumStacks() - 2) * (getNumSlices() + 1)) + 1 ; } inline U32 LLVOWLSky::getStarsNumVerts(void) { return 1000; } inline U32 LLVOWLSky::getStarsNumIndices(void) { return 1000; } LLVOWLSky::LLVOWLSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp) : LLStaticViewerObject(id, pcode, regionp, TRUE) { initStars(); } void LLVOWLSky::initSunDirection(LLVector3 const & sun_direction, LLVector3 const & sun_angular_velocity) { } BOOL LLVOWLSky::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time) { return TRUE; } BOOL LLVOWLSky::isActive(void) const { return FALSE; } LLDrawable * LLVOWLSky::createDrawable(LLPipeline * pipeline) { pipeline->allocDrawable(this); //LLDrawPoolWLSky *poolp = static_cast<LLDrawPoolWLSky *>( gPipeline.getPool(LLDrawPool::POOL_WL_SKY); mDrawable->setRenderType(LLPipeline::RENDER_TYPE_WL_SKY); return mDrawable; } inline F32 LLVOWLSky::calcPhi(U32 i) { // i should range from [0..SKY_STACKS] so t will range from [0.f .. 1.f] F32 t = float(i) / float(getNumStacks()); // ^4 the parameter of the tesselation to bias things toward 0 (the dome's apex) t = t*t*t*t; // invert and square the parameter of the tesselation to bias things toward 1 (the horizon) t = 1.f - t; t = t*t; t = 1.f - t; return (F_PI / 8.f) * t; } #if !DOME_SLICES static const F32 Q = (1.f + sqrtf(5.f))/2.f; //golden ratio //icosahedron verts (based on asset b0c7b76e-28c6-1f87-a1de-752d5e3cd264, contact Runitai Linden for a copy) static const LLVector3 icosahedron_vert[] = { LLVector3(0,1.f,Q), LLVector3(0,-1.f,Q), LLVector3(0,-1.f,-Q), LLVector3(0,1.f,-Q), LLVector3(Q,0,1.f), LLVector3(-Q,0,1.f), LLVector3(-Q,0,-1.f), LLVector3(Q,0,-1.f), LLVector3(1,-Q,0.f), LLVector3(-1,-Q,0.f), LLVector3(-1,Q,0.f), LLVector3(1,Q,0.f), }; //indices static const U32 icosahedron_ind[] = { 5,0,1, 10,0,5, 5,1,9, 10,5,6, 6,5,9, 11,0,10, 3,11,10, 3,10,6, 3,6,2, 7,3,2, 8,7,2, 4,7,8, 1,4,8, 9,8,2, 9,2,6, 11,3,7, 4,0,11, 4,11,7, 1,0,4, 1,8,9, }; //split every triangle in LLVertexBuffer into even fourths (assumes index triangle lists) void subdivide(LLVertexBuffer& in, LLVertexBuffer* ret) { S32 tri_in = in.getNumIndices()/3; ret->allocateBuffer(tri_in*4*3, tri_in*4*3, TRUE); LLStrider<LLVector3> vin, vout; LLStrider<U16> indin, indout; ret->getVertexStrider(vout); in.getVertexStrider(vin); ret->getIndexStrider(indout); in.getIndexStrider(indin); for (S32 i = 0; i < tri_in; i++) { LLVector3 v0 = vin[*indin++]; LLVector3 v1 = vin[*indin++]; LLVector3 v2 = vin[*indin++]; LLVector3 v3 = (v0 + v1) * 0.5f; LLVector3 v4 = (v1 + v2) * 0.5f; LLVector3 v5 = (v2 + v0) * 0.5f; *vout++ = v0; *vout++ = v3; *vout++ = v5; *vout++ = v3; *vout++ = v4; *vout++ = v5; *vout++ = v3; *vout++ = v1; *vout++ = v4; *vout++ = v5; *vout++ = v4; *vout++ = v2; } for (S32 i = 0; i < ret->getNumIndices(); i++) { *indout++ = i; } } void chop(LLVertexBuffer& in, LLVertexBuffer* out) { //chop off all triangles below horizon F32 d = LLWLParamManager::sParamMgr->getDomeOffset() * LLWLParamManager::sParamMgr->getDomeRadius(); std::vector<LLVector3> vert; LLStrider<LLVector3> vin; LLStrider<U16> index; in.getVertexStrider(vin); in.getIndexStrider(index); U32 tri_count = in.getNumIndices()/3; for (U32 i = 0; i < tri_count; i++) { LLVector3 &v1 = vin[index[i*3+0]]; LLVector3 &v2 = vin[index[i*3+1]]; LLVector3 &v3 = vin[index[i*3+2]]; if (v1.mV[1] > d || v2.mV[1] > d || v3.mV[1] > d) { v1.mV[1] = llmax(v1.mV[1], d); v2.mV[1] = llmax(v1.mV[1], d); v3.mV[1] = llmax(v1.mV[1], d); vert.push_back(v1); vert.push_back(v2); vert.push_back(v3); } } out->allocateBuffer(vert.size(), vert.size(), TRUE); LLStrider<LLVector3> vout; out->getVertexStrider(vout); out->getIndexStrider(index); for (U32 i = 0; i < vert.size(); i++) { *vout++ = vert[i]; *index++ = i; } } #endif // !DOME_SLICES void LLVOWLSky::resetVertexBuffers() { mFanVerts = NULL; mStripsVerts.clear(); mStarsVerts = NULL; gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE); } void LLVOWLSky::cleanupGL() { mFanVerts = NULL; mStripsVerts.clear(); mStarsVerts = NULL; LLDrawPoolWLSky::cleanupGL(); } void LLVOWLSky::restoreGL() { LLDrawPoolWLSky::restoreGL(); gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE); } static LLFastTimer::DeclareTimer FTM_GEO_SKY("Sky Geometry"); BOOL LLVOWLSky::updateGeometry(LLDrawable * drawable) { LLFastTimer ftm(FTM_GEO_SKY); LLStrider<LLVector3> vertices; LLStrider<LLVector2> texCoords; LLStrider<U16> indices; #if DOME_SLICES { mFanVerts = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB); mFanVerts->allocateBuffer(getFanNumVerts(), getFanNumIndices(), TRUE); BOOL success = mFanVerts->getVertexStrider(vertices) && mFanVerts->getTexCoord0Strider(texCoords) && mFanVerts->getIndexStrider(indices); if(!success) { llerrs << "Failed updating WindLight sky geometry." << llendl; } buildFanBuffer(vertices, texCoords, indices); mFanVerts->setBuffer(0); } { const U32 max_buffer_bytes = gSavedSettings.getS32("RenderMaxVBOSize")*1024; const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK; const U32 max_verts = max_buffer_bytes / LLVertexBuffer::calcStride(data_mask); const U32 total_stacks = getNumStacks(); const U32 verts_per_stack = getNumSlices(); // each seg has to have one more row of verts than it has stacks // then round down const U32 stacks_per_seg = (max_verts - verts_per_stack) / verts_per_stack; // round up to a whole number of segments const U32 strips_segments = (total_stacks+stacks_per_seg-1) / stacks_per_seg; llinfos << "WL Skydome strips in " << strips_segments << " batches." << llendl; mStripsVerts.resize(strips_segments, NULL); for (U32 i = 0; i < strips_segments ;++i) { LLVertexBuffer * segment = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB); mStripsVerts[i] = segment; U32 num_stacks_this_seg = stacks_per_seg; if ((i == strips_segments - 1) && (total_stacks % stacks_per_seg) != 0) { // for the last buffer only allocate what we'll use num_stacks_this_seg = total_stacks % stacks_per_seg; } // figure out what range of the sky we're filling const U32 begin_stack = i * stacks_per_seg; const U32 end_stack = begin_stack + num_stacks_this_seg; llassert(end_stack <= total_stacks); const U32 num_verts_this_seg = verts_per_stack * (num_stacks_this_seg+1); llassert(num_verts_this_seg <= max_verts); const U32 num_indices_this_seg = 1+num_stacks_this_seg*(2+2*verts_per_stack); llassert(num_indices_this_seg * sizeof(U16) <= max_buffer_bytes); segment->allocateBuffer(num_verts_this_seg, num_indices_this_seg, TRUE); // lock the buffer BOOL success = segment->getVertexStrider(vertices) && segment->getTexCoord0Strider(texCoords) && segment->getIndexStrider(indices); if(!success) { llerrs << "Failed updating WindLight sky geometry." << llendl; } // fill it buildStripsBuffer(begin_stack, end_stack, vertices, texCoords, indices); // and unlock the buffer segment->setBuffer(0); } } #else mStripsVerts = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB); const F32 RADIUS = LLWLParamManager::sParamMgr->getDomeRadius(); LLPointer<LLVertexBuffer> temp = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0); temp->allocateBuffer(12, 60, TRUE); BOOL success = temp->getVertexStrider(vertices) && temp->getIndexStrider(indices); if (success) { for (U32 i = 0; i < 12; i++) { *vertices++ = icosahedron_vert[i]; } for (U32 i = 0; i < 60; i++) { *indices++ = icosahedron_ind[i]; } } LLPointer<LLVertexBuffer> temp2; for (U32 i = 0; i < 8; i++) { temp2 = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0); subdivide(*temp, temp2); temp = temp2; } temp->getVertexStrider(vertices); for (S32 i = 0; i < temp->getNumVerts(); i++) { LLVector3 v = vertices[i]; v.normVec(); vertices[i] = v*RADIUS; } temp2 = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0); chop(*temp, temp2); mStripsVerts->allocateBuffer(temp2->getNumVerts(), temp2->getNumIndices(), TRUE); success = mStripsVerts->getVertexStrider(vertices) && mStripsVerts->getTexCoordStrider(texCoords) && mStripsVerts->getIndexStrider(indices); LLStrider<LLVector3> v; temp2->getVertexStrider(v); LLStrider<U16> ind; temp2->getIndexStrider(ind); if (success) { for (S32 i = 0; i < temp2->getNumVerts(); ++i) { LLVector3 vert = *v++; vert.normVec(); F32 z0 = vert.mV[2]; F32 x0 = vert.mV[0]; vert *= RADIUS; *vertices++ = vert; *texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f); } for (S32 i = 0; i < temp2->getNumIndices(); ++i) { *indices++ = *ind++; } } mStripsVerts->setBuffer(0); #endif updateStarColors(); updateStarGeometry(drawable); LLPipeline::sCompiles++; return TRUE; } void LLVOWLSky::drawStars(void) { // render the stars as a sphere centered at viewer camera if (mStarsVerts.notNull()) { mStarsVerts->setBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK); mStarsVerts->draw(LLRender::POINTS, getStarsNumIndices(), 0); } } void LLVOWLSky::drawDome(void) { if (mStripsVerts.empty()) { updateGeometry(mDrawable); } LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE); const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK; #if DOME_SLICES std::vector< LLPointer<LLVertexBuffer> >::const_iterator strips_vbo_iter, end_strips; end_strips = mStripsVerts.end(); for(strips_vbo_iter = mStripsVerts.begin(); strips_vbo_iter != end_strips; ++strips_vbo_iter) { LLVertexBuffer * strips_segment = strips_vbo_iter->get(); strips_segment->setBuffer(data_mask); strips_segment->drawRange( LLRender::TRIANGLE_STRIP, 0, strips_segment->getRequestedVerts()-1, strips_segment->getRequestedIndices(), 0); gPipeline.addTrianglesDrawn(strips_segment->getRequestedIndices() - 2); } #else mStripsVerts->setBuffer(data_mask); glDrawRangeElements( GL_TRIANGLES, 0, mStripsVerts->getNumVerts()-1, mStripsVerts->getNumIndices(), GL_UNSIGNED_SHORT, mStripsVerts->getIndicesPointer()); #endif LLVertexBuffer::unbind(); } void LLVOWLSky::initStars() { // Initialize star map mStarVertices.resize(getStarsNumVerts()); mStarColors.resize(getStarsNumVerts()); mStarIntensities.resize(getStarsNumVerts()); std::vector<LLVector3>::iterator v_p = mStarVertices.begin(); std::vector<LLColor4>::iterator v_c = mStarColors.begin(); std::vector<F32>::iterator v_i = mStarIntensities.begin(); U32 i; for (i = 0; i < getStarsNumVerts(); ++i) { v_p->mV[VX] = ll_frand() - 0.5f; v_p->mV[VY] = ll_frand() - 0.5f; // we only want stars on the top half of the dome! v_p->mV[VZ] = ll_frand()/2.f; v_p->normVec(); *v_p *= DISTANCE_TO_STARS; *v_i = llmin((F32)pow(ll_frand(),2.f) + 0.1f, 1.f); v_c->mV[VRED] = 0.75f + ll_frand() * 0.25f ; v_c->mV[VGREEN] = 1.f ; v_c->mV[VBLUE] = 0.75f + ll_frand() * 0.25f ; v_c->mV[VALPHA] = 1.f; v_c->clamp(); v_p++; v_c++; v_i++; } } void LLVOWLSky::buildFanBuffer(LLStrider<LLVector3> & vertices, LLStrider<LLVector2> & texCoords, LLStrider<U16> & indices) { const F32 RADIUS = LLWLParamManager::instance()->getDomeRadius(); U32 i, num_slices; F32 phi0, theta, x0, y0, z0; // paranoia checking for SL-55986/SL-55833 U32 count_verts = 0; U32 count_indices = 0; // apex *vertices++ = LLVector3(0.f, RADIUS, 0.f); *texCoords++ = LLVector2(0.5f, 0.5f); ++count_verts; num_slices = getNumSlices(); // and fan in a circle around the apex phi0 = calcPhi(1); for(i = 0; i < num_slices; ++i) { theta = 2.f * F_PI * float(i) / float(num_slices); // standard transformation from spherical to // rectangular coordinates x0 = sin(phi0) * cos(theta); y0 = cos(phi0); z0 = sin(phi0) * sin(theta); *vertices++ = LLVector3(x0 * RADIUS, y0 * RADIUS, z0 * RADIUS); // generate planar uv coordinates // note: x and z are transposed in order for things to animate // correctly in the global coordinate system where +x is east and // +y is north *texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f); ++count_verts; if (i > 0) { *indices++ = 0; *indices++ = i; *indices++ = i+1; count_indices += 3; } } // the last vertex of the last triangle should wrap around to // the beginning *indices++ = 0; *indices++ = num_slices; *indices++ = 1; count_indices += 3; // paranoia checking for SL-55986/SL-55833 llassert(getFanNumVerts() == count_verts); llassert(getFanNumIndices() == count_indices); } void LLVOWLSky::buildStripsBuffer(U32 begin_stack, U32 end_stack, LLStrider<LLVector3> & vertices, LLStrider<LLVector2> & texCoords, LLStrider<U16> & indices) { const F32 RADIUS = LLWLParamManager::instance()->getDomeRadius(); U32 i, j, num_slices, num_stacks; F32 phi0, theta, x0, y0, z0; // paranoia checking for SL-55986/SL-55833 U32 count_verts = 0; U32 count_indices = 0; num_slices = getNumSlices(); num_stacks = getNumStacks(); llassert(end_stack <= num_stacks); // stacks are iterated one-indexed since phi(0) was handled by the fan above for(i = begin_stack + 1; i <= end_stack+1; ++i) { phi0 = calcPhi(i); for(j = 0; j < num_slices; ++j) { theta = F_TWO_PI * (float(j) / float(num_slices)); // standard transformation from spherical to // rectangular coordinates x0 = sin(phi0) * cos(theta); y0 = cos(phi0); z0 = sin(phi0) * sin(theta); if (i == num_stacks-2) { *vertices++ = LLVector3(x0*RADIUS, y0*RADIUS-1024.f*2.f, z0*RADIUS); } else if (i == num_stacks-1) { *vertices++ = LLVector3(0, y0*RADIUS-1024.f*2.f, 0); } else { *vertices++ = LLVector3(x0 * RADIUS, y0 * RADIUS, z0 * RADIUS); } ++count_verts; // generate planar uv coordinates // note: x and z are transposed in order for things to animate // correctly in the global coordinate system where +x is east and // +y is north *texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f); } } //build triangle strip... *indices++ = 0 ; count_indices++ ; S32 k = 0 ; for(i = 1; i <= end_stack - begin_stack; ++i) { *indices++ = i * num_slices + k ; count_indices++ ; k = (k+1) % num_slices ; for(j = 0; j < num_slices ; ++j) { *indices++ = (i-1) * num_slices + k ; *indices++ = i * num_slices + k ; count_indices += 2 ; k = (k+1) % num_slices ; } if((--k) < 0) { k = num_slices - 1 ; } *indices++ = i * num_slices + k ; count_indices++ ; } } void LLVOWLSky::updateStarColors() { std::vector<LLColor4>::iterator v_c = mStarColors.begin(); std::vector<F32>::iterator v_i = mStarIntensities.begin(); std::vector<LLVector3>::iterator v_p = mStarVertices.begin(); const F32 var = 0.15f; const F32 min = 0.5f; //0.75f; const F32 sunclose_max = 0.6f; const F32 sunclose_range = 1 - sunclose_max; //F32 below_horizon = - llmin(0.0f, gSky.mVOSkyp->getToSunLast().mV[2]); //F32 brightness_factor = llmin(1.0f, below_horizon * 20); static S32 swap = 0; swap++; if ((swap % 2) == 1) { F32 intensity; // max intensity of each star U32 x; for (x = 0; x < getStarsNumVerts(); ++x) { F32 sundir_factor = 1; LLVector3 tostar = *v_p; tostar.normVec(); const F32 how_close_to_sun = tostar * gSky.mVOSkyp->getToSunLast(); if (how_close_to_sun > sunclose_max) { sundir_factor = (1 - how_close_to_sun) / sunclose_range; } intensity = *(v_i); F32 alpha = v_c->mV[VALPHA] + (ll_frand() - 0.5f) * var * intensity; if (alpha < min * intensity) { alpha = min * intensity; } if (alpha > intensity) { alpha = intensity; } //alpha *= brightness_factor * sundir_factor; alpha = llclamp(alpha, 0.f, 1.f); v_c->mV[VALPHA] = alpha; v_c++; v_i++; v_p++; } } } BOOL LLVOWLSky::updateStarGeometry(LLDrawable *drawable) { LLStrider<LLVector3> verticesp; LLStrider<LLColor4U> colorsp; LLStrider<U16> indicesp; if (mStarsVerts.isNull()) { mStarsVerts = new LLVertexBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK, GL_DYNAMIC_DRAW); mStarsVerts->allocateBuffer(getStarsNumVerts(), getStarsNumIndices(), TRUE); } BOOL success = mStarsVerts->getVertexStrider(verticesp) && mStarsVerts->getIndexStrider(indicesp) && mStarsVerts->getColorStrider(colorsp); if(!success) { llerrs << "Failed updating star geometry." << llendl; } // *TODO: fix LLStrider with a real prefix increment operator so it can be // used as a model of OutputIterator. -Brad // std::copy(mStarVertices.begin(), mStarVertices.end(), verticesp); for (U32 vtx = 0; vtx < getStarsNumVerts(); ++vtx) { *(verticesp++) = mStarVertices[vtx]; *(colorsp++) = LLColor4U(mStarColors[vtx]); *(indicesp++) = vtx; } mStarsVerts->setBuffer(0); return TRUE; }