/** * @file llvocache.cpp * @brief Cache of objects on the viewer. * * $LicenseInfo:firstyear=2003&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "llvocache.h" #include "llerror.h" #include "llregionhandle.h" #include "llviewercontrol.h" #include "llviewerobjectlist.h" #include "lldrawable.h" #include "llviewerregion.h" #include "pipeline.h" #include "llagentcamera.h" #include "llmemory.h" //static variables U32 LLVOCacheEntry::sMinFrameRange = 0; F32 LLVOCacheEntry::sNearRadius = 1.0f; F32 LLVOCacheEntry::sRearFarRadius = 1.0f; F32 LLVOCacheEntry::sFrontPixelThreshold = 1.0f; F32 LLVOCacheEntry::sRearPixelThreshold = 1.0f; BOOL LLVOCachePartition::sNeedsOcclusionCheck = FALSE; BOOL check_read(LLAPRFile* apr_file, void* src, S32 n_bytes) { return apr_file->read(src, n_bytes) == n_bytes ; } BOOL check_write(LLAPRFile* apr_file, void* src, S32 n_bytes) { return apr_file->write(src, n_bytes) == n_bytes ; } //--------------------------------------------------------------------------- // LLVOCacheEntry //--------------------------------------------------------------------------- LLVOCacheEntry::LLVOCacheEntry(U32 local_id, U32 crc, LLDataPackerBinaryBuffer &dp) : LLTrace::MemTrackable<LLVOCacheEntry, 16>("LLVOCacheEntry"), LLViewerOctreeEntryData(LLViewerOctreeEntry::LLVOCACHEENTRY), mLocalID(local_id), mCRC(crc), mUpdateFlags(-1), mHitCount(0), mDupeCount(0), mCRCChangeCount(0), mState(INACTIVE), mSceneContrib(0.f), mValid(TRUE), mParentID(0), mBSphereRadius(-1.0f) { mBuffer = new U8[dp.getBufferSize()]; mDP.assignBuffer(mBuffer, dp.getBufferSize()); mDP = dp; } LLVOCacheEntry::LLVOCacheEntry() : LLTrace::MemTrackable<LLVOCacheEntry, 16>("LLVOCacheEntry"), LLViewerOctreeEntryData(LLViewerOctreeEntry::LLVOCACHEENTRY), mLocalID(0), mCRC(0), mUpdateFlags(-1), mHitCount(0), mDupeCount(0), mCRCChangeCount(0), mBuffer(NULL), mState(INACTIVE), mSceneContrib(0.f), mValid(TRUE), mParentID(0), mBSphereRadius(-1.0f) { mDP.assignBuffer(mBuffer, 0); } LLVOCacheEntry::LLVOCacheEntry(LLAPRFile* apr_file) : LLTrace::MemTrackable<LLVOCacheEntry, 16>("LLVOCacheEntry"), LLViewerOctreeEntryData(LLViewerOctreeEntry::LLVOCACHEENTRY), mBuffer(NULL), mUpdateFlags(-1), mState(INACTIVE), mSceneContrib(0.f), mValid(FALSE), mParentID(0), mBSphereRadius(-1.0f) { S32 size = -1; BOOL success; mDP.assignBuffer(mBuffer, 0); success = check_read(apr_file, &mLocalID, sizeof(U32)); if(success) { success = check_read(apr_file, &mCRC, sizeof(U32)); } if(success) { success = check_read(apr_file, &mHitCount, sizeof(S32)); } if(success) { success = check_read(apr_file, &mDupeCount, sizeof(S32)); } if(success) { success = check_read(apr_file, &mCRCChangeCount, sizeof(S32)); } if(success) { success = check_read(apr_file, &size, sizeof(S32)); // Corruption in the cache entries if ((size > 10000) || (size < 1)) { // We've got a bogus size, skip reading it. // We won't bother seeking, because the rest of this file // is likely bogus, and will be tossed anyway. LL_WARNS() << "Bogus cache entry, size " << size << ", aborting!" << LL_ENDL; success = FALSE; } } if(success && size > 0) { mBuffer = new U8[size]; success = check_read(apr_file, mBuffer, size); if(success) { mDP.assignBuffer(mBuffer, size); } else { delete[] mBuffer ; mBuffer = NULL ; } } if(!success) { mLocalID = 0; mCRC = 0; mHitCount = 0; mDupeCount = 0; mCRCChangeCount = 0; mBuffer = NULL; mEntry = NULL; mState = INACTIVE; } } LLVOCacheEntry::~LLVOCacheEntry() { mDP.freeBuffer(); } void LLVOCacheEntry::updateEntry(U32 crc, LLDataPackerBinaryBuffer &dp) { if(mCRC != crc) { mCRC = crc; mCRCChangeCount++; } mDP.freeBuffer(); llassert_always(dp.getBufferSize() > 0); mBuffer = new U8[dp.getBufferSize()]; mDP.assignBuffer(mBuffer, dp.getBufferSize()); mDP = dp; } void LLVOCacheEntry::setParentID(U32 id) { if(mParentID != id) { removeAllChildren(); mParentID = id; } } void LLVOCacheEntry::removeAllChildren() { if(mChildrenList.empty()) { return; } for(vocache_entry_set_t::iterator iter = mChildrenList.begin(); iter != mChildrenList.end(); ++iter) { (*iter)->setParentID(0); } mChildrenList.clear(); return; } //virtual void LLVOCacheEntry::setOctreeEntry(LLViewerOctreeEntry* entry) { if(!entry && mDP.getBufferSize() > 0) { LLUUID fullid; LLViewerObject::unpackUUID(&mDP, fullid, "ID"); LLViewerObject* obj = gObjectList.findObject(fullid); if(obj && obj->mDrawable) { entry = obj->mDrawable->getEntry(); } } LLViewerOctreeEntryData::setOctreeEntry(entry); } void LLVOCacheEntry::setState(U32 state) { if(state > LOW_BITS) //special states { mState |= (HIGH_BITS & state); return; } // //otherwise LOW_BITS states // clearState(LOW_BITS); mState |= (LOW_BITS & state); if(getState() == ACTIVE) { const S32 MIN_INTERVAL = 64 + sMinFrameRange; U32 last_visible = getVisible(); setVisible(); U32 cur_visible = getVisible(); if(cur_visible - last_visible > MIN_INTERVAL || cur_visible < MIN_INTERVAL) { mLastCameraUpdated = 0; //reset } else { mLastCameraUpdated = LLViewerRegion::sLastCameraUpdated; } } } void LLVOCacheEntry::addChild(LLVOCacheEntry* entry) { llassert(entry != NULL); llassert(entry->getParentID() == mLocalID); llassert(entry->getEntry() != NULL); if(!entry || !entry->getEntry() || entry->getParentID() != mLocalID) { return; } mChildrenList.insert(entry); //update parent bbox if(getEntry() != NULL && isState(INACTIVE)) { updateParentBoundingInfo(entry); resetVisible(); } } void LLVOCacheEntry::removeChild(LLVOCacheEntry* entry) { entry->setParentID(0); vocache_entry_set_t::iterator iter = mChildrenList.find(entry); if(iter != mChildrenList.end()) { mChildrenList.erase(iter); } } //remove the first child, and return it. LLVOCacheEntry* LLVOCacheEntry::getChild() { LLVOCacheEntry* child = NULL; vocache_entry_set_t::iterator iter = mChildrenList.begin(); if(iter != mChildrenList.end()) { child = *iter; mChildrenList.erase(iter); } return child; } LLDataPackerBinaryBuffer *LLVOCacheEntry::getDP() { if (mDP.getBufferSize() == 0) { //LL_INFOS() << "Not getting cache entry, invalid!" << LL_ENDL; return NULL; } return &mDP; } void LLVOCacheEntry::recordHit() { mHitCount++; } void LLVOCacheEntry::dump() const { LL_INFOS() << "local " << mLocalID << " crc " << mCRC << " hits " << mHitCount << " dupes " << mDupeCount << " change " << mCRCChangeCount << LL_ENDL; } BOOL LLVOCacheEntry::writeToFile(LLAPRFile* apr_file) const { BOOL success; success = check_write(apr_file, (void*)&mLocalID, sizeof(U32)); if(success) { success = check_write(apr_file, (void*)&mCRC, sizeof(U32)); } if(success) { success = check_write(apr_file, (void*)&mHitCount, sizeof(S32)); } if(success) { success = check_write(apr_file, (void*)&mDupeCount, sizeof(S32)); } if(success) { success = check_write(apr_file, (void*)&mCRCChangeCount, sizeof(S32)); } if(success) { S32 size = mDP.getBufferSize(); success = check_write(apr_file, (void*)&size, sizeof(S32)); if(success) { success = check_write(apr_file, (void*)mBuffer, size); } } return success ; } //static void LLVOCacheEntry::updateDebugSettings() { static LLFrameTimer timer; if(timer.getElapsedTimeF32() < 1.0f) //update frequency once per second. { return; } timer.reset(); //the number of frames invisible objects stay in memory static LLCachedControl<U32> inv_obj_time(gSavedSettings,"NonvisibleObjectsInMemoryTime"); sMinFrameRange = inv_obj_time - 1; //make 0 to be the maximum //min radius: all objects within this radius remain loaded in memory static LLCachedControl<F32> min_radius(gSavedSettings,"SceneLoadMinRadius"); sNearRadius = llmin((F32)min_radius, gAgentCamera.mDrawDistance); //can not exceed the draw distance sNearRadius = llmax(sNearRadius, 1.f); //minimum value is 1.0m //objects within the view frustum whose visible area is greater than this threshold will be loaded static LLCachedControl<F32> front_pixel_threshold(gSavedSettings,"SceneLoadFrontPixelThreshold"); sFrontPixelThreshold = front_pixel_threshold; //objects out of the view frustum whose visible area is greater than this threshold will remain loaded static LLCachedControl<F32> rear_pixel_threshold(gSavedSettings,"SceneLoadRearPixelThreshold"); sRearPixelThreshold = rear_pixel_threshold; sRearPixelThreshold = llmax(sRearPixelThreshold, sFrontPixelThreshold); //can not be smaller than sFrontPixelThreshold. // a percentage of draw distance beyond which all objects outside of view frustum will be unloaded, regardless of pixel threshold static LLCachedControl<F32> rear_max_radius_frac(gSavedSettings,"SceneLoadRearMaxRadiusFraction"); sRearFarRadius = llmax(rear_max_radius_frac * gAgentCamera.mDrawDistance / 100.f, 1.0f); //minimum value is 1.0m sRearFarRadius = llmax(sRearFarRadius, (F32)min_radius); //can not be less than "SceneLoadMinRadius". sRearFarRadius = llmin(sRearFarRadius, gAgentCamera.mDrawDistance); //can not be more than the draw distance. //make the above parameters adaptive to memory usage //starts to put restrictions from low_mem_bound_MB, apply tightest restrictions when hits high_mem_bound_MB static LLCachedControl<U32> low_mem_bound_MB(gSavedSettings,"SceneLoadLowMemoryBound"); static LLCachedControl<U32> high_mem_bound_MB(gSavedSettings,"SceneLoadHighMemoryBound"); LLMemory::updateMemoryInfo() ; U32 allocated_mem = LLMemory::getAllocatedMemKB().value(); allocated_mem /= 1024; //convert to MB. if(allocated_mem < low_mem_bound_MB) { return; } F32 adjust_factor = llmax(0.f, (F32)(high_mem_bound_MB - allocated_mem) / (high_mem_bound_MB - low_mem_bound_MB)); sRearFarRadius = llmin(adjust_factor * sRearFarRadius, 96.f); //[0.f, 96.f] sMinFrameRange = (U32)llclamp(adjust_factor * sMinFrameRange, 10.f, 64.f); //[10, 64] sNearRadius = llmax(adjust_factor * sNearRadius, 1.0f); } //static F32 LLVOCacheEntry::getSquaredPixelThreshold(bool is_front) { F32 threshold; if(is_front) { threshold = sFrontPixelThreshold; } else { threshold = sRearPixelThreshold; } //object projected area threshold F32 pixel_meter_ratio = LLViewerCamera::getInstance()->getPixelMeterRatio(); F32 projection_threshold = pixel_meter_ratio > 0.f ? threshold / pixel_meter_ratio : 0.f; projection_threshold *= projection_threshold; return projection_threshold; } bool LLVOCacheEntry::isAnyVisible(const LLVector4a& camera_origin, const LLVector4a& local_camera_origin, F32 dist_threshold) { LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)getGroup(); if(!group) { return false; } //any visible bool vis = group->isAnyRecentlyVisible(); //not ready to remove if(!vis) { S32 cur_vis = llmax(group->getAnyVisible(), (S32)getVisible()); vis = (cur_vis + sMinFrameRange > LLViewerOctreeEntryData::getCurrentFrame()); } //within the back sphere if(!vis && !mParentID && !group->isOcclusionState(LLOcclusionCullingGroup::OCCLUDED)) { LLVector4a lookAt; if(mBSphereRadius > 0.f) { lookAt.setSub(mBSphereCenter, local_camera_origin); dist_threshold += mBSphereRadius; } else { lookAt.setSub(getPositionGroup(), camera_origin); dist_threshold += getBinRadius(); } vis = (lookAt.dot3(lookAt).getF32() < dist_threshold * dist_threshold); } return vis; } void LLVOCacheEntry::calcSceneContribution(const LLVector4a& camera_origin, bool needs_update, U32 last_update, F32 max_dist) { if(!needs_update && getVisible() >= last_update) { return; //no need to update } LLVector4a lookAt; lookAt.setSub(getPositionGroup(), camera_origin); F32 distance = lookAt.getLength3().getF32(); distance -= sNearRadius; if(distance <= 0.f) { //nearby objects, set a large number const F32 LARGE_SCENE_CONTRIBUTION = 1000.f; //a large number to force to load the object. mSceneContrib = LARGE_SCENE_CONTRIBUTION; } else { F32 rad = getBinRadius(); max_dist += rad; if(distance + sNearRadius < max_dist) { mSceneContrib = (rad * rad) / distance; } else { mSceneContrib = 0.f; //out of draw distance, not to load } } setVisible(); } void LLVOCacheEntry::saveBoundingSphere() { mBSphereCenter = getPositionGroup(); mBSphereRadius = getBinRadius(); } void LLVOCacheEntry::setBoundingInfo(const LLVector3& pos, const LLVector3& scale) { LLVector4a center, newMin, newMax; center.load3(pos.mV); LLVector4a size; size.load3(scale.mV); newMin.setSub(center, size); newMax.setAdd(center, size); setPositionGroup(center); setSpatialExtents(newMin, newMax); if(getNumOfChildren() > 0) //has children { updateParentBoundingInfo(); } else { setBinRadius(llmin(size.getLength3().getF32() * 4.f, 256.f)); } } //make the parent bounding box to include all children void LLVOCacheEntry::updateParentBoundingInfo() { if(mChildrenList.empty()) { return; } for(vocache_entry_set_t::iterator iter = mChildrenList.begin(); iter != mChildrenList.end(); ++iter) { updateParentBoundingInfo(*iter); } resetVisible(); } //make the parent bounding box to include this child void LLVOCacheEntry::updateParentBoundingInfo(const LLVOCacheEntry* child) { const LLVector4a* child_exts = child->getSpatialExtents(); LLVector4a newMin, newMax; newMin = child_exts[0]; newMax = child_exts[1]; //move to regional space. { const LLVector4a& parent_pos = getPositionGroup(); newMin.add(parent_pos); newMax.add(parent_pos); } //update parent's bbox(min, max) const LLVector4a* parent_exts = getSpatialExtents(); update_min_max(newMin, newMax, parent_exts[0]); update_min_max(newMin, newMax, parent_exts[1]); for(S32 i = 0; i < 4; i++) { llclamp(newMin[i], 0.f, 256.f); llclamp(newMax[i], 0.f, 256.f); } setSpatialExtents(newMin, newMax); //update parent's bbox center LLVector4a center; center.setAdd(newMin, newMax); center.mul(0.5f); setPositionGroup(center); //update parent's bbox size vector LLVector4a size; size.setSub(newMax, newMin); size.mul(0.5f); setBinRadius(llmin(size.getLength3().getF32() * 4.f, 256.f)); } //------------------------------------------------------------------- //LLVOCachePartition //------------------------------------------------------------------- LLVOCacheGroup::~LLVOCacheGroup() { if(mOcclusionState[LLViewerCamera::CAMERA_WORLD] & ACTIVE_OCCLUSION) { ((LLVOCachePartition*)mSpatialPartition)->removeOccluder(this); } } //virtual void LLVOCacheGroup::handleChildAddition(const OctreeNode* parent, OctreeNode* child) { if (child->getListenerCount() == 0) { new LLVOCacheGroup(child, mSpatialPartition); } else { OCT_ERRS << "LLVOCacheGroup redundancy detected." << LL_ENDL; } unbound(); ((LLViewerOctreeGroup*)child->getListener(0))->unbound(); } LLVOCachePartition::LLVOCachePartition(LLViewerRegion* regionp) : LLTrace::MemTrackable<LLVOCachePartition>("LLVOCachePartition") { mLODPeriod = 16; mRegionp = regionp; mPartitionType = LLViewerRegion::PARTITION_VO_CACHE; mBackSlectionEnabled = -1; mIdleHash = 0; for(S32 i = 0; i < LLViewerCamera::NUM_CAMERAS; i++) { mCulledTime[i] = 0; } mCullHistory = -1; new LLVOCacheGroup(mOctree, this); } bool LLVOCachePartition::addEntry(LLViewerOctreeEntry* entry) { llassert(entry->hasVOCacheEntry()); if(!llfinite(entry->getBinRadius()) || !entry->getPositionGroup().isFinite3()) { return false; //data corrupted } mOctree->insert(entry); return true; } void LLVOCachePartition::removeEntry(LLViewerOctreeEntry* entry) { entry->getVOCacheEntry()->setGroup(NULL); llassert(!entry->getGroup()); } class LLVOCacheOctreeCull : public LLViewerOctreeCull { public: LLVOCacheOctreeCull(LLCamera* camera, LLViewerRegion* regionp, const LLVector3& shift, bool use_object_cache_occlusion, F32 pixel_threshold, LLVOCachePartition* part) : LLViewerOctreeCull(camera), mRegionp(regionp), mPartition(part), mPixelThreshold(pixel_threshold) { mLocalShift = shift; mUseObjectCacheOcclusion = use_object_cache_occlusion; mNearRadius = LLVOCacheEntry::sNearRadius; } virtual bool earlyFail(LLViewerOctreeGroup* base_group) { if( mUseObjectCacheOcclusion && base_group->getOctreeNode()->getParent()) //never occlusion cull the root node { LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)base_group; if(group->needsUpdate()) { //needs to issue new occlusion culling check, perform view culling check first. return false; } group->checkOcclusion(); if (group->isOcclusionState(LLOcclusionCullingGroup::OCCLUDED)) { return true; } } return false; } virtual S32 frustumCheck(const LLViewerOctreeGroup* group) { #if 0 S32 res = AABBInRegionFrustumGroupBounds(group); #else S32 res = AABBInRegionFrustumNoFarClipGroupBounds(group); if (res != 0) { res = llmin(res, AABBRegionSphereIntersectGroupExtents(group, mLocalShift)); } #endif return res; } virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group) { #if 0 S32 res = AABBInRegionFrustumObjectBounds(group); #else S32 res = AABBInRegionFrustumNoFarClipObjectBounds(group); if (res != 0) { res = llmin(res, AABBRegionSphereIntersectObjectExtents(group, mLocalShift)); } #endif if(res != 0) { //check if the objects projection large enough const LLVector4a* exts = group->getObjectExtents(); res = checkProjectionArea(exts[0], exts[1], mLocalShift, mPixelThreshold, mNearRadius); } return res; } virtual void processGroup(LLViewerOctreeGroup* base_group) { if( !mUseObjectCacheOcclusion || !base_group->getOctreeNode()->getParent()) { //no occlusion check if(mRegionp->addVisibleGroup(base_group)) { base_group->setVisible(); } return; } LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)base_group; if(group->needsUpdate() || !group->isRecentlyVisible())//needs to issue new occlusion culling check. { mPartition->addOccluders(group); group->setVisible(); return ; //wait for occlusion culling result } if(group->isOcclusionState(LLOcclusionCullingGroup::QUERY_PENDING) || group->isOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION)) { //keep waiting group->setVisible(); } else { if(mRegionp->addVisibleGroup(base_group)) { base_group->setVisible(); } } } private: LLVOCachePartition* mPartition; LLViewerRegion* mRegionp; LLVector3 mLocalShift; //shift vector from agent space to local region space. F32 mPixelThreshold; F32 mNearRadius; bool mUseObjectCacheOcclusion; }; //select objects behind camera class LLVOCacheOctreeBackCull : public LLViewerOctreeCull { public: LLVOCacheOctreeBackCull(LLCamera* camera, const LLVector3& shift, LLViewerRegion* regionp, F32 pixel_threshold, bool use_occlusion) : LLViewerOctreeCull(camera), mRegionp(regionp), mPixelThreshold(pixel_threshold), mUseObjectCacheOcclusion(use_occlusion) { mLocalShift = shift; mSphereRadius = LLVOCacheEntry::sRearFarRadius; } virtual bool earlyFail(LLViewerOctreeGroup* base_group) { if( mUseObjectCacheOcclusion && base_group->getOctreeNode()->getParent()) //never occlusion cull the root node { LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)base_group; if (group->getOcclusionState() > 0) //occlusion state is not clear. { return true; } } return false; } virtual S32 frustumCheck(const LLViewerOctreeGroup* group) { const LLVector4a* exts = group->getExtents(); return backSphereCheck(exts[0], exts[1]); } virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group) { const LLVector4a* exts = group->getObjectExtents(); if(backSphereCheck(exts[0], exts[1])) { //check if the objects projection large enough const LLVector4a* exts = group->getObjectExtents(); return checkProjectionArea(exts[0], exts[1], mLocalShift, mPixelThreshold, mSphereRadius); } return false; } virtual void processGroup(LLViewerOctreeGroup* base_group) { mRegionp->addVisibleGroup(base_group); return; } private: //a sphere around the camera origin, including objects behind camera. S32 backSphereCheck(const LLVector4a& min, const LLVector4a& max) { return AABBSphereIntersect(min, max, mCamera->getOrigin() - mLocalShift, mSphereRadius); } private: F32 mSphereRadius; LLViewerRegion* mRegionp; LLVector3 mLocalShift; //shift vector from agent space to local region space. F32 mPixelThreshold; bool mUseObjectCacheOcclusion; }; void LLVOCachePartition::selectBackObjects(LLCamera &camera, F32 pixel_threshold, bool use_occlusion) { if(LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD) { return; } if(mBackSlectionEnabled < 0) { mBackSlectionEnabled = LLVOCacheEntry::sMinFrameRange - 1; mBackSlectionEnabled = llmax(mBackSlectionEnabled, (S32)1); } if(!mBackSlectionEnabled) { return; } //localize the camera LLVector3 region_agent = mRegionp->getOriginAgent(); LLVOCacheOctreeBackCull culler(&camera, region_agent, mRegionp, pixel_threshold, use_occlusion); culler.traverse(mOctree); mBackSlectionEnabled--; if(!mRegionp->getNumOfVisibleGroups()) { mBackSlectionEnabled = 0; } return; } S32 LLVOCachePartition::cull(LLCamera &camera, bool do_occlusion) { static LLCachedControl<bool> use_object_cache_occlusion(gSavedSettings,"UseObjectCacheOcclusion"); if(!LLViewerRegion::sVOCacheCullingEnabled) { return 0; } if(mRegionp->isPaused()) { return 0; } ((LLViewerOctreeGroup*)mOctree->getListener(0))->rebound(); if(LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD) { return 0; //no need for those cameras. } if(mCulledTime[LLViewerCamera::sCurCameraID] == LLViewerOctreeEntryData::getCurrentFrame()) { return 0; //already culled } mCulledTime[LLViewerCamera::sCurCameraID] = LLViewerOctreeEntryData::getCurrentFrame(); if(!mCullHistory && LLViewerRegion::isViewerCameraStatic()) { U32 seed = llmax(mLODPeriod >> 1, (U32)4); if(LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD) { if(!(LLViewerOctreeEntryData::getCurrentFrame() % seed)) { mIdleHash = (mIdleHash + 1) % seed; } } if(LLViewerOctreeEntryData::getCurrentFrame() % seed != mIdleHash) { mFrontCull = FALSE; //process back objects selection selectBackObjects(camera, LLVOCacheEntry::getSquaredPixelThreshold(mFrontCull), do_occlusion && use_object_cache_occlusion); return 0; //nothing changed, reduce frequency of culling } } else { mBackSlectionEnabled = -1; //reset it. } //localize the camera LLVector3 region_agent = mRegionp->getOriginAgent(); camera.calcRegionFrustumPlanes(region_agent, gAgentCamera.mDrawDistance); mFrontCull = TRUE; LLVOCacheOctreeCull culler(&camera, mRegionp, region_agent, do_occlusion && use_object_cache_occlusion, LLVOCacheEntry::getSquaredPixelThreshold(mFrontCull), this); culler.traverse(mOctree); if(!sNeedsOcclusionCheck) { sNeedsOcclusionCheck = !mOccludedGroups.empty(); } return 1; } void LLVOCachePartition::setCullHistory(BOOL has_new_object) { mCullHistory <<= 1; mCullHistory |= has_new_object; } void LLVOCachePartition::addOccluders(LLViewerOctreeGroup* gp) { LLVOCacheGroup* group = (LLVOCacheGroup*)gp; if(!group->isOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION)) { group->setOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION); mOccludedGroups.insert(group); } } void LLVOCachePartition::processOccluders(LLCamera* camera) { if(mOccludedGroups.empty()) { return; } if(LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD) { return; //no need for those cameras. } LLVector3 region_agent = mRegionp->getOriginAgent(); LLVector4a shift(region_agent[0], region_agent[1], region_agent[2]); for(std::set<LLVOCacheGroup*>::iterator iter = mOccludedGroups.begin(); iter != mOccludedGroups.end(); ++iter) { LLVOCacheGroup* group = *iter; if(group->isOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION)) { group->doOcclusion(camera, &shift); group->clearOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION); } } //safe to clear mOccludedGroups here because only the world camera accesses it. mOccludedGroups.clear(); sNeedsOcclusionCheck = FALSE; } void LLVOCachePartition::resetOccluders() { if(mOccludedGroups.empty()) { return; } for(std::set<LLVOCacheGroup*>::iterator iter = mOccludedGroups.begin(); iter != mOccludedGroups.end(); ++iter) { LLVOCacheGroup* group = *iter; group->clearOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION); } mOccludedGroups.clear(); sNeedsOcclusionCheck = FALSE; } void LLVOCachePartition::removeOccluder(LLVOCacheGroup* group) { if(mOccludedGroups.empty()) { return; } mOccludedGroups.erase(group); } //------------------------------------------------------------------- //LLVOCache //------------------------------------------------------------------- // Format string used to construct filename for the object cache static const char OBJECT_CACHE_FILENAME[] = "objects_%d_%d.slc"; const U32 MAX_NUM_OBJECT_ENTRIES = 128 ; const U32 MIN_ENTRIES_TO_PURGE = 16 ; const U32 INVALID_TIME = 0 ; const char* object_cache_dirname = "objectcache"; const char* header_filename = "object.cache"; LLVOCache::LLVOCache(): mInitialized(false), mReadOnly(true), mNumEntries(0), mCacheSize(1) { mEnabled = gSavedSettings.getBOOL("ObjectCacheEnabled"); mLocalAPRFilePoolp = new LLVolatileAPRPool() ; } LLVOCache::~LLVOCache() { if(mEnabled) { writeCacheHeader(); clearCacheInMemory(); } delete mLocalAPRFilePoolp; } void LLVOCache::setDirNames(ELLPath location) { mHeaderFileName = gDirUtilp->getExpandedFilename(location, object_cache_dirname, header_filename); mObjectCacheDirName = gDirUtilp->getExpandedFilename(location, object_cache_dirname); } void LLVOCache::initCache(ELLPath location, U32 size, U32 cache_version) { if(!mEnabled) { LL_WARNS() << "Not initializing cache: Cache is currently disabled." << LL_ENDL; return ; } if(mInitialized) { LL_WARNS() << "Cache already initialized." << LL_ENDL; return ; } mInitialized = true; setDirNames(location); if (!mReadOnly) { LLFile::mkdir(mObjectCacheDirName); } mCacheSize = llclamp(size, MIN_ENTRIES_TO_PURGE, MAX_NUM_OBJECT_ENTRIES); mMetaInfo.mVersion = cache_version; readCacheHeader(); if(mMetaInfo.mVersion != cache_version) { mMetaInfo.mVersion = cache_version ; if(mReadOnly) //disable cache { clearCacheInMemory(); } else //delete the current cache if the format does not match. { removeCache(); } } } void LLVOCache::removeCache(ELLPath location, bool started) { if(started) { removeCache(); return; } if(mReadOnly) { LL_WARNS() << "Not removing cache at " << location << ": Cache is currently in read-only mode." << LL_ENDL; return ; } LL_INFOS() << "about to remove the object cache due to settings." << LL_ENDL ; std::string mask = "*"; std::string cache_dir = gDirUtilp->getExpandedFilename(location, object_cache_dirname); LL_INFOS() << "Removing cache at " << cache_dir << LL_ENDL; gDirUtilp->deleteFilesInDir(cache_dir, mask); //delete all files LLFile::rmdir(cache_dir); clearCacheInMemory(); mInitialized = false; } void LLVOCache::removeCache() { if(!mInitialized) { //OK to remove cache even it is not initialized. LL_WARNS() << "Object cache is not initialized yet." << LL_ENDL; } if(mReadOnly) { LL_WARNS() << "Not clearing object cache: Cache is currently in read-only mode." << LL_ENDL; return ; } std::string mask = "*"; LL_INFOS() << "Removing object cache at " << mObjectCacheDirName << LL_ENDL; gDirUtilp->deleteFilesInDir(mObjectCacheDirName, mask); clearCacheInMemory() ; writeCacheHeader(); } void LLVOCache::removeEntry(HeaderEntryInfo* entry) { llassert_always(mInitialized); if(mReadOnly) { return; } if(!entry) { return; } header_entry_queue_t::iterator iter = mHeaderEntryQueue.find(entry); if(iter != mHeaderEntryQueue.end()) { mHandleEntryMap.erase(entry->mHandle); mHeaderEntryQueue.erase(iter); removeFromCache(entry); delete entry; mNumEntries = mHandleEntryMap.size() ; } } void LLVOCache::removeEntry(U64 handle) { handle_entry_map_t::iterator iter = mHandleEntryMap.find(handle) ; if(iter == mHandleEntryMap.end()) //no cache { return ; } HeaderEntryInfo* entry = iter->second ; removeEntry(entry) ; } void LLVOCache::clearCacheInMemory() { if(!mHeaderEntryQueue.empty()) { for(header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin(); iter != mHeaderEntryQueue.end(); ++iter) { delete *iter ; } mHeaderEntryQueue.clear(); mHandleEntryMap.clear(); mNumEntries = 0 ; } } void LLVOCache::getObjectCacheFilename(U64 handle, std::string& filename) { U32 region_x, region_y; grid_from_region_handle(handle, ®ion_x, ®ion_y); filename = gDirUtilp->getExpandedFilename(LL_PATH_CACHE, object_cache_dirname, llformat(OBJECT_CACHE_FILENAME, region_x, region_y)); return ; } void LLVOCache::removeFromCache(HeaderEntryInfo* entry) { if(mReadOnly) { LL_WARNS() << "Not removing cache for handle " << entry->mHandle << ": Cache is currently in read-only mode." << LL_ENDL; return ; } std::string filename; getObjectCacheFilename(entry->mHandle, filename); LLAPRFile::remove(filename, mLocalAPRFilePoolp); entry->mTime = INVALID_TIME ; updateEntry(entry) ; //update the head file. } void LLVOCache::readCacheHeader() { if(!mEnabled) { LL_WARNS() << "Not reading cache header: Cache is currently disabled." << LL_ENDL; return; } //clear stale info. clearCacheInMemory(); bool success = true ; if (LLAPRFile::isExist(mHeaderFileName, mLocalAPRFilePoolp)) { LLAPRFile apr_file(mHeaderFileName, APR_READ|APR_BINARY, mLocalAPRFilePoolp); //read the meta element success = check_read(&apr_file, &mMetaInfo, sizeof(HeaderMetaInfo)) ; if(success) { HeaderEntryInfo* entry = NULL ; mNumEntries = 0 ; U32 num_read = 0 ; while(num_read++ < MAX_NUM_OBJECT_ENTRIES) { if(!entry) { entry = new HeaderEntryInfo() ; } success = check_read(&apr_file, entry, sizeof(HeaderEntryInfo)); if(!success) //failed { LL_WARNS() << "Error reading cache header entry. (entry_index=" << mNumEntries << ")" << LL_ENDL; delete entry ; entry = NULL ; break ; } else if(entry->mTime == INVALID_TIME) { continue ; //an empty entry } entry->mIndex = mNumEntries++ ; mHeaderEntryQueue.insert(entry) ; mHandleEntryMap[entry->mHandle] = entry ; entry = NULL ; } if(entry) { delete entry ; } } //--------- //debug code //---------- //std::string name ; //for(header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin() ; success && iter != mHeaderEntryQueue.end(); ++iter) //{ // getObjectCacheFilename((*iter)->mHandle, name) ; // LL_INFOS() << name << LL_ENDL ; //} //----------- } else { writeCacheHeader() ; } if(!success) { removeCache() ; //failed to read header, clear the cache } else if(mNumEntries >= mCacheSize) { purgeEntries(mCacheSize) ; } return ; } void LLVOCache::writeCacheHeader() { if (!mEnabled) { LL_WARNS() << "Not writing cache header: Cache is currently disabled." << LL_ENDL; return; } if(mReadOnly) { LL_WARNS() << "Not writing cache header: Cache is currently in read-only mode." << LL_ENDL; return; } bool success = true ; { LLAPRFile apr_file(mHeaderFileName, APR_CREATE|APR_WRITE|APR_BINARY, mLocalAPRFilePoolp); //write the meta element success = check_write(&apr_file, &mMetaInfo, sizeof(HeaderMetaInfo)) ; mNumEntries = 0 ; for(header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin() ; success && iter != mHeaderEntryQueue.end(); ++iter) { (*iter)->mIndex = mNumEntries++ ; success = check_write(&apr_file, (void*)*iter, sizeof(HeaderEntryInfo)); } mNumEntries = mHeaderEntryQueue.size() ; if(success && mNumEntries < MAX_NUM_OBJECT_ENTRIES) { HeaderEntryInfo* entry = new HeaderEntryInfo() ; entry->mTime = INVALID_TIME ; for(S32 i = mNumEntries ; success && i < MAX_NUM_OBJECT_ENTRIES ; i++) { //fill the cache with the default entry. success = check_write(&apr_file, entry, sizeof(HeaderEntryInfo)) ; } delete entry ; } } if(!success) { clearCacheInMemory() ; mReadOnly = TRUE ; //disable the cache. } return ; } BOOL LLVOCache::updateEntry(const HeaderEntryInfo* entry) { LLAPRFile apr_file(mHeaderFileName, APR_WRITE|APR_BINARY, mLocalAPRFilePoolp); apr_file.seek(APR_SET, entry->mIndex * sizeof(HeaderEntryInfo) + sizeof(HeaderMetaInfo)) ; return check_write(&apr_file, (void*)entry, sizeof(HeaderEntryInfo)) ; } void LLVOCache::readFromCache(U64 handle, const LLUUID& id, LLVOCacheEntry::vocache_entry_map_t& cache_entry_map) { if(!mEnabled) { LL_WARNS() << "Not reading cache for handle " << handle << "): Cache is currently disabled." << LL_ENDL; return ; } llassert_always(mInitialized); handle_entry_map_t::iterator iter = mHandleEntryMap.find(handle) ; if(iter == mHandleEntryMap.end()) //no cache { LL_WARNS() << "No handle map entry for " << handle << LL_ENDL; return ; } bool success = true ; { std::string filename; getObjectCacheFilename(handle, filename); LLAPRFile apr_file(filename, APR_READ|APR_BINARY, mLocalAPRFilePoolp); LLUUID cache_id ; success = check_read(&apr_file, cache_id.mData, UUID_BYTES) ; if(success) { if(cache_id != id) { LL_INFOS() << "Cache ID doesn't match for this region, discarding"<< LL_ENDL; success = false ; } if(success) { S32 num_entries; success = check_read(&apr_file, &num_entries, sizeof(S32)) ; if(success) { for (S32 i = 0; i < num_entries && apr_file.eof() != APR_EOF; i++) { LLPointer<LLVOCacheEntry> entry = new LLVOCacheEntry(&apr_file); if (!entry->getLocalID()) { LL_WARNS() << "Aborting cache file load for " << filename << ", cache file corruption!" << LL_ENDL; success = false ; break ; } cache_entry_map[entry->getLocalID()] = entry; } } } } } if(!success) { if(cache_entry_map.empty()) { removeEntry(iter->second) ; } } return ; } void LLVOCache::purgeEntries(U32 size) { while(mHeaderEntryQueue.size() > size) { header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin() ; HeaderEntryInfo* entry = *iter ; mHandleEntryMap.erase(entry->mHandle); mHeaderEntryQueue.erase(iter) ; removeFromCache(entry) ; delete entry; } mNumEntries = mHandleEntryMap.size() ; } void LLVOCache::writeToCache(U64 handle, const LLUUID& id, const LLVOCacheEntry::vocache_entry_map_t& cache_entry_map, BOOL dirty_cache, bool removal_enabled) { if(!mEnabled) { LL_WARNS() << "Not writing cache for handle " << handle << "): Cache is currently disabled." << LL_ENDL; return ; } llassert_always(mInitialized); if(mReadOnly) { LL_WARNS() << "Not writing cache for handle " << handle << "): Cache is currently in read-only mode." << LL_ENDL; return ; } HeaderEntryInfo* entry; handle_entry_map_t::iterator iter = mHandleEntryMap.find(handle) ; if(iter == mHandleEntryMap.end()) //new entry { if(mNumEntries >= mCacheSize - 1) { purgeEntries(mCacheSize - 1) ; } entry = new HeaderEntryInfo(); entry->mHandle = handle ; entry->mTime = time(NULL) ; entry->mIndex = mNumEntries++; mHeaderEntryQueue.insert(entry) ; mHandleEntryMap[handle] = entry ; } else { // Update access time. entry = iter->second ; //resort mHeaderEntryQueue.erase(entry) ; entry->mTime = time(NULL) ; mHeaderEntryQueue.insert(entry) ; } //update cache header if(!updateEntry(entry)) { LL_WARNS() << "Failed to update cache header index " << entry->mIndex << ". handle = " << handle << LL_ENDL; return ; //update failed. } if(!dirty_cache) { LL_WARNS() << "Skipping write to cache for handle " << handle << ": cache not dirty" << LL_ENDL; return ; //nothing changed, no need to update. } //write to cache file bool success = true ; { std::string filename; getObjectCacheFilename(handle, filename); LLAPRFile apr_file(filename, APR_CREATE|APR_WRITE|APR_BINARY, mLocalAPRFilePoolp); success = check_write(&apr_file, (void*)id.mData, UUID_BYTES) ; if(success) { S32 num_entries = cache_entry_map.size() ; success = check_write(&apr_file, &num_entries, sizeof(S32)); for (LLVOCacheEntry::vocache_entry_map_t::const_iterator iter = cache_entry_map.begin(); success && iter != cache_entry_map.end(); ++iter) { if(!removal_enabled || iter->second->isValid()) { success = iter->second->writeToFile(&apr_file) ; if(!success) { break; } } } } } if(!success) { removeEntry(entry) ; } return ; }