/** * @file llvosky.cpp * @brief LLVOSky class implementation * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "llvosky.h" #include "llfeaturemanager.h" #include "llviewercontrol.h" #include "llframetimer.h" #include "llagent.h" #include "llagentcamera.h" #include "lldrawable.h" #include "llface.h" #include "llcubemap.h" #include "lldrawpoolsky.h" #include "lldrawpoolwater.h" #include "llglheaders.h" #include "llsky.h" #include "llviewercamera.h" #include "llviewertexturelist.h" #include "llviewerobjectlist.h" #include "llviewerregion.h" #include "llworld.h" #include "pipeline.h" #include "lldrawpoolwlsky.h" #include "llwlparammanager.h" #include "llwaterparammanager.h" #undef min #undef max static const S32 NUM_TILES_X = 8; static const S32 NUM_TILES_Y = 4; static const S32 NUM_TILES = NUM_TILES_X * NUM_TILES_Y; // Heavenly body constants static const F32 SUN_DISK_RADIUS = 0.5f; static const F32 MOON_DISK_RADIUS = SUN_DISK_RADIUS * 0.9f; static const F32 SUN_INTENSITY = 1e5; // Texture coordinates: static const LLVector2 TEX00 = LLVector2(0.f, 0.f); static const LLVector2 TEX01 = LLVector2(0.f, 1.f); static const LLVector2 TEX10 = LLVector2(1.f, 0.f); static const LLVector2 TEX11 = LLVector2(1.f, 1.f); // Exported globals LLUUID gSunTextureID = IMG_SUN; LLUUID gMoonTextureID = IMG_MOON; class LLFastLn { public: LLFastLn() { mTable[0] = 0; for( S32 i = 1; i < 257; i++ ) { mTable[i] = log((F32)i); } } F32 ln( F32 x ) { const F32 OO_255 = 0.003921568627450980392156862745098f; const F32 LN_255 = 5.5412635451584261462455391880218f; if( x < OO_255 ) { return log(x); } else if( x < 1 ) { x *= 255.f; S32 index = llfloor(x); F32 t = x - index; F32 low = mTable[index]; F32 high = mTable[index + 1]; return low + t * (high - low) - LN_255; } else if( x <= 255 ) { S32 index = llfloor(x); F32 t = x - index; F32 low = mTable[index]; F32 high = mTable[index + 1]; return low + t * (high - low); } else { return log( x ); } } F32 pow( F32 x, F32 y ) { return (F32)LL_FAST_EXP(y * ln(x)); } private: F32 mTable[257]; // index 0 is unused }; static LLFastLn gFastLn; // Functions used a lot. inline F32 LLHaze::calcPhase(const F32 cos_theta) const { const F32 g2 = mG * mG; const F32 den = 1 + g2 - 2 * mG * cos_theta; return (1 - g2) * gFastLn.pow(den, -1.5); } inline void color_pow(LLColor3 &col, const F32 e) { col.mV[0] = gFastLn.pow(col.mV[0], e); col.mV[1] = gFastLn.pow(col.mV[1], e); col.mV[2] = gFastLn.pow(col.mV[2], e); } inline LLColor3 color_norm(const LLColor3 &col) { const F32 m = color_max(col); if (m > 1.f) { return 1.f/m * col; } else return col; } inline void color_gamma_correct(LLColor3 &col) { const F32 gamma_inv = 1.f/1.2f; if (col.mV[0] != 0.f) { col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv); } if (col.mV[1] != 0.f) { col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv); } if (col.mV[2] != 0.f) { col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv); } } static LLColor3 calc_air_sca_sea_level() { static LLColor3 WAVE_LEN(675, 520, 445); static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN); static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1); static LLColor3 n4 = n21 * n21; static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f; static LLColor3 wl4 = wl2 * wl2; static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4; static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2); return dens_div_N * color_div ( mult_const, wl4 ); } // static constants. LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level(); F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel); F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f; /*************************************** SkyTex ***************************************/ S32 LLSkyTex::sComponents = 4; S32 LLSkyTex::sResolution = 64; F32 LLSkyTex::sInterpVal = 0.f; S32 LLSkyTex::sCurrent = 0; LLSkyTex::LLSkyTex() : mSkyData(NULL), mSkyDirs(NULL) { } void LLSkyTex::init() { mSkyData = new LLColor4[sResolution * sResolution]; mSkyDirs = new LLVector3[sResolution * sResolution]; for (S32 i = 0; i < 2; ++i) { mTexture[i] = LLViewerTextureManager::getLocalTexture(FALSE); mTexture[i]->setAddressMode(LLTexUnit::TAM_CLAMP); mImageRaw[i] = new LLImageRaw(sResolution, sResolution, sComponents); initEmpty(i); } } void LLSkyTex::cleanupGL() { mTexture[0] = NULL; mTexture[1] = NULL; } void LLSkyTex::restoreGL() { for (S32 i = 0; i < 2; i++) { mTexture[i] = LLViewerTextureManager::getLocalTexture(FALSE); mTexture[i]->setAddressMode(LLTexUnit::TAM_CLAMP); } } LLSkyTex::~LLSkyTex() { delete[] mSkyData; mSkyData = NULL; delete[] mSkyDirs; mSkyDirs = NULL; } void LLSkyTex::initEmpty(const S32 tex) { U8* data = mImageRaw[tex]->getData(); for (S32 i = 0; i < sResolution; ++i) { for (S32 j = 0; j < sResolution; ++j) { const S32 basic_offset = (i * sResolution + j); S32 offset = basic_offset * sComponents; data[offset] = 0; data[offset+1] = 0; data[offset+2] = 0; data[offset+3] = 255; mSkyData[basic_offset].setToBlack(); } } createGLImage(tex); } void LLSkyTex::create(const F32 brightness) { /// Brightness ignored for now. U8* data = mImageRaw[sCurrent]->getData(); for (S32 i = 0; i < sResolution; ++i) { for (S32 j = 0; j < sResolution; ++j) { const S32 basic_offset = (i * sResolution + j); S32 offset = basic_offset * sComponents; U32* pix = (U32*)(data + offset); LLColor4U temp = LLColor4U(mSkyData[basic_offset]); *pix = temp.asRGBA(); } } createGLImage(sCurrent); } void LLSkyTex::createGLImage(S32 which) { mTexture[which]->createGLTexture(0, mImageRaw[which], 0, TRUE, LLGLTexture::LOCAL); mTexture[which]->setAddressMode(LLTexUnit::TAM_CLAMP); } void LLSkyTex::bindTexture(BOOL curr) { gGL.getTexUnit(0)->bind(mTexture[getWhich(curr)], true); } /*************************************** Sky ***************************************/ F32 LLHeavenBody::sInterpVal = 0; S32 LLVOSky::sResolution = LLSkyTex::getResolution(); S32 LLVOSky::sTileResX = sResolution/NUM_TILES_X; S32 LLVOSky::sTileResY = sResolution/NUM_TILES_Y; LLVOSky::LLVOSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp) : LLStaticViewerObject(id, pcode, regionp, TRUE), mSun(SUN_DISK_RADIUS), mMoon(MOON_DISK_RADIUS), mBrightnessScale(1.f), mBrightnessScaleNew(0.f), mBrightnessScaleGuess(1.f), mWeatherChange(FALSE), mCloudDensity(0.2f), mWind(0.f), mForceUpdate(FALSE), mWorldScale(1.f), mBumpSunDir(0.f, 0.f, 1.f) { bool error = false; /// WL PARAMS dome_radius = 1.f; dome_offset_ratio = 0.f; sunlight_color = LLColor3(); ambient = LLColor3(); gamma = 1.f; lightnorm = LLVector4(); blue_density = LLColor3(); blue_horizon = LLColor3(); haze_density = 0.f; haze_horizon = 1.f; density_multiplier = 0.f; max_y = 0.f; glow = LLColor3(); cloud_shadow = 0.f; cloud_color = LLColor3(); cloud_scale = 0.f; cloud_pos_density1 = LLColor3(); cloud_pos_density2 = LLColor3(); mInitialized = FALSE; mbCanSelect = FALSE; mUpdateTimer.reset(); for (S32 i = 0; i < 6; i++) { mSkyTex[i].init(); mShinyTex[i].init(); } for (S32 i=0; i<FACE_COUNT; i++) { mFace[i] = NULL; } mCameraPosAgent = gAgentCamera.getCameraPositionAgent(); mAtmHeight = ATM_HEIGHT; mEarthCenter = LLVector3(mCameraPosAgent.mV[0], mCameraPosAgent.mV[1], -EARTH_RADIUS); mSunDefaultPosition = LLVector3(LLWLParamManager::getInstance()->mCurParams.getVector("lightnorm", error)); if (gSavedSettings.getBOOL("SkyOverrideSimSunPosition")) { initSunDirection(mSunDefaultPosition, LLVector3(0, 0, 0)); } mAmbientScale = gSavedSettings.getF32("SkyAmbientScale"); mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift"); mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f; mFogColor.mV[VALPHA] = 0.0f; mFogRatio = 1.2f; mSun.setIntensity(SUN_INTENSITY); mMoon.setIntensity(0.1f * SUN_INTENSITY); mSunTexturep = LLViewerTextureManager::getFetchedTexture(gSunTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI); mSunTexturep->setAddressMode(LLTexUnit::TAM_CLAMP); mMoonTexturep = LLViewerTextureManager::getFetchedTexture(gMoonTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI); mMoonTexturep->setAddressMode(LLTexUnit::TAM_CLAMP); mBloomTexturep = LLViewerTextureManager::getFetchedTexture(IMG_BLOOM1); mBloomTexturep->setNoDelete() ; mBloomTexturep->setAddressMode(LLTexUnit::TAM_CLAMP); mHeavenlyBodyUpdated = FALSE ; mDrawRefl = 0; mHazeConcentration = 0.f; mInterpVal = 0.f; } LLVOSky::~LLVOSky() { // Don't delete images - it'll get deleted by gTextureList on shutdown // This needs to be done for each texture mCubeMap = NULL; } void LLVOSky::init() { const F32 haze_int = color_intens(mHaze.calcSigSca(0)); mHazeConcentration = haze_int / (color_intens(LLHaze::calcAirSca(0)) + haze_int); calcAtmospherics(); // Initialize the cached normalized direction vectors for (S32 side = 0; side < 6; ++side) { for (S32 tile = 0; tile < NUM_TILES; ++tile) { initSkyTextureDirs(side, tile); createSkyTexture(side, tile); } } for (S32 i = 0; i < 6; ++i) { mSkyTex[i].create(1.0f); mShinyTex[i].create(1.0f); } initCubeMap(); mInitialized = true; mHeavenlyBodyUpdated = FALSE ; } void LLVOSky::initCubeMap() { std::vector<LLPointer<LLImageRaw> > images; for (S32 side = 0; side < 6; side++) { images.push_back(mShinyTex[side].getImageRaw()); } if (mCubeMap) { mCubeMap->init(images); } else if (gSavedSettings.getBOOL("RenderWater") && gGLManager.mHasCubeMap && LLCubeMap::sUseCubeMaps) { mCubeMap = new LLCubeMap(); mCubeMap->init(images); } gGL.getTexUnit(0)->disable(); } void LLVOSky::cleanupGL() { S32 i; for (i = 0; i < 6; i++) { mSkyTex[i].cleanupGL(); } if (getCubeMap()) { getCubeMap()->destroyGL(); } } void LLVOSky::restoreGL() { S32 i; for (i = 0; i < 6; i++) { mSkyTex[i].restoreGL(); } mSunTexturep = LLViewerTextureManager::getFetchedTexture(gSunTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI); mSunTexturep->setAddressMode(LLTexUnit::TAM_CLAMP); mMoonTexturep = LLViewerTextureManager::getFetchedTexture(gMoonTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI); mMoonTexturep->setAddressMode(LLTexUnit::TAM_CLAMP); mBloomTexturep = LLViewerTextureManager::getFetchedTexture(IMG_BLOOM1); mBloomTexturep->setNoDelete() ; mBloomTexturep->setAddressMode(LLTexUnit::TAM_CLAMP); calcAtmospherics(); if (gSavedSettings.getBOOL("RenderWater") && gGLManager.mHasCubeMap && LLCubeMap::sUseCubeMaps) { LLCubeMap* cube_map = getCubeMap(); std::vector<LLPointer<LLImageRaw> > images; for (S32 side = 0; side < 6; side++) { images.push_back(mShinyTex[side].getImageRaw()); } if(cube_map) { cube_map->init(images); mForceUpdate = TRUE; } } if (mDrawable) { gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE); } } void LLVOSky::initSkyTextureDirs(const S32 side, const S32 tile) { S32 tile_x = tile % NUM_TILES_X; S32 tile_y = tile / NUM_TILES_X; S32 tile_x_pos = tile_x * sTileResX; S32 tile_y_pos = tile_y * sTileResY; F32 coeff[3] = {0, 0, 0}; const S32 curr_coef = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X const S32 side_dir = (((side & 1) << 1) - 1); // even = -1, odd = 1 const S32 x_coef = (curr_coef + 1) % 3; const S32 y_coef = (x_coef + 1) % 3; coeff[curr_coef] = (F32)side_dir; F32 inv_res = 1.f/sResolution; S32 x, y; for (y = tile_y_pos; y < (tile_y_pos + sTileResY); ++y) { for (x = tile_x_pos; x < (tile_x_pos + sTileResX); ++x) { coeff[x_coef] = F32((x<<1) + 1) * inv_res - 1.f; coeff[y_coef] = F32((y<<1) + 1) * inv_res - 1.f; LLVector3 dir(coeff[0], coeff[1], coeff[2]); dir.normalize(); mSkyTex[side].setDir(dir, x, y); mShinyTex[side].setDir(dir, x, y); } } } void LLVOSky::createSkyTexture(const S32 side, const S32 tile) { S32 tile_x = tile % NUM_TILES_X; S32 tile_y = tile / NUM_TILES_X; S32 tile_x_pos = tile_x * sTileResX; S32 tile_y_pos = tile_y * sTileResY; S32 x, y; for (y = tile_y_pos; y < (tile_y_pos + sTileResY); ++y) { for (x = tile_x_pos; x < (tile_x_pos + sTileResX); ++x) { mSkyTex[side].setPixel(calcSkyColorInDir(mSkyTex[side].getDir(x, y)), x, y); mShinyTex[side].setPixel(calcSkyColorInDir(mSkyTex[side].getDir(x, y), true), x, y); } } } static inline LLColor3 componentDiv(LLColor3 const &left, LLColor3 const & right) { return LLColor3(left.mV[0]/right.mV[0], left.mV[1]/right.mV[1], left.mV[2]/right.mV[2]); } static inline LLColor3 componentMult(LLColor3 const &left, LLColor3 const & right) { return LLColor3(left.mV[0]*right.mV[0], left.mV[1]*right.mV[1], left.mV[2]*right.mV[2]); } static inline LLColor3 componentExp(LLColor3 const &v) { return LLColor3(exp(v.mV[0]), exp(v.mV[1]), exp(v.mV[2])); } static inline LLColor3 componentPow(LLColor3 const &v, F32 exponent) { return LLColor3(pow(v.mV[0], exponent), pow(v.mV[1], exponent), pow(v.mV[2], exponent)); } static inline LLColor3 componentSaturate(LLColor3 const &v) { return LLColor3(std::max(std::min(v.mV[0], 1.f), 0.f), std::max(std::min(v.mV[1], 1.f), 0.f), std::max(std::min(v.mV[2], 1.f), 0.f)); } static inline LLColor3 componentSqrt(LLColor3 const &v) { return LLColor3(sqrt(v.mV[0]), sqrt(v.mV[1]), sqrt(v.mV[2])); } static inline void componentMultBy(LLColor3 & left, LLColor3 const & right) { left.mV[0] *= right.mV[0]; left.mV[1] *= right.mV[1]; left.mV[2] *= right.mV[2]; } static inline LLColor3 colorMix(LLColor3 const & left, LLColor3 const & right, F32 amount) { return (left + ((right - left) * amount)); } static inline LLColor3 smear(F32 val) { return LLColor3(val, val, val); } void LLVOSky::initAtmospherics(void) { bool error; // uniform parameters for convenience dome_radius = LLWLParamManager::getInstance()->getDomeRadius(); dome_offset_ratio = LLWLParamManager::getInstance()->getDomeOffset(); sunlight_color = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("sunlight_color", error)); ambient = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("ambient", error)); //lightnorm = LLWLParamManager::getInstance()->mCurParams.getVector("lightnorm", error); gamma = LLWLParamManager::getInstance()->mCurParams.getFloat("gamma", error); blue_density = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("blue_density", error)); blue_horizon = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("blue_horizon", error)); haze_density = LLWLParamManager::getInstance()->mCurParams.getFloat("haze_density", error); haze_horizon = LLWLParamManager::getInstance()->mCurParams.getFloat("haze_horizon", error); density_multiplier = LLWLParamManager::getInstance()->mCurParams.getFloat("density_multiplier", error); max_y = LLWLParamManager::getInstance()->mCurParams.getFloat("max_y", error); glow = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("glow", error)); cloud_shadow = LLWLParamManager::getInstance()->mCurParams.getFloat("cloud_shadow", error); cloud_color = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("cloud_color", error)); cloud_scale = LLWLParamManager::getInstance()->mCurParams.getFloat("cloud_scale", error); cloud_pos_density1 = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("cloud_pos_density1", error)); cloud_pos_density2 = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("cloud_pos_density2", error)); // light norm is different. We need the sun's direction, not the light direction // which could be from the moon. And we need to clamp it // just like for the gpu LLVector3 sunDir = gSky.getSunDirection(); // CFR_TO_OGL lightnorm = LLVector4(sunDir.mV[1], sunDir.mV[2], sunDir.mV[0], 0); unclamped_lightnorm = lightnorm; if(lightnorm.mV[1] < -0.1f) { lightnorm.mV[1] = -0.1f; } } LLColor4 LLVOSky::calcSkyColorInDir(const LLVector3 &dir, bool isShiny) { F32 saturation = 0.3f; if (dir.mV[VZ] < -0.02f) { LLColor4 col = LLColor4(llmax(mFogColor[0],0.2f), llmax(mFogColor[1],0.2f), llmax(mFogColor[2],0.22f),0.f); if (isShiny) { LLColor3 desat_fog = LLColor3(mFogColor); F32 brightness = desat_fog.brightness(); // So that shiny somewhat shows up at night. if (brightness < 0.15f) { brightness = 0.15f; desat_fog = smear(0.15f); } LLColor3 greyscale = smear(brightness); desat_fog = desat_fog * saturation + greyscale * (1.0f - saturation); if (!gPipeline.canUseWindLightShaders()) { col = LLColor4(desat_fog, 0.f); } else { col = LLColor4(desat_fog * 0.5f, 0.f); } } float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]); x *= x; col.mV[0] *= x*x; col.mV[1] *= powf(x, 2.5f); col.mV[2] *= x*x*x; return col; } // undo OGL_TO_CFR_ROTATION and negate vertical direction. LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]); LLColor3 vary_HazeColor(0,0,0); LLColor3 vary_CloudColorSun(0,0,0); LLColor3 vary_CloudColorAmbient(0,0,0); F32 vary_CloudDensity(0); LLVector2 vary_HorizontalProjection[2]; vary_HorizontalProjection[0] = LLVector2(0,0); vary_HorizontalProjection[1] = LLVector2(0,0); calcSkyColorWLVert(Pn, vary_HazeColor, vary_CloudColorSun, vary_CloudColorAmbient, vary_CloudDensity, vary_HorizontalProjection); LLColor3 sky_color = calcSkyColorWLFrag(Pn, vary_HazeColor, vary_CloudColorSun, vary_CloudColorAmbient, vary_CloudDensity, vary_HorizontalProjection); if (isShiny) { F32 brightness = sky_color.brightness(); LLColor3 greyscale = smear(brightness); sky_color = sky_color * saturation + greyscale * (1.0f - saturation); sky_color *= (0.5f + 0.5f * brightness); } return LLColor4(sky_color, 0.0f); } // turn on floating point precision // in vs2003 for this function. Otherwise // sky is aliased looking 7:10 - 8:50 #if LL_MSVC && __MSVC_VER__ < 8 #pragma optimize("p", on) #endif void LLVOSky::calcSkyColorWLVert(LLVector3 & Pn, LLColor3 & vary_HazeColor, LLColor3 & vary_CloudColorSun, LLColor3 & vary_CloudColorAmbient, F32 & vary_CloudDensity, LLVector2 vary_HorizontalProjection[2]) { // project the direction ray onto the sky dome. F32 phi = acos(Pn[1]); F32 sinA = sin(F_PI - phi); if (fabsf(sinA) < 0.01f) { //avoid division by zero sinA = 0.01f; } F32 Plen = dome_radius * sin(F_PI + phi + asin(dome_offset_ratio * sinA)) / sinA; Pn *= Plen; vary_HorizontalProjection[0] = LLVector2(Pn[0], Pn[2]); vary_HorizontalProjection[0] /= - 2.f * Plen; // Set altitude if (Pn[1] > 0.f) { Pn *= (max_y / Pn[1]); } else { Pn *= (-32000.f / Pn[1]); } Plen = Pn.length(); Pn /= Plen; // Initialize temp variables LLColor3 sunlight = sunlight_color; // Sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes LLColor3 light_atten = (blue_density * 1.0 + smear(haze_density * 0.25f)) * (density_multiplier * max_y); // Calculate relative weights LLColor3 temp2(0.f, 0.f, 0.f); LLColor3 temp1 = blue_density + smear(haze_density); LLColor3 blue_weight = componentDiv(blue_density, temp1); LLColor3 haze_weight = componentDiv(smear(haze_density), temp1); // Compute sunlight from P & lightnorm (for long rays like sky) temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] ); temp2.mV[1] = 1.f / temp2.mV[1]; componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1])); // Distance temp2.mV[2] = Plen * density_multiplier; // Transparency (-> temp1) temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]); // Compute haze glow temp2.mV[0] = Pn * LLVector3(lightnorm); temp2.mV[0] = 1.f - temp2.mV[0]; // temp2.x is 0 at the sun and increases away from sun temp2.mV[0] = llmax(temp2.mV[0], .001f); // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.mV[0] *= glow.mV[0]; // Higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]); // glow.z should be negative, so we're doing a sort of (1 / "angle") function // Add "minimum anti-solar illumination" temp2.mV[0] += .25f; // Haze color above cloud vary_HazeColor = (blue_horizon * blue_weight * (sunlight + ambient) + componentMult(haze_horizon * haze_weight, sunlight * temp2.mV[0] + ambient) ); // Increase ambient when there are more clouds LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f; // Dim sunlight by cloud shadow percentage sunlight *= (1.f - cloud_shadow); // Haze color below cloud LLColor3 additiveColorBelowCloud = (blue_horizon * blue_weight * (sunlight + tmpAmbient) + componentMult(haze_horizon * haze_weight, sunlight * temp2.mV[0] + tmpAmbient) ); // Final atmosphere additive componentMultBy(vary_HazeColor, LLColor3::white - temp1); sunlight = sunlight_color; temp2.mV[1] = llmax(0.f, lightnorm[1] * 2.f); temp2.mV[1] = 1.f / temp2.mV[1]; componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1])); // Attenuate cloud color by atmosphere temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds // At horizon, blend high altitude sky color towards the darker color below the clouds vary_HazeColor += componentMult(additiveColorBelowCloud - vary_HazeColor, LLColor3::white - componentSqrt(temp1)); if (Pn[1] < 0.f) { // Eric's original: // LLColor3 dark_brown(0.143f, 0.129f, 0.114f); LLColor3 dark_brown(0.082f, 0.076f, 0.066f); LLColor3 brown(0.430f, 0.386f, 0.322f); LLColor3 sky_lighting = sunlight + ambient; F32 haze_brightness = vary_HazeColor.brightness(); if (Pn[1] < -0.05f) { vary_HazeColor = colorMix(dark_brown, brown, -Pn[1] * 0.9f) * sky_lighting * haze_brightness; } if (Pn[1] > -0.1f) { vary_HazeColor = colorMix(LLColor3::white * haze_brightness, vary_HazeColor, fabs((Pn[1] + 0.05f) * -20.f)); } } } #if LL_MSVC && __MSVC_VER__ < 8 #pragma optimize("p", off) #endif LLColor3 LLVOSky::calcSkyColorWLFrag(LLVector3 & Pn, LLColor3 & vary_HazeColor, LLColor3 & vary_CloudColorSun, LLColor3 & vary_CloudColorAmbient, F32 & vary_CloudDensity, LLVector2 vary_HorizontalProjection[2]) { LLColor3 res; LLColor3 color0 = vary_HazeColor; if (!gPipeline.canUseWindLightShaders()) { LLColor3 color1 = color0 * 2.0f; color1 = smear(1.f) - componentSaturate(color1); componentPow(color1, gamma); res = smear(1.f) - color1; } else { res = color0; } # ifndef LL_RELEASE_FOR_DOWNLOAD LLColor3 color2 = 2.f * color0; LLColor3 color3 = LLColor3(1.f, 1.f, 1.f) - componentSaturate(color2); componentPow(color3, gamma); color3 = LLColor3(1.f, 1.f, 1.f) - color3; static enum { OUT_DEFAULT = 0, OUT_SKY_BLUE = 1, OUT_RED = 2, OUT_PN = 3, OUT_HAZE = 4, } debugOut = OUT_DEFAULT; switch(debugOut) { case OUT_DEFAULT: break; case OUT_SKY_BLUE: res = LLColor3(0.4f, 0.4f, 0.9f); break; case OUT_RED: res = LLColor3(1.f, 0.f, 0.f); break; case OUT_PN: res = LLColor3(Pn[0], Pn[1], Pn[2]); break; case OUT_HAZE: res = vary_HazeColor; break; } # endif // LL_RELEASE_FOR_DOWNLOAD return res; } LLColor3 LLVOSky::createDiffuseFromWL(LLColor3 diffuse, LLColor3 ambient, LLColor3 sundiffuse, LLColor3 sunambient) { return componentMult(diffuse, sundiffuse) * 4.0f + componentMult(ambient, sundiffuse) * 2.0f + sunambient; } LLColor3 LLVOSky::createAmbientFromWL(LLColor3 ambient, LLColor3 sundiffuse, LLColor3 sunambient) { return (componentMult(ambient, sundiffuse) + sunambient) * 0.8f; } void LLVOSky::calcAtmospherics(void) { initAtmospherics(); LLColor3 vary_HazeColor; LLColor3 vary_SunlightColor; LLColor3 vary_AmbientColor; { // Initialize temp variables LLColor3 sunlight = sunlight_color; // Sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes LLColor3 light_atten = (blue_density * 1.0 + smear(haze_density * 0.25f)) * (density_multiplier * max_y); // Calculate relative weights LLColor3 temp2(0.f, 0.f, 0.f); LLColor3 temp1 = blue_density + smear(haze_density); LLColor3 blue_weight = componentDiv(blue_density, temp1); LLColor3 haze_weight = componentDiv(smear(haze_density), temp1); // Compute sunlight from P & lightnorm (for long rays like sky) /// USE only lightnorm. // temp2[1] = llmax(0.f, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] ); // and vary_sunlight will work properly with moon light F32 lighty = unclamped_lightnorm[1]; if(lighty < LLSky::NIGHTTIME_ELEVATION_COS) { lighty = -lighty; } temp2.mV[1] = llmax(0.f, lighty); if(temp2.mV[1] > 0.f) { temp2.mV[1] = 1.f / temp2.mV[1]; } componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1])); // Distance temp2.mV[2] = density_multiplier; // Transparency (-> temp1) temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]); // vary_AtmosAttenuation = temp1; //increase ambient when there are more clouds LLColor3 tmpAmbient = ambient + (smear(1.f) - ambient) * cloud_shadow * 0.5f; //haze color vary_HazeColor = (blue_horizon * blue_weight * (sunlight*(1.f - cloud_shadow) + tmpAmbient) + componentMult(haze_horizon * haze_weight, sunlight*(1.f - cloud_shadow) * temp2.mV[0] + tmpAmbient) ); //brightness of surface both sunlight and ambient vary_SunlightColor = componentMult(sunlight, temp1) * 1.f; vary_SunlightColor.clamp(); vary_SunlightColor = smear(1.0f) - vary_SunlightColor; vary_SunlightColor = componentPow(vary_SunlightColor, gamma); vary_SunlightColor = smear(1.0f) - vary_SunlightColor; vary_AmbientColor = componentMult(tmpAmbient, temp1) * 0.5; vary_AmbientColor.clamp(); vary_AmbientColor = smear(1.0f) - vary_AmbientColor; vary_AmbientColor = componentPow(vary_AmbientColor, gamma); vary_AmbientColor = smear(1.0f) - vary_AmbientColor; componentMultBy(vary_HazeColor, LLColor3(1.f, 1.f, 1.f) - temp1); } mSun.setColor(vary_SunlightColor); mMoon.setColor(LLColor3(1.0f, 1.0f, 1.0f)); mSun.renewDirection(); mSun.renewColor(); mMoon.renewDirection(); mMoon.renewColor(); float dp = getToSunLast() * LLVector3(0,0,1.f); if (dp < 0) { dp = 0; } // Since WL scales everything by 2, there should always be at least a 2:1 brightness ratio // between sunlight and point lights in windlight to normalize point lights. F32 sun_dynamic_range = llmax(gSavedSettings.getF32("RenderSunDynamicRange"), 0.0001f); LLWLParamManager::getInstance()->mSceneLightStrength = 2.0f * (1.0f + sun_dynamic_range * dp); mSunDiffuse = vary_SunlightColor; mSunAmbient = vary_AmbientColor; mMoonDiffuse = vary_SunlightColor; mMoonAmbient = vary_AmbientColor; mTotalAmbient = vary_AmbientColor; mTotalAmbient.setAlpha(1); mFadeColor = mTotalAmbient + (mSunDiffuse + mMoonDiffuse) * 0.5f; mFadeColor.setAlpha(0); } void LLVOSky::idleUpdate(LLAgent &agent, const F64 &time) { } BOOL LLVOSky::updateSky() { if (mDead || !(gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY))) { return TRUE; } if (mDead) { // It's dead. Don't update it. return TRUE; } if (gGLManager.mIsDisabled) { return TRUE; } static S32 next_frame = 0; const S32 total_no_tiles = 6 * NUM_TILES; const S32 cycle_frame_no = total_no_tiles + 1; if (mUpdateTimer.getElapsedTimeF32() > 0.001f) { mUpdateTimer.reset(); const S32 frame = next_frame; ++next_frame; next_frame = next_frame % cycle_frame_no; mInterpVal = (!mInitialized) ? 1 : (F32)next_frame / cycle_frame_no; // sInterpVal = (F32)next_frame / cycle_frame_no; LLSkyTex::setInterpVal( mInterpVal ); LLHeavenBody::setInterpVal( mInterpVal ); calcAtmospherics(); if (mForceUpdate || total_no_tiles == frame) { LLSkyTex::stepCurrent(); const static F32 LIGHT_DIRECTION_THRESHOLD = (F32) cos(DEG_TO_RAD * 1.f); const static F32 COLOR_CHANGE_THRESHOLD = 0.01f; LLVector3 direction = mSun.getDirection(); direction.normalize(); const F32 dot_lighting = direction * mLastLightingDirection; LLColor3 delta_color; delta_color.setVec(mLastTotalAmbient.mV[0] - mTotalAmbient.mV[0], mLastTotalAmbient.mV[1] - mTotalAmbient.mV[1], mLastTotalAmbient.mV[2] - mTotalAmbient.mV[2]); if ( mForceUpdate || (((dot_lighting < LIGHT_DIRECTION_THRESHOLD) || (delta_color.length() > COLOR_CHANGE_THRESHOLD) || !mInitialized) && !direction.isExactlyZero())) { mLastLightingDirection = direction; mLastTotalAmbient = mTotalAmbient; mInitialized = TRUE; if (mCubeMap) { if (mForceUpdate) { updateFog(LLViewerCamera::getInstance()->getFar()); for (int side = 0; side < 6; side++) { for (int tile = 0; tile < NUM_TILES; tile++) { createSkyTexture(side, tile); } } calcAtmospherics(); for (int side = 0; side < 6; side++) { LLImageRaw* raw1 = mSkyTex[side].getImageRaw(TRUE); LLImageRaw* raw2 = mSkyTex[side].getImageRaw(FALSE); raw2->copy(raw1); mSkyTex[side].createGLImage(mSkyTex[side].getWhich(FALSE)); raw1 = mShinyTex[side].getImageRaw(TRUE); raw2 = mShinyTex[side].getImageRaw(FALSE); raw2->copy(raw1); mShinyTex[side].createGLImage(mShinyTex[side].getWhich(FALSE)); } next_frame = 0; } } } /// *TODO really, sky texture and env map should be shared on a single texture /// I'll let Brad take this at some point // update the sky texture for (S32 i = 0; i < 6; ++i) { mSkyTex[i].create(1.0f); mShinyTex[i].create(1.0f); } // update the environment map if (mCubeMap) { std::vector<LLPointer<LLImageRaw> > images; images.reserve(6); for (S32 side = 0; side < 6; side++) { images.push_back(mShinyTex[side].getImageRaw(TRUE)); } mCubeMap->init(images); gGL.getTexUnit(0)->disable(); } gPipeline.markRebuild(gSky.mVOGroundp->mDrawable, LLDrawable::REBUILD_ALL, TRUE); // *TODO: decide whether we need to update the stars vertex buffer in LLVOWLSky -Brad. //gPipeline.markRebuild(gSky.mVOWLSkyp->mDrawable, LLDrawable::REBUILD_ALL, TRUE); mForceUpdate = FALSE; } else { const S32 side = frame / NUM_TILES; const S32 tile = frame % NUM_TILES; createSkyTexture(side, tile); } } if (mDrawable.notNull() && mDrawable->getFace(0) && !mDrawable->getFace(0)->getVertexBuffer()) { gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE); } return TRUE; } void LLVOSky::updateTextures() { if (mSunTexturep) { mSunTexturep->addTextureStats( (F32)MAX_IMAGE_AREA ); mMoonTexturep->addTextureStats( (F32)MAX_IMAGE_AREA ); mBloomTexturep->addTextureStats( (F32)MAX_IMAGE_AREA ); } } LLDrawable *LLVOSky::createDrawable(LLPipeline *pipeline) { pipeline->allocDrawable(this); mDrawable->setLit(FALSE); LLDrawPoolSky *poolp = (LLDrawPoolSky*) gPipeline.getPool(LLDrawPool::POOL_SKY); poolp->setSkyTex(mSkyTex); mDrawable->setRenderType(LLPipeline::RENDER_TYPE_SKY); for (S32 i = 0; i < 6; ++i) { mFace[FACE_SIDE0 + i] = mDrawable->addFace(poolp, NULL); } mFace[FACE_SUN] = mDrawable->addFace(poolp, mSunTexturep); mFace[FACE_MOON] = mDrawable->addFace(poolp, mMoonTexturep); mFace[FACE_BLOOM] = mDrawable->addFace(poolp, mBloomTexturep); return mDrawable; } //by bao //fake vertex buffer updating //to guarantee at least updating one VBO buffer every frame //to walk around the bug caused by ATI card --> DEV-3855 // void LLVOSky::createDummyVertexBuffer() { if(!mFace[FACE_DUMMY]) { LLDrawPoolSky *poolp = (LLDrawPoolSky*) gPipeline.getPool(LLDrawPool::POOL_SKY); mFace[FACE_DUMMY] = mDrawable->addFace(poolp, NULL); } if(!mFace[FACE_DUMMY]->getVertexBuffer()) { LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_DYNAMIC_DRAW_ARB); buff->allocateBuffer(1, 1, TRUE); mFace[FACE_DUMMY]->setVertexBuffer(buff); } } static LLTrace::BlockTimerStatHandle FTM_RENDER_FAKE_VBO_UPDATE("Fake VBO Update"); void LLVOSky::updateDummyVertexBuffer() { if(!LLVertexBuffer::sEnableVBOs) return ; if(mHeavenlyBodyUpdated) { mHeavenlyBodyUpdated = FALSE ; return ; } LL_RECORD_BLOCK_TIME(FTM_RENDER_FAKE_VBO_UPDATE) ; if(!mFace[FACE_DUMMY] || !mFace[FACE_DUMMY]->getVertexBuffer()) createDummyVertexBuffer() ; LLStrider<LLVector3> vertices ; mFace[FACE_DUMMY]->getVertexBuffer()->getVertexStrider(vertices, 0); *vertices = mCameraPosAgent ; mFace[FACE_DUMMY]->getVertexBuffer()->flush(); } //---------------------------------- //end of fake vertex buffer updating //---------------------------------- static LLTrace::BlockTimerStatHandle FTM_GEO_SKY("Sky Geometry"); BOOL LLVOSky::updateGeometry(LLDrawable *drawable) { LL_RECORD_BLOCK_TIME(FTM_GEO_SKY); if (mFace[FACE_REFLECTION] == NULL) { LLDrawPoolWater *poolp = (LLDrawPoolWater*) gPipeline.getPool(LLDrawPool::POOL_WATER); if (gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() != 0) { mFace[FACE_REFLECTION] = drawable->addFace(poolp, NULL); } } mCameraPosAgent = drawable->getPositionAgent(); mEarthCenter.mV[0] = mCameraPosAgent.mV[0]; mEarthCenter.mV[1] = mCameraPosAgent.mV[1]; LLVector3 v_agent[8]; for (S32 i = 0; i < 8; ++i) { F32 x_sgn = (i&1) ? 1.f : -1.f; F32 y_sgn = (i&2) ? 1.f : -1.f; F32 z_sgn = (i&4) ? 1.f : -1.f; v_agent[i] = HORIZON_DIST * SKY_BOX_MULT * LLVector3(x_sgn, y_sgn, z_sgn); } LLStrider<LLVector3> verticesp; LLStrider<LLVector3> normalsp; LLStrider<LLVector2> texCoordsp; LLStrider<U16> indicesp; U16 index_offset; LLFace *face; for (S32 side = 0; side < 6; ++side) { face = mFace[FACE_SIDE0 + side]; if (!face->getVertexBuffer()) { face->setSize(4, 6); face->setGeomIndex(0); face->setIndicesIndex(0); LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB); buff->allocateBuffer(4, 6, TRUE); face->setVertexBuffer(buff); index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp); S32 vtx = 0; S32 curr_bit = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X S32 side_dir = side & 1; // even - 0, odd - 1 S32 i_bit = (curr_bit + 2) % 3; S32 j_bit = (i_bit + 2) % 3; LLVector3 axis; axis.mV[curr_bit] = 1; face->mCenterAgent = (F32)((side_dir << 1) - 1) * axis * HORIZON_DIST; vtx = side_dir << curr_bit; *(verticesp++) = v_agent[vtx]; *(verticesp++) = v_agent[vtx | 1 << j_bit]; *(verticesp++) = v_agent[vtx | 1 << i_bit]; *(verticesp++) = v_agent[vtx | 1 << i_bit | 1 << j_bit]; *(texCoordsp++) = TEX00; *(texCoordsp++) = TEX01; *(texCoordsp++) = TEX10; *(texCoordsp++) = TEX11; // Triangles for each side *indicesp++ = index_offset + 0; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 3; *indicesp++ = index_offset + 0; *indicesp++ = index_offset + 3; *indicesp++ = index_offset + 2; buff->flush(); } } const LLVector3 &look_at = LLViewerCamera::getInstance()->getAtAxis(); LLVector3 right = look_at % LLVector3::z_axis; LLVector3 up = right % look_at; right.normalize(); up.normalize(); const static F32 elevation_factor = 0.0f/sResolution; const F32 cos_max_angle = cosHorizon(elevation_factor); mSun.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_SUN, TRUE, mSun, cos_max_angle, up, right)); mMoon.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_MOON, FALSE, mMoon, cos_max_angle, up, right)); const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.01f; // LLWorld::getInstance()->getWaterHeight() + 0.01f; const F32 camera_height = mCameraPosAgent.mV[2]; const F32 height_above_water = camera_height - water_height; BOOL sun_flag = FALSE; if (mSun.isVisible()) { if (mMoon.isVisible()) { sun_flag = look_at * mSun.getDirection() > 0; } else { sun_flag = TRUE; } } if (height_above_water > 0) { BOOL render_ref = gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() == 0; if (sun_flag) { setDrawRefl(0); if (render_ref) { updateReflectionGeometry(drawable, height_above_water, mSun); } } else { setDrawRefl(1); if (render_ref) { updateReflectionGeometry(drawable, height_above_water, mMoon); } } } else { setDrawRefl(-1); } LLPipeline::sCompiles++; return TRUE; } BOOL LLVOSky::updateHeavenlyBodyGeometry(LLDrawable *drawable, const S32 f, const BOOL is_sun, LLHeavenBody& hb, const F32 cos_max_angle, const LLVector3 &up, const LLVector3 &right) { mHeavenlyBodyUpdated = TRUE ; LLStrider<LLVector3> verticesp; LLStrider<LLVector3> normalsp; LLStrider<LLVector2> texCoordsp; LLStrider<U16> indicesp; S32 index_offset; LLFace *facep; LLVector3 to_dir = hb.getDirection(); if (!is_sun) { to_dir.mV[2] = llmax(to_dir.mV[2]+0.1f, 0.1f); } LLVector3 draw_pos = to_dir * HEAVENLY_BODY_DIST; LLVector3 hb_right = to_dir % LLVector3::z_axis; LLVector3 hb_up = hb_right % to_dir; hb_right.normalize(); hb_up.normalize(); //const static F32 cos_max_turn = sqrt(3.f) / 2; // 30 degrees //const F32 cos_turn_right = 1. / (llmax(cos_max_turn, hb_right * right)); //const F32 cos_turn_up = 1. / llmax(cos_max_turn, hb_up * up); const F32 enlargm_factor = ( 1 - to_dir.mV[2] ); F32 horiz_enlargement = 1 + enlargm_factor * 0.3f; F32 vert_enlargement = 1 + enlargm_factor * 0.2f; // Parameters for the water reflection hb.setU(HEAVENLY_BODY_FACTOR * horiz_enlargement * hb.getDiskRadius() * hb_right); hb.setV(HEAVENLY_BODY_FACTOR * vert_enlargement * hb.getDiskRadius() * hb_up); // End of parameters for the water reflection const LLVector3 scaled_right = HEAVENLY_BODY_DIST * hb.getU(); const LLVector3 scaled_up = HEAVENLY_BODY_DIST * hb.getV(); //const LLVector3 scaled_right = horiz_enlargement * HEAVENLY_BODY_SCALE * hb.getDiskRadius() * hb_right;//right; //const LLVector3 scaled_up = vert_enlargement * HEAVENLY_BODY_SCALE * hb.getDiskRadius() * hb_up;//up; LLVector3 v_clipped[4]; hb.corner(0) = draw_pos - scaled_right + scaled_up; hb.corner(1) = draw_pos - scaled_right - scaled_up; hb.corner(2) = draw_pos + scaled_right + scaled_up; hb.corner(3) = draw_pos + scaled_right - scaled_up; F32 t_left, t_right; if (!clip_quad_to_horizon(t_left, t_right, v_clipped, hb.corners(), cos_max_angle)) { hb.setVisible(FALSE); return FALSE; } hb.setVisible(TRUE); facep = mFace[f]; if (!facep->getVertexBuffer()) { facep->setSize(4, 6); LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB); if (!buff->allocateBuffer(facep->getGeomCount(), facep->getIndicesCount(), TRUE)) { LL_WARNS() << "Failed to allocate Vertex Buffer for vosky to " << facep->getGeomCount() << " vertices and " << facep->getIndicesCount() << " indices" << LL_ENDL; } facep->setGeomIndex(0); facep->setIndicesIndex(0); facep->setVertexBuffer(buff); } llassert(facep->getVertexBuffer()->getNumIndices() == 6); index_offset = facep->getGeometry(verticesp,normalsp,texCoordsp, indicesp); if (-1 == index_offset) { return TRUE; } for (S32 vtx = 0; vtx < 4; ++vtx) { hb.corner(vtx) = v_clipped[vtx]; *(verticesp++) = hb.corner(vtx) + mCameraPosAgent; } *(texCoordsp++) = TEX01; *(texCoordsp++) = TEX00; *(texCoordsp++) = TEX11; *(texCoordsp++) = TEX10; *indicesp++ = index_offset + 0; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 3; facep->getVertexBuffer()->flush(); if (is_sun) { if ((t_left > 0) && (t_right > 0)) { F32 t = (t_left + t_right) * 0.5f; mSun.setHorizonVisibility(0.5f * (1 + cos(t * F_PI))); } else { mSun.setHorizonVisibility(); } updateSunHaloGeometry(drawable); } return TRUE; } // Clips quads with top and bottom sides parallel to horizon. BOOL clip_quad_to_horizon(F32& t_left, F32& t_right, LLVector3 v_clipped[4], const LLVector3 v_corner[4], const F32 cos_max_angle) { t_left = clip_side_to_horizon(v_corner[1], v_corner[0], cos_max_angle); t_right = clip_side_to_horizon(v_corner[3], v_corner[2], cos_max_angle); if ((t_left >= 1) || (t_right >= 1)) { return FALSE; } //const BOOL left_clip = (t_left > 0); //const BOOL right_clip = (t_right > 0); //if (!left_clip && !right_clip) { for (S32 vtx = 0; vtx < 4; ++vtx) { v_clipped[vtx] = v_corner[vtx]; } } /* else { v_clipped[0] = v_corner[0]; v_clipped[1] = left_clip ? ((1 - t_left) * v_corner[1] + t_left * v_corner[0]) : v_corner[1]; v_clipped[2] = v_corner[2]; v_clipped[3] = right_clip ? ((1 - t_right) * v_corner[3] + t_right * v_corner[2]) : v_corner[3]; }*/ return TRUE; } F32 clip_side_to_horizon(const LLVector3& V0, const LLVector3& V1, const F32 cos_max_angle) { const LLVector3 V = V1 - V0; const F32 k2 = 1.f/(cos_max_angle * cos_max_angle) - 1; const F32 A = V.mV[0] * V.mV[0] + V.mV[1] * V.mV[1] - k2 * V.mV[2] * V.mV[2]; const F32 B = V0.mV[0] * V.mV[0] + V0.mV[1] * V.mV[1] - k2 * V0.mV[2] * V.mV[2]; const F32 C = V0.mV[0] * V0.mV[0] + V0.mV[1] * V0.mV[1] - k2 * V0.mV[2] * V0.mV[2]; if (fabs(A) < 1e-7) { return -0.1f; // v0 is cone origin and v1 is on the surface of the cone. } const F32 det = sqrt(B*B - A*C); const F32 t1 = (-B - det) / A; const F32 t2 = (-B + det) / A; const F32 z1 = V0.mV[2] + t1 * V.mV[2]; const F32 z2 = V0.mV[2] + t2 * V.mV[2]; if (z1 * cos_max_angle < 0) { return t2; } else if (z2 * cos_max_angle < 0) { return t1; } else if ((t1 < 0) || (t1 > 1)) { return t2; } else { return t1; } } void LLVOSky::updateSunHaloGeometry(LLDrawable *drawable ) { #if 0 const LLVector3* v_corner = mSun.corners(); LLStrider<LLVector3> verticesp; LLStrider<LLVector3> normalsp; LLStrider<LLVector2> texCoordsp; LLStrider<U16> indicesp; S32 index_offset; LLFace *face; const LLVector3 right = 2 * (v_corner[2] - v_corner[0]); LLVector3 up = 2 * (v_corner[2] - v_corner[3]); up.normalize(); F32 size = right.length(); up = size * up; const LLVector3 draw_pos = 0.25 * (v_corner[0] + v_corner[1] + v_corner[2] + v_corner[3]); LLVector3 v_glow_corner[4]; v_glow_corner[0] = draw_pos - right + up; v_glow_corner[1] = draw_pos - right - up; v_glow_corner[2] = draw_pos + right + up; v_glow_corner[3] = draw_pos + right - up; face = mFace[FACE_BLOOM]; if (face->mVertexBuffer.isNull()) { face->setSize(4, 6); face->setGeomIndex(0); face->setIndicesIndex(0); face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolWater::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB); face->mVertexBuffer->allocateBuffer(4, 6, TRUE); } index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp); if (-1 == index_offset) { return; } for (S32 vtx = 0; vtx < 4; ++vtx) { *(verticesp++) = v_glow_corner[vtx] + mCameraPosAgent; } *(texCoordsp++) = TEX01; *(texCoordsp++) = TEX00; *(texCoordsp++) = TEX11; *(texCoordsp++) = TEX10; *indicesp++ = index_offset + 0; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 3; #endif } F32 dtReflection(const LLVector3& p, F32 cos_dir_from_top, F32 sin_dir_from_top, F32 diff_angl_dir) { LLVector3 P = p; P.normalize(); const F32 cos_dir_angle = -P.mV[VZ]; const F32 sin_dir_angle = sqrt(1 - cos_dir_angle * cos_dir_angle); F32 cos_diff_angles = cos_dir_angle * cos_dir_from_top + sin_dir_angle * sin_dir_from_top; F32 diff_angles; if (cos_diff_angles > (1 - 1e-7)) diff_angles = 0; else diff_angles = acos(cos_diff_angles); const F32 rel_diff_angles = diff_angles / diff_angl_dir; const F32 dt = 1 - rel_diff_angles; return (dt < 0) ? 0 : dt; } F32 dtClip(const LLVector3& v0, const LLVector3& v1, F32 far_clip2) { F32 dt_clip; const LLVector3 otrezok = v1 - v0; const F32 A = otrezok.lengthSquared(); const F32 B = v0 * otrezok; const F32 C = v0.lengthSquared() - far_clip2; const F32 det = sqrt(B*B - A*C); dt_clip = (-B - det) / A; if ((dt_clip < 0) || (dt_clip > 1)) dt_clip = (-B + det) / A; return dt_clip; } void LLVOSky::updateReflectionGeometry(LLDrawable *drawable, F32 H, const LLHeavenBody& HB) { const LLVector3 &look_at = LLViewerCamera::getInstance()->getAtAxis(); // const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.001f; // LLWorld::getInstance()->getWaterHeight() + 0.001f; LLVector3 to_dir = HB.getDirection(); LLVector3 hb_pos = to_dir * (HORIZON_DIST - 10); LLVector3 to_dir_proj = to_dir; to_dir_proj.mV[VZ] = 0; to_dir_proj.normalize(); LLVector3 Right = to_dir % LLVector3::z_axis; LLVector3 Up = Right % to_dir; Right.normalize(); Up.normalize(); // finding angle between look direction and sprite. LLVector3 look_at_right = look_at % LLVector3::z_axis; look_at_right.normalize(); const static F32 cos_horizon_angle = cosHorizon(0.0f/sResolution); //const static F32 horizon_angle = acos(cos_horizon_angle); const F32 enlargm_factor = ( 1 - to_dir.mV[2] ); F32 horiz_enlargement = 1 + enlargm_factor * 0.3f; F32 vert_enlargement = 1 + enlargm_factor * 0.2f; F32 vert_size = vert_enlargement * HEAVENLY_BODY_SCALE * HB.getDiskRadius(); Right *= /*cos_lookAt_toDir */ horiz_enlargement * HEAVENLY_BODY_SCALE * HB.getDiskRadius(); Up *= vert_size; LLVector3 v_corner[2]; LLVector3 stretch_corner[2]; LLVector3 top_hb = v_corner[0] = stretch_corner[0] = hb_pos - Right + Up; v_corner[1] = stretch_corner[1] = hb_pos - Right - Up; F32 dt_hor, dt; dt_hor = clip_side_to_horizon(v_corner[1], v_corner[0], cos_horizon_angle); LLVector2 TEX0t = TEX00; LLVector2 TEX1t = TEX10; LLVector3 lower_corner = v_corner[1]; if ((dt_hor > 0) && (dt_hor < 1)) { TEX0t = LLVector2(0, dt_hor); TEX1t = LLVector2(1, dt_hor); lower_corner = (1 - dt_hor) * v_corner[1] + dt_hor * v_corner[0]; } else dt_hor = llmax(0.0f, llmin(1.0f, dt_hor)); top_hb.normalize(); const F32 cos_angle_of_view = fabs(top_hb.mV[VZ]); const F32 extension = llmin (5.0f, 1.0f / cos_angle_of_view); const S32 cols = 1; const S32 raws = lltrunc(16 * extension); S32 quads = cols * raws; stretch_corner[0] = lower_corner + extension * (stretch_corner[0] - lower_corner); stretch_corner[1] = lower_corner + extension * (stretch_corner[1] - lower_corner); dt = dt_hor; F32 cos_dir_from_top[2]; LLVector3 dir = stretch_corner[0]; dir.normalize(); cos_dir_from_top[0] = dir.mV[VZ]; dir = stretch_corner[1]; dir.normalize(); cos_dir_from_top[1] = dir.mV[VZ]; const F32 sin_dir_from_top = sqrt(1 - cos_dir_from_top[0] * cos_dir_from_top[0]); const F32 sin_dir_from_top2 = sqrt(1 - cos_dir_from_top[1] * cos_dir_from_top[1]); const F32 cos_diff_dir = cos_dir_from_top[0] * cos_dir_from_top[1] + sin_dir_from_top * sin_dir_from_top2; const F32 diff_angl_dir = acos(cos_diff_dir); v_corner[0] = stretch_corner[0]; v_corner[1] = lower_corner; LLVector2 TEX0tt = TEX01; LLVector2 TEX1tt = TEX11; LLVector3 v_refl_corner[4]; LLVector3 v_sprite_corner[4]; S32 vtx; for (vtx = 0; vtx < 2; ++vtx) { LLVector3 light_proj = v_corner[vtx]; light_proj.normalize(); const F32 z = light_proj.mV[VZ]; const F32 sin_angle = sqrt(1 - z * z); light_proj *= 1.f / sin_angle; light_proj.mV[VZ] = 0; const F32 to_refl_point = H * sin_angle / fabs(z); v_refl_corner[vtx] = to_refl_point * light_proj; } for (vtx = 2; vtx < 4; ++vtx) { const LLVector3 to_dir_vec = (to_dir_proj * v_refl_corner[vtx-2]) * to_dir_proj; v_refl_corner[vtx] = v_refl_corner[vtx-2] + 2 * (to_dir_vec - v_refl_corner[vtx-2]); } for (vtx = 0; vtx < 4; ++vtx) v_refl_corner[vtx].mV[VZ] -= H; S32 side = 0; LLVector3 refl_corn_norm[2]; refl_corn_norm[0] = v_refl_corner[1]; refl_corn_norm[0].normalize(); refl_corn_norm[1] = v_refl_corner[3]; refl_corn_norm[1].normalize(); F32 cos_refl_look_at[2]; cos_refl_look_at[0] = refl_corn_norm[0] * look_at; cos_refl_look_at[1] = refl_corn_norm[1] * look_at; if (cos_refl_look_at[1] > cos_refl_look_at[0]) { side = 2; } //const F32 far_clip = (LLViewerCamera::getInstance()->getFar() - 0.01) / far_clip_factor; const F32 far_clip = 512; const F32 far_clip2 = far_clip*far_clip; F32 dt_clip; F32 vtx_near2, vtx_far2; if ((vtx_far2 = v_refl_corner[side].lengthSquared()) > far_clip2) { // whole thing is sprite: reflection is beyond far clip plane. dt_clip = 1.1f; quads = 1; } else if ((vtx_near2 = v_refl_corner[side+1].lengthSquared()) > far_clip2) { // part is reflection, the rest is sprite. dt_clip = dtClip(v_refl_corner[side + 1], v_refl_corner[side], far_clip2); const LLVector3 P = (1 - dt_clip) * v_refl_corner[side + 1] + dt_clip * v_refl_corner[side]; F32 dt_tex = dtReflection(P, cos_dir_from_top[0], sin_dir_from_top, diff_angl_dir); dt = dt_tex; TEX0tt = LLVector2(0, dt); TEX1tt = LLVector2(1, dt); quads++; } else { // whole thing is correct reflection. dt_clip = -0.1f; } LLFace *face = mFace[FACE_REFLECTION]; if (!face->getVertexBuffer() || quads*4 != face->getGeomCount()) { face->setSize(quads * 4, quads * 6); LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolWater::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB); if (!buff->allocateBuffer(face->getGeomCount(), face->getIndicesCount(), TRUE)) { LL_WARNS() << "Failed to allocate Vertex Buffer for vosky to " << face->getGeomCount() << " vertices and " << face->getIndicesCount() << " indices" << LL_ENDL; } face->setIndicesIndex(0); face->setGeomIndex(0); face->setVertexBuffer(buff); } LLStrider<LLVector3> verticesp; LLStrider<LLVector3> normalsp; LLStrider<LLVector2> texCoordsp; LLStrider<U16> indicesp; S32 index_offset; index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp); if (-1 == index_offset) { return; } LLColor3 hb_col3 = HB.getInterpColor(); hb_col3.clamp(); const LLColor4 hb_col = LLColor4(hb_col3); const F32 min_attenuation = 0.4f; const F32 max_attenuation = 0.7f; const F32 attenuation = min_attenuation + cos_angle_of_view * (max_attenuation - min_attenuation); LLColor4 hb_refl_col = (1-attenuation) * hb_col + attenuation * mFogColor; face->setFaceColor(hb_refl_col); LLVector3 v_far[2]; v_far[0] = v_refl_corner[1]; v_far[1] = v_refl_corner[3]; if(dt_clip > 0) { if (dt_clip >= 1) { for (S32 vtx = 0; vtx < 4; ++vtx) { F32 ratio = far_clip / v_refl_corner[vtx].length(); *(verticesp++) = v_refl_corner[vtx] = ratio * v_refl_corner[vtx] + mCameraPosAgent; } const LLVector3 draw_pos = 0.25 * (v_refl_corner[0] + v_refl_corner[1] + v_refl_corner[2] + v_refl_corner[3]); face->mCenterAgent = draw_pos; } else { F32 ratio = far_clip / v_refl_corner[1].length(); v_sprite_corner[1] = v_refl_corner[1] * ratio; ratio = far_clip / v_refl_corner[3].length(); v_sprite_corner[3] = v_refl_corner[3] * ratio; v_refl_corner[1] = (1 - dt_clip) * v_refl_corner[1] + dt_clip * v_refl_corner[0]; v_refl_corner[3] = (1 - dt_clip) * v_refl_corner[3] + dt_clip * v_refl_corner[2]; v_sprite_corner[0] = v_refl_corner[1]; v_sprite_corner[2] = v_refl_corner[3]; for (S32 vtx = 0; vtx < 4; ++vtx) { *(verticesp++) = v_sprite_corner[vtx] + mCameraPosAgent; } const LLVector3 draw_pos = 0.25 * (v_refl_corner[0] + v_sprite_corner[1] + v_refl_corner[2] + v_sprite_corner[3]); face->mCenterAgent = draw_pos; } *(texCoordsp++) = TEX0tt; *(texCoordsp++) = TEX0t; *(texCoordsp++) = TEX1tt; *(texCoordsp++) = TEX1t; *indicesp++ = index_offset + 0; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 3; index_offset += 4; } if (dt_clip < 1) { if (dt_clip <= 0) { const LLVector3 draw_pos = 0.25 * (v_refl_corner[0] + v_refl_corner[1] + v_refl_corner[2] + v_refl_corner[3]); face->mCenterAgent = draw_pos; } const F32 raws_inv = 1.f/raws; const F32 cols_inv = 1.f/cols; LLVector3 left = v_refl_corner[0] - v_refl_corner[1]; LLVector3 right = v_refl_corner[2] - v_refl_corner[3]; left *= raws_inv; right *= raws_inv; F32 dt_raw = dt; for (S32 raw = 0; raw < raws; ++raw) { F32 dt_v0 = raw * raws_inv; F32 dt_v1 = (raw + 1) * raws_inv; const LLVector3 BL = v_refl_corner[1] + (F32)raw * left; const LLVector3 BR = v_refl_corner[3] + (F32)raw * right; const LLVector3 EL = BL + left; const LLVector3 ER = BR + right; dt_v0 = dt_raw; dt_raw = dt_v1 = dtReflection(EL, cos_dir_from_top[0], sin_dir_from_top, diff_angl_dir); for (S32 col = 0; col < cols; ++col) { F32 dt_h0 = col * cols_inv; *(verticesp++) = (1 - dt_h0) * EL + dt_h0 * ER + mCameraPosAgent; *(verticesp++) = (1 - dt_h0) * BL + dt_h0 * BR + mCameraPosAgent; F32 dt_h1 = (col + 1) * cols_inv; *(verticesp++) = (1 - dt_h1) * EL + dt_h1 * ER + mCameraPosAgent; *(verticesp++) = (1 - dt_h1) * BL + dt_h1 * BR + mCameraPosAgent; *(texCoordsp++) = LLVector2(dt_h0, dt_v1); *(texCoordsp++) = LLVector2(dt_h0, dt_v0); *(texCoordsp++) = LLVector2(dt_h1, dt_v1); *(texCoordsp++) = LLVector2(dt_h1, dt_v0); *indicesp++ = index_offset + 0; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 1; *indicesp++ = index_offset + 2; *indicesp++ = index_offset + 3; index_offset += 4; } } } face->getVertexBuffer()->flush(); } void LLVOSky::updateFog(const F32 distance) { if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG)) { if (!LLGLSLShader::sNoFixedFunction) { glFogf(GL_FOG_DENSITY, 0); glFogfv(GL_FOG_COLOR, (F32 *) &LLColor4::white.mV); glFogf(GL_FOG_END, 1000000.f); } return; } const BOOL hide_clip_plane = TRUE; LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f); const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f; // LLWorld::getInstance()->getWaterHeight(); F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2]; F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear(); camera_height += near_clip_height; F32 fog_distance = 0.f; LLColor3 res_color[3]; LLColor3 sky_fog_color = LLColor3::white; LLColor3 render_fog_color = LLColor3::white; LLVector3 tosun = getToSunLast(); const F32 tosun_z = tosun.mV[VZ]; tosun.mV[VZ] = 0.f; tosun.normalize(); LLVector3 perp_tosun; perp_tosun.mV[VX] = -tosun.mV[VY]; perp_tosun.mV[VY] = tosun.mV[VX]; LLVector3 tosun_45 = tosun + perp_tosun; tosun_45.normalize(); F32 delta = 0.06f; tosun.mV[VZ] = delta; perp_tosun.mV[VZ] = delta; tosun_45.mV[VZ] = delta; tosun.normalize(); perp_tosun.normalize(); tosun_45.normalize(); // Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun. initAtmospherics(); res_color[0] = calcSkyColorInDir(tosun); res_color[1] = calcSkyColorInDir(perp_tosun); res_color[2] = calcSkyColorInDir(tosun_45); sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]); F32 full_off = -0.25f; F32 full_on = 0.00f; F32 on = (tosun_z - full_off) / (full_on - full_off); on = llclamp(on, 0.01f, 1.f); sky_fog_color *= 0.5f * on; // We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ??? S32 i; for (i = 0; i < 3; i++) { sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]); } color_gamma_correct(sky_fog_color); render_fog_color = sky_fog_color; F32 fog_density = 0.f; fog_distance = mFogRatio * distance; if (camera_height > water_height) { LLColor4 fog(render_fog_color); if (!LLGLSLShader::sNoFixedFunction) { glFogfv(GL_FOG_COLOR, fog.mV); } mGLFogCol = fog; if (hide_clip_plane) { // For now, set the density to extend to the cull distance. const F32 f_log = 2.14596602628934723963618357029f; // sqrt(fabs(log(0.01f))) fog_density = f_log/fog_distance; if (!LLGLSLShader::sNoFixedFunction) { glFogi(GL_FOG_MODE, GL_EXP2); } } else { const F32 f_log = 4.6051701859880913680359829093687f; // fabs(log(0.01f)) fog_density = (f_log)/fog_distance; if (!LLGLSLShader::sNoFixedFunction) { glFogi(GL_FOG_MODE, GL_EXP); } } } else { F32 depth = water_height - camera_height; // get the water param manager variables float water_fog_density = LLWaterParamManager::getInstance()->getFogDensity(); LLColor4 water_fog_color(LLDrawPoolWater::sWaterFogColor.mV); // adjust the color based on depth. We're doing linear approximations float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale"); float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f), gSavedSettings.getF32("WaterGLFogDepthFloor")); LLColor4 fogCol = water_fog_color * depth_modifier; fogCol.setAlpha(1); // set the gl fog color mGLFogCol = fogCol; // set the density based on what the shaders use fog_density = water_fog_density * gSavedSettings.getF32("WaterGLFogDensityScale"); if (!LLGLSLShader::sNoFixedFunction) { glFogfv(GL_FOG_COLOR, (F32 *) &fogCol.mV); glFogi(GL_FOG_MODE, GL_EXP2); } } mFogColor = sky_fog_color; mFogColor.setAlpha(1); LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f; if (!LLGLSLShader::sNoFixedFunction) { LLGLSFog gls_fog; glFogf(GL_FOG_END, fog_distance*2.2f); glFogf(GL_FOG_DENSITY, fog_density); glHint(GL_FOG_HINT, GL_NICEST); } stop_glerror(); } // Functions used a lot. F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply) { F32 mv = color_max(col); if (0 == mv) { return 0; } col *= 1.f / mv; color_pow(col, e); if (postmultiply) { col *= mv; } return mv; } // Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis. // Range of output is 0.0f to 2pi //359.99999...f // Returns 0.0f when "v" = +/- z_axis. F32 azimuth(const LLVector3 &v) { F32 azimuth = 0.0f; if (v.mV[VX] == 0.0f) { if (v.mV[VY] > 0.0f) { azimuth = F_PI * 0.5f; } else if (v.mV[VY] < 0.0f) { azimuth = F_PI * 1.5f;// 270.f; } } else { azimuth = (F32) atan(v.mV[VY] / v.mV[VX]); if (v.mV[VX] < 0.0f) { azimuth += F_PI; } else if (v.mV[VY] < 0.0f) { azimuth += F_PI * 2; } } return azimuth; } void LLVOSky::initSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity) { LLVector3 sun_direction = (sun_dir.length() == 0) ? LLVector3::x_axis : sun_dir; sun_direction.normalize(); mSun.setDirection(sun_direction); mSun.renewDirection(); mSun.setAngularVelocity(sun_ang_velocity); mMoon.setDirection(-mSun.getDirection()); mMoon.renewDirection(); mLastLightingDirection = mSun.getDirection(); calcAtmospherics(); if ( !mInitialized ) { init(); LLSkyTex::stepCurrent(); } } void LLVOSky::setSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity) { LLVector3 sun_direction = (sun_dir.length() == 0) ? LLVector3::x_axis : sun_dir; sun_direction.normalize(); // Push the sun "South" as it approaches directly overhead so that we can always see bump mapping // on the upward facing faces of cubes. LLVector3 newDir = sun_direction; // Same as dot product with the up direction + clamp. F32 sunDot = llmax(0.f, newDir.mV[2]); sunDot *= sunDot; // Create normalized vector that has the sunDir pushed south about an hour and change. LLVector3 adjustedDir = (newDir + LLVector3(0.f, -0.70711f, 0.70711f)) * 0.5f; // Blend between normal sun dir and adjusted sun dir based on how close we are // to having the sun overhead. mBumpSunDir = adjustedDir * sunDot + newDir * (1.0f - sunDot); mBumpSunDir.normalize(); F32 dp = mLastLightingDirection * sun_direction; mSun.setDirection(sun_direction); mSun.setAngularVelocity(sun_ang_velocity); mMoon.setDirection(-sun_direction); calcAtmospherics(); if (dp < 0.995f) { //the sun jumped a great deal, update immediately mForceUpdate = TRUE; } }