/** 
 * @file llvocache.cpp
 * @brief Cache of objects on the viewer.
 *
 * $LicenseInfo:firstyear=2003&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "llviewerprecompiledheaders.h"
#include "llvocache.h"
#include "llerror.h"
#include "llregionhandle.h"
#include "llviewercontrol.h"
#include "llviewerobjectlist.h"
#include "lldrawable.h"
#include "llviewerregion.h"
#include "pipeline.h"
#include "llagentcamera.h"
#include "llmemory.h"

//static variables
U32 LLVOCacheEntry::sMinFrameRange = 0;
F32 LLVOCacheEntry::sNearRadius = 1.0f;
F32 LLVOCacheEntry::sRearFarRadius = 1.0f;
F32 LLVOCacheEntry::sFrontPixelThreshold = 1.0f;
F32 LLVOCacheEntry::sRearPixelThreshold = 1.0f;
BOOL LLVOCachePartition::sNeedsOcclusionCheck = FALSE;

const S32 ENTRY_HEADER_SIZE = 6 * sizeof(S32);
const S32 MAX_ENTRY_BODY_SIZE = 10000;

BOOL check_read(LLAPRFile* apr_file, void* src, S32 n_bytes) 
{
	return apr_file->read(src, n_bytes) == n_bytes ;
}

BOOL check_write(LLAPRFile* apr_file, void* src, S32 n_bytes) 
{
	return apr_file->write(src, n_bytes) == n_bytes ;
}

bool LLGLTFOverrideCacheEntry::fromLLSD(const LLSD& data)
{
    if (!data.has("object_id"))
    {
        mObjectId.setNull();
        return false;
    }

    if (data.has("region_handle_low") && data.has("region_handle_high"))
    {
        // TODO start requiring this once server sends this for all messages
        U64 region_handle_low = data["region_handle_low"].asInteger();
        U64 region_handle_high = data["region_handle_high"].asInteger();
        mRegionHandle = (region_handle_low & 0x00000000ffffffffUL) || (region_handle_high << 32);
        mHasRegionHandle = true;
    }
    else
    {
        mHasRegionHandle = false;
    }

    mObjectId = data["object_id"];

    // message should be interpreted thusly:
    ///  sides is a list of face indices
    //   gltf_json is a list of corresponding json
    //   any side not represented in "sides" has no override
    if (data.has("sides") && data.has("gltf_json"))
    {
        LLSD const& sides = data.get("sides");
        LLSD const& gltf_json = data.get("gltf_json");

        if (sides.isArray() && gltf_json.isArray() &&
            sides.size() != 0 &&
            sides.size() == gltf_json.size())
        {
            for (int i = 0; i < sides.size(); ++i)
            {
                S32 side_idx = sides[i].asInteger();
                mSides[side_idx] = gltf_json[i].asString();
            }
        }
    }
    return true;
}

LLSD LLGLTFOverrideCacheEntry::toLLSD()
{
    llassert(false); // "Function not tested!!!

    LLSD data;
    if (mHasRegionHandle)
    {
        data["region_handle_low"] = LLSD::Integer(mRegionHandle & 0x00000000ffffffffUL);
        data["region_handle_high"] = LLSD::Integer(mRegionHandle >> 32);
    }

    data["object_id"] = mObjectId;

    std::map<S32, std::string>::const_iterator iter = mSides.begin();
    std::map<S32, std::string>::const_iterator end = mSides.end();
    while (iter != end)
    {
        data["sides"].append(LLSD::Integer(iter->first));
        data["sides"].append(iter->second);
    }

    return data;
}

//---------------------------------------------------------------------------
// LLVOCacheEntry
//---------------------------------------------------------------------------

LLVOCacheEntry::LLVOCacheEntry(U32 local_id, U32 crc, LLDataPackerBinaryBuffer &dp)
:	LLViewerOctreeEntryData(LLViewerOctreeEntry::LLVOCACHEENTRY),
	mLocalID(local_id),
	mCRC(crc),
	mUpdateFlags(-1),
	mHitCount(0),
	mDupeCount(0),
	mCRCChangeCount(0),
	mState(INACTIVE),
	mSceneContrib(0.f),
	mValid(TRUE),
	mParentID(0),
	mBSphereRadius(-1.0f)
{
	mBuffer = new U8[dp.getBufferSize()];
	mDP.assignBuffer(mBuffer, dp.getBufferSize());
	mDP = dp;
}

LLVOCacheEntry::LLVOCacheEntry()
:	LLViewerOctreeEntryData(LLViewerOctreeEntry::LLVOCACHEENTRY),
	mLocalID(0),
	mCRC(0),
	mUpdateFlags(-1),
	mHitCount(0),
	mDupeCount(0),
	mCRCChangeCount(0),
	mBuffer(NULL),
	mState(INACTIVE),
	mSceneContrib(0.f),
	mValid(TRUE),
	mParentID(0),
	mBSphereRadius(-1.0f)
{
	mDP.assignBuffer(mBuffer, 0);
}

LLVOCacheEntry::LLVOCacheEntry(LLAPRFile* apr_file)
:	LLViewerOctreeEntryData(LLViewerOctreeEntry::LLVOCACHEENTRY), 
	mBuffer(NULL),
	mUpdateFlags(-1),
	mState(INACTIVE),
	mSceneContrib(0.f),
	mValid(FALSE),
	mParentID(0),
	mBSphereRadius(-1.0f)
{
	S32 size = -1;
	BOOL success;
    static U8 data_buffer[ENTRY_HEADER_SIZE];

	mDP.assignBuffer(mBuffer, 0);

    success = check_read(apr_file, (void *)data_buffer, ENTRY_HEADER_SIZE);
    if (success)
    {
        memcpy(&mLocalID, data_buffer, sizeof(U32));
        memcpy(&mCRC, data_buffer + sizeof(U32), sizeof(U32));
        memcpy(&mHitCount, data_buffer + (2 * sizeof(U32)), sizeof(S32));
        memcpy(&mDupeCount, data_buffer + (3 * sizeof(U32)), sizeof(S32));
        memcpy(&mCRCChangeCount, data_buffer + (4 * sizeof(U32)), sizeof(S32));
        memcpy(&size, data_buffer + (5 * sizeof(U32)), sizeof(S32));

		// Corruption in the cache entries
		if ((size > MAX_ENTRY_BODY_SIZE) || (size < 1))
		{
			// We've got a bogus size, skip reading it.
			// We won't bother seeking, because the rest of this file
			// is likely bogus, and will be tossed anyway.
			LL_WARNS() << "Bogus cache entry, size " << size << ", aborting!" << LL_ENDL;
			success = FALSE;
		}
	}
	if(success && size > 0)
	{
		mBuffer = new U8[size];
		success = check_read(apr_file, mBuffer, size);

		if(success)
		{
			mDP.assignBuffer(mBuffer, size);
		}
		else
		{
			delete[] mBuffer ;
			mBuffer = NULL ;
		}
	}

	if(!success)
	{
		mLocalID = 0;
		mCRC = 0;
		mHitCount = 0;
		mDupeCount = 0;
		mCRCChangeCount = 0;
		mBuffer = NULL;
		mEntry = NULL;
		mState = INACTIVE;
	}
}

LLVOCacheEntry::~LLVOCacheEntry()
{
	mDP.freeBuffer();
}

void LLVOCacheEntry::updateEntry(U32 crc, LLDataPackerBinaryBuffer &dp)
{ 
	if(mCRC != crc)
	{
		mCRC = crc;
		mCRCChangeCount++;
	}

	mDP.freeBuffer();

	llassert_always(dp.getBufferSize() > 0);
	mBuffer = new U8[dp.getBufferSize()];
	mDP.assignBuffer(mBuffer, dp.getBufferSize());
	mDP = dp;
}

void LLVOCacheEntry::setParentID(U32 id) 
{
	if(mParentID != id)
	{
		removeAllChildren();
		mParentID = id;
	}
}

void LLVOCacheEntry::removeAllChildren()
{
	if(mChildrenList.empty())
	{
		return;
	}

	for(vocache_entry_set_t::iterator iter = mChildrenList.begin(); iter != mChildrenList.end(); ++iter)
 	{
		(*iter)->setParentID(0);
 	}
	mChildrenList.clear();

	return;
}

//virtual 
void LLVOCacheEntry::setOctreeEntry(LLViewerOctreeEntry* entry)
{
	if(!entry && mDP.getBufferSize() > 0)
	{
		LLUUID fullid;
		LLViewerObject::unpackUUID(&mDP, fullid, "ID");
		
		LLViewerObject* obj = gObjectList.findObject(fullid);
		if(obj && obj->mDrawable)
		{
			entry = obj->mDrawable->getEntry();
		}
	}

	LLViewerOctreeEntryData::setOctreeEntry(entry);
}

void LLVOCacheEntry::setState(U32 state)
{
	if(state > LOW_BITS) //special states
	{
		mState |= (HIGH_BITS & state);
		return;
	}

	//
	//otherwise LOW_BITS states
	//
	clearState(LOW_BITS);
	mState |= (LOW_BITS & state);

	if(getState() == ACTIVE)
	{
		const S32 MIN_INTERVAL = 64 + sMinFrameRange;
		U32 last_visible = getVisible();
		
		setVisible();

		U32 cur_visible = getVisible();
		if(cur_visible - last_visible > MIN_INTERVAL ||
			cur_visible < MIN_INTERVAL)
		{
			mLastCameraUpdated = 0; //reset
		}
		else
		{
			mLastCameraUpdated = LLViewerRegion::sLastCameraUpdated;
		}
	}
}

void LLVOCacheEntry::addChild(LLVOCacheEntry* entry)
{
	llassert(entry != NULL);
	llassert(entry->getParentID() == mLocalID);
	llassert(entry->getEntry() != NULL);

	if(!entry || !entry->getEntry() || entry->getParentID() != mLocalID)
	{
		return;
	}
	
	mChildrenList.insert(entry);

	//update parent bbox
	if(getEntry() != NULL && isState(INACTIVE))
	{
		updateParentBoundingInfo(entry);
		resetVisible();
	}
}
	
void LLVOCacheEntry::removeChild(LLVOCacheEntry* entry)
{
	entry->setParentID(0);

	vocache_entry_set_t::iterator iter = mChildrenList.find(entry);
	if(iter != mChildrenList.end())
	{
		mChildrenList.erase(iter);
	}
}

//remove the first child, and return it.
LLVOCacheEntry* LLVOCacheEntry::getChild()
{
	LLVOCacheEntry* child = NULL;
	vocache_entry_set_t::iterator iter = mChildrenList.begin();
	if(iter != mChildrenList.end())
	{
		child = *iter;
		mChildrenList.erase(iter);
	}

	return child;
}

LLDataPackerBinaryBuffer *LLVOCacheEntry::getDP()
{
	if (mDP.getBufferSize() == 0)
	{
		//LL_INFOS() << "Not getting cache entry, invalid!" << LL_ENDL;
		return NULL;
	}
	
	return &mDP;
}

void LLVOCacheEntry::recordHit()
{
	mHitCount++;
}


void LLVOCacheEntry::dump() const
{
	LL_INFOS() << "local " << mLocalID
		<< " crc " << mCRC
		<< " hits " << mHitCount
		<< " dupes " << mDupeCount
		<< " change " << mCRCChangeCount
		<< LL_ENDL;
}

S32 LLVOCacheEntry::writeToBuffer(U8 *data_buffer) const
{
    S32 size = mDP.getBufferSize();

    if (size > MAX_ENTRY_BODY_SIZE)
    {
        LL_WARNS() << "Failed to write entry with size above allowed limit: " << size << LL_ENDL;
        return 0;
    }

    memcpy(data_buffer, &mLocalID, sizeof(U32));
    memcpy(data_buffer + sizeof(U32), &mCRC, sizeof(U32));
    memcpy(data_buffer + (2 * sizeof(U32)), &mHitCount, sizeof(S32));
    memcpy(data_buffer + (3 * sizeof(U32)), &mDupeCount, sizeof(S32));
    memcpy(data_buffer + (4 * sizeof(U32)), &mCRCChangeCount, sizeof(S32));
    memcpy(data_buffer + (5 * sizeof(U32)), &size, sizeof(S32));
    memcpy(data_buffer + ENTRY_HEADER_SIZE, (void*)mBuffer, size);

    return ENTRY_HEADER_SIZE + size;
}

//static 
void LLVOCacheEntry::updateDebugSettings()
{
	static LLFrameTimer timer;
	if(timer.getElapsedTimeF32() < 1.0f) //update frequency once per second.
	{
		return;
	}
	timer.reset();

	//objects within the view frustum whose visible area is greater than this threshold will be loaded
	static LLCachedControl<F32> front_pixel_threshold(gSavedSettings,"SceneLoadFrontPixelThreshold");
	sFrontPixelThreshold = front_pixel_threshold;

	//objects out of the view frustum whose visible area is greater than this threshold will remain loaded
	static LLCachedControl<F32> rear_pixel_threshold(gSavedSettings,"SceneLoadRearPixelThreshold");
	sRearPixelThreshold = rear_pixel_threshold;
	sRearPixelThreshold = llmax(sRearPixelThreshold, sFrontPixelThreshold); //can not be smaller than sFrontPixelThreshold.

	//make parameters adaptive to memory usage
	//starts to put restrictions from low_mem_bound_MB, apply tightest restrictions when hits high_mem_bound_MB
	static LLCachedControl<U32> low_mem_bound_MB(gSavedSettings,"SceneLoadLowMemoryBound");
	static LLCachedControl<U32> high_mem_bound_MB(gSavedSettings,"SceneLoadHighMemoryBound");
	
	LLMemory::updateMemoryInfo() ;
	U32 allocated_mem = LLMemory::getAllocatedMemKB().value();
    static const F32 KB_to_MB = 1.f / 1024.f;
	U32 clamped_memory = llclamp(allocated_mem * KB_to_MB, (F32) low_mem_bound_MB, (F32) high_mem_bound_MB);
    const F32 adjust_range = high_mem_bound_MB - low_mem_bound_MB;
    const F32 adjust_factor = (high_mem_bound_MB - clamped_memory) / adjust_range; // [0, 1]

    //min radius: all objects within this radius remain loaded in memory
    static LLCachedControl<F32> min_radius(gSavedSettings,"SceneLoadMinRadius");
    static const F32 MIN_RADIUS = 1.0f;
    const F32 draw_radius = gAgentCamera.mDrawDistance;
    const F32 clamped_min_radius = llclamp((F32) min_radius, MIN_RADIUS, draw_radius); // [1, mDrawDistance]
    sNearRadius = MIN_RADIUS + ((clamped_min_radius - MIN_RADIUS) * adjust_factor);

    // a percentage of draw distance beyond which all objects outside of view frustum will be unloaded, regardless of pixel threshold
    static LLCachedControl<F32> rear_max_radius_frac(gSavedSettings,"SceneLoadRearMaxRadiusFraction");
    const F32 min_radius_plus_one = sNearRadius + 1.f;
    const F32 max_radius = rear_max_radius_frac * gAgentCamera.mDrawDistance;
    const F32 clamped_max_radius = llclamp(max_radius, min_radius_plus_one, draw_radius); // [sNearRadius, mDrawDistance]
    sRearFarRadius = min_radius_plus_one + ((clamped_max_radius - min_radius_plus_one) * adjust_factor);

    //the number of frames invisible objects stay in memory
    static LLCachedControl<U32> inv_obj_time(gSavedSettings,"NonvisibleObjectsInMemoryTime");
    static const U32 MIN_FRAMES = 10;
    static const U32 MAX_FRAMES = 64;
    const U32 clamped_frames = inv_obj_time ? llclamp((U32) inv_obj_time, MIN_FRAMES, MAX_FRAMES) : MAX_FRAMES; // [10, 64], with zero => 64
    sMinFrameRange = MIN_FRAMES + ((clamped_frames - MIN_FRAMES) * adjust_factor);
}

//static 
F32 LLVOCacheEntry::getSquaredPixelThreshold(bool is_front)
{
	F32 threshold;
	if(is_front)
	{
		threshold = sFrontPixelThreshold;
	}
	else
	{
		threshold = sRearPixelThreshold;
	}

	//object projected area threshold
	F32 pixel_meter_ratio = LLViewerCamera::getInstance()->getPixelMeterRatio();
	F32 projection_threshold = pixel_meter_ratio > 0.f ? threshold / pixel_meter_ratio : 0.f;
	projection_threshold *= projection_threshold;

	return projection_threshold;
}

bool LLVOCacheEntry::isAnyVisible(const LLVector4a& camera_origin, const LLVector4a& local_camera_origin, F32 dist_threshold)
{
	LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)getGroup();
	if(!group)
	{
		return false;
	}

	//any visible
	bool vis = group->isAnyRecentlyVisible();

	//not ready to remove
	if(!vis)
	{
		S32 cur_vis = llmax(group->getAnyVisible(), (S32)getVisible());
		vis = (cur_vis + sMinFrameRange > LLViewerOctreeEntryData::getCurrentFrame());
	}

	//within the back sphere
	if(!vis && !mParentID && !group->isOcclusionState(LLOcclusionCullingGroup::OCCLUDED))
	{
		LLVector4a lookAt;

		if(mBSphereRadius > 0.f)
		{
			lookAt.setSub(mBSphereCenter, local_camera_origin);		
			dist_threshold += mBSphereRadius;
		}
		else
		{
			lookAt.setSub(getPositionGroup(), camera_origin);
			dist_threshold += getBinRadius();
		}

		vis = (lookAt.dot3(lookAt).getF32() < dist_threshold * dist_threshold);
	}

	return vis;
}

void LLVOCacheEntry::calcSceneContribution(const LLVector4a& camera_origin, bool needs_update, U32 last_update, F32 max_dist)
{
	if(!needs_update && getVisible() >= last_update)
	{
		return; //no need to update
	}

	LLVector4a lookAt;
	lookAt.setSub(getPositionGroup(), camera_origin);
	F32 distance = lookAt.getLength3().getF32();
	distance -= sNearRadius;

	if(distance <= 0.f)
	{
		//nearby objects, set a large number
		const F32 LARGE_SCENE_CONTRIBUTION = 1000.f; //a large number to force to load the object.
		mSceneContrib = LARGE_SCENE_CONTRIBUTION;
	}
	else
	{
		F32 rad = getBinRadius();
		max_dist += rad;

		if(distance + sNearRadius < max_dist)
		{
			mSceneContrib = (rad * rad) / distance;		
		}
		else
		{
			mSceneContrib = 0.f; //out of draw distance, not to load
		}
	}

	setVisible();
}

void LLVOCacheEntry::saveBoundingSphere()
{
	mBSphereCenter = getPositionGroup();
	mBSphereRadius = getBinRadius();
}

void LLVOCacheEntry::setBoundingInfo(const LLVector3& pos, const LLVector3& scale)
{
	LLVector4a center, newMin, newMax;
	center.load3(pos.mV);
	LLVector4a size;
	size.load3(scale.mV);
	newMin.setSub(center, size);
	newMax.setAdd(center, size);
	
	setPositionGroup(center);
	setSpatialExtents(newMin, newMax);

	if(getNumOfChildren() > 0) //has children
	{
		updateParentBoundingInfo();
	}
	else
	{
		setBinRadius(llmin(size.getLength3().getF32() * 4.f, 256.f));
	}
}

//make the parent bounding box to include all children
void LLVOCacheEntry::updateParentBoundingInfo()
{
	if(mChildrenList.empty())
	{
		return;
	}

	for(vocache_entry_set_t::iterator iter = mChildrenList.begin(); iter != mChildrenList.end(); ++iter)
	{
		updateParentBoundingInfo(*iter);
	}
	resetVisible();
}

//make the parent bounding box to include this child
void LLVOCacheEntry::updateParentBoundingInfo(const LLVOCacheEntry* child)
{
	const LLVector4a* child_exts = child->getSpatialExtents();
	LLVector4a newMin, newMax;
	newMin = child_exts[0];
	newMax = child_exts[1];
	
	//move to regional space.
	{
		const LLVector4a& parent_pos = getPositionGroup();
		newMin.add(parent_pos);
		newMax.add(parent_pos);
	}

	//update parent's bbox(min, max)
	const LLVector4a* parent_exts = getSpatialExtents();
	update_min_max(newMin, newMax, parent_exts[0]);
	update_min_max(newMin, newMax, parent_exts[1]);
	for(S32 i = 0; i < 4; i++)
	{
		llclamp(newMin[i], 0.f, 256.f);
		llclamp(newMax[i], 0.f, 256.f);
	}
	setSpatialExtents(newMin, newMax);

	//update parent's bbox center
	LLVector4a center;
	center.setAdd(newMin, newMax);
	center.mul(0.5f);
	setPositionGroup(center);	

	//update parent's bbox size vector
	LLVector4a size;
	size.setSub(newMax, newMin);
	size.mul(0.5f);
	setBinRadius(llmin(size.getLength3().getF32() * 4.f, 256.f));
}
//-------------------------------------------------------------------
//LLVOCachePartition
//-------------------------------------------------------------------
LLVOCacheGroup::~LLVOCacheGroup()
{
	if(mOcclusionState[LLViewerCamera::CAMERA_WORLD] & ACTIVE_OCCLUSION)
	{
		((LLVOCachePartition*)mSpatialPartition)->removeOccluder(this);
	}
}

//virtual
void LLVOCacheGroup::handleChildAddition(const OctreeNode* parent, OctreeNode* child)
{
	if (child->getListenerCount() == 0)
	{
		new LLVOCacheGroup(child, mSpatialPartition);
	}
	else
	{
		OCT_ERRS << "LLVOCacheGroup redundancy detected." << LL_ENDL;
	}

	unbound();
	
	((LLViewerOctreeGroup*)child->getListener(0))->unbound();
}

LLVOCachePartition::LLVOCachePartition(LLViewerRegion* regionp)
{
	mLODPeriod = 16;
	mRegionp = regionp;
	mPartitionType = LLViewerRegion::PARTITION_VO_CACHE;
	mBackSlectionEnabled = -1;
	mIdleHash = 0;
	
	for(S32 i = 0; i < LLViewerCamera::NUM_CAMERAS; i++)
	{
		mCulledTime[i] = 0;	
	}
	mCullHistory = -1;

	new LLVOCacheGroup(mOctree, this);
}

LLVOCachePartition::~LLVOCachePartition()
{
    // SL-17276 make sure to do base class cleanup while this instance
    // can still be treated as an LLVOCachePartition 
    cleanup();
}

bool LLVOCachePartition::addEntry(LLViewerOctreeEntry* entry)
{
	llassert(entry->hasVOCacheEntry());

	if(!llfinite(entry->getBinRadius()) || !entry->getPositionGroup().isFinite3())
	{
		return false; //data corrupted
	}

	mOctree->insert(entry);

	return true;
}
	
void LLVOCachePartition::removeEntry(LLViewerOctreeEntry* entry)
{
	entry->getVOCacheEntry()->setGroup(NULL);

	llassert(!entry->getGroup());
}
	
class LLVOCacheOctreeCull : public LLViewerOctreeCull
{
public:
	LLVOCacheOctreeCull(LLCamera* camera, LLViewerRegion* regionp, 
		const LLVector3& shift, bool use_object_cache_occlusion, F32 pixel_threshold, LLVOCachePartition* part) 
		: LLViewerOctreeCull(camera), 
		  mRegionp(regionp),
		  mPartition(part),
		  mPixelThreshold(pixel_threshold)
	{
		mLocalShift = shift;
		mUseObjectCacheOcclusion = use_object_cache_occlusion;
		mNearRadius = LLVOCacheEntry::sNearRadius;
	}

	virtual bool earlyFail(LLViewerOctreeGroup* base_group)
	{
		if( mUseObjectCacheOcclusion &&
			base_group->getOctreeNode()->getParent()) //never occlusion cull the root node
		{
			LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)base_group;
			if(group->needsUpdate())
			{
				//needs to issue new occlusion culling check, perform view culling check first.
				return false;
			}

			group->checkOcclusion();

			if (group->isOcclusionState(LLOcclusionCullingGroup::OCCLUDED))
			{
				return true;
			}
		}

		return false;
	}

	virtual S32 frustumCheck(const LLViewerOctreeGroup* group)
	{
#if 0
		S32 res = AABBInRegionFrustumGroupBounds(group);
#else	
		S32 res = AABBInRegionFrustumNoFarClipGroupBounds(group);
		if (res != 0)
		{
			res = llmin(res, AABBRegionSphereIntersectGroupExtents(group, mLocalShift));
		}
#endif

		return res;
	}

	virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group)
	{
#if 0
		S32 res = AABBInRegionFrustumObjectBounds(group);
#else
		S32 res = AABBInRegionFrustumNoFarClipObjectBounds(group);
		if (res != 0)
		{
			res = llmin(res, AABBRegionSphereIntersectObjectExtents(group, mLocalShift));
		}
#endif

		if(res != 0)
		{
			//check if the objects projection large enough
			const LLVector4a* exts = group->getObjectExtents();
			res = checkProjectionArea(exts[0], exts[1], mLocalShift, mPixelThreshold, mNearRadius);
		}

		return res;
	}

	virtual void processGroup(LLViewerOctreeGroup* base_group)
	{
		if( !mUseObjectCacheOcclusion ||
			!base_group->getOctreeNode()->getParent())
		{ 
			//no occlusion check
			if(mRegionp->addVisibleGroup(base_group))
			{
				base_group->setVisible();
			}
			return;
		}

		LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)base_group;
		if(group->needsUpdate() || !group->isRecentlyVisible())//needs to issue new occlusion culling check.
		{
			mPartition->addOccluders(group);
			group->setVisible();
			return ; //wait for occlusion culling result
		}

		if(group->isOcclusionState(LLOcclusionCullingGroup::QUERY_PENDING) || 
			group->isOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION))
		{
			//keep waiting
			group->setVisible();
		}
		else
		{
			if(mRegionp->addVisibleGroup(base_group))
			{
				base_group->setVisible();
			}
		}
	}

private:
	LLVOCachePartition* mPartition;
	LLViewerRegion*     mRegionp;
	LLVector3           mLocalShift; //shift vector from agent space to local region space.
	F32                 mPixelThreshold;
	F32                 mNearRadius;
	bool                mUseObjectCacheOcclusion;
};

//select objects behind camera
class LLVOCacheOctreeBackCull : public LLViewerOctreeCull
{
public:
	LLVOCacheOctreeBackCull(LLCamera* camera, const LLVector3& shift, LLViewerRegion* regionp, F32 pixel_threshold, bool use_occlusion) 
		: LLViewerOctreeCull(camera), mRegionp(regionp), mPixelThreshold(pixel_threshold), mUseObjectCacheOcclusion(use_occlusion)
	{
		mLocalShift = shift;
		mSphereRadius = LLVOCacheEntry::sRearFarRadius;
	}
	
	virtual bool earlyFail(LLViewerOctreeGroup* base_group)
	{
		if( mUseObjectCacheOcclusion &&
			base_group->getOctreeNode()->getParent()) //never occlusion cull the root node
		{
			LLOcclusionCullingGroup* group = (LLOcclusionCullingGroup*)base_group;

			if (group->getOcclusionState() > 0) //occlusion state is not clear.
			{
				return true;
			}
		}

		return false;
	}

	virtual S32 frustumCheck(const LLViewerOctreeGroup* group)
	{			
		const LLVector4a* exts = group->getExtents();
		return backSphereCheck(exts[0], exts[1]);
	}

	virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group)
	{
		const LLVector4a* exts = group->getObjectExtents();
		if(backSphereCheck(exts[0], exts[1]))
		{
			//check if the objects projection large enough
			const LLVector4a* exts = group->getObjectExtents();
			return checkProjectionArea(exts[0], exts[1], mLocalShift, mPixelThreshold, mSphereRadius);
		}
		return false;
	}

	virtual void processGroup(LLViewerOctreeGroup* base_group)
	{
		mRegionp->addVisibleGroup(base_group);
		return;
	}

private:
	//a sphere around the camera origin, including objects behind camera.
	S32 backSphereCheck(const LLVector4a& min, const LLVector4a& max)
	{
		return AABBSphereIntersect(min, max, mCamera->getOrigin() - mLocalShift, mSphereRadius);
	}

private:
	F32              mSphereRadius;
	LLViewerRegion*  mRegionp;
	LLVector3        mLocalShift; //shift vector from agent space to local region space.
	F32              mPixelThreshold;
	bool             mUseObjectCacheOcclusion;
};

void LLVOCachePartition::selectBackObjects(LLCamera &camera, F32 pixel_threshold, bool use_occlusion)
{
	if(LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD)
	{
		return;
	}

	if(mBackSlectionEnabled < 0)
	{
		mBackSlectionEnabled = LLVOCacheEntry::sMinFrameRange - 1;
		mBackSlectionEnabled = llmax(mBackSlectionEnabled, (S32)1);
	}

	if(!mBackSlectionEnabled)
	{
		return;
	}

	//localize the camera
	LLVector3 region_agent = mRegionp->getOriginAgent();
	
	LLVOCacheOctreeBackCull culler(&camera, region_agent, mRegionp, pixel_threshold, use_occlusion);
	culler.traverse(mOctree);

	mBackSlectionEnabled--;
	if(!mRegionp->getNumOfVisibleGroups())
	{
		mBackSlectionEnabled = 0;
	}

	return;
}

S32 LLVOCachePartition::cull(LLCamera &camera, bool do_occlusion)
{
	static LLCachedControl<bool> use_object_cache_occlusion(gSavedSettings,"UseObjectCacheOcclusion");
	
	if(!LLViewerRegion::sVOCacheCullingEnabled)
	{
		return 0;
	}
	if(mRegionp->isPaused())
	{
		return 0;
	}

	((LLViewerOctreeGroup*)mOctree->getListener(0))->rebound();

	if(LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD)
	{
		return 0; //no need for those cameras.
	}

	if(mCulledTime[LLViewerCamera::sCurCameraID] == LLViewerOctreeEntryData::getCurrentFrame())
	{
		return 0; //already culled
	}
	mCulledTime[LLViewerCamera::sCurCameraID] = LLViewerOctreeEntryData::getCurrentFrame();

	if(!mCullHistory && LLViewerRegion::isViewerCameraStatic())
	{
		U32 seed = llmax(mLODPeriod >> 1, (U32)4);
		if(LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD)
		{
			if(!(LLViewerOctreeEntryData::getCurrentFrame() % seed))
			{
				mIdleHash = (mIdleHash + 1) % seed;
			}
		}
		if(LLViewerOctreeEntryData::getCurrentFrame() % seed != mIdleHash)
		{
			mFrontCull = FALSE;

			//process back objects selection
			selectBackObjects(camera, LLVOCacheEntry::getSquaredPixelThreshold(mFrontCull), 
				do_occlusion && use_object_cache_occlusion);
			return 0; //nothing changed, reduce frequency of culling
		}
	}
	else
	{
		mBackSlectionEnabled = -1; //reset it.
	}

	//localize the camera
	LLVector3 region_agent = mRegionp->getOriginAgent();
	camera.calcRegionFrustumPlanes(region_agent, gAgentCamera.mDrawDistance);

	mFrontCull = TRUE;
	LLVOCacheOctreeCull culler(&camera, mRegionp, region_agent, do_occlusion && use_object_cache_occlusion, 
		LLVOCacheEntry::getSquaredPixelThreshold(mFrontCull), this);
	culler.traverse(mOctree);	

	if(!sNeedsOcclusionCheck)
	{
		sNeedsOcclusionCheck = !mOccludedGroups.empty();
	}
	return 1;
}

void LLVOCachePartition::setCullHistory(BOOL has_new_object)
{
	mCullHistory <<= 1;
	mCullHistory |= has_new_object;
}

void LLVOCachePartition::addOccluders(LLViewerOctreeGroup* gp)
{
	LLVOCacheGroup* group = (LLVOCacheGroup*)gp;

	if(!group->isOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION))
	{
		group->setOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION);
		mOccludedGroups.insert(group);
	}
}

void LLVOCachePartition::processOccluders(LLCamera* camera)
{
	if(mOccludedGroups.empty())
	{
		return;
	}
	if(LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD)
	{
		return; //no need for those cameras.
	}

	LLVector3 region_agent = mRegionp->getOriginAgent();
	LLVector4a shift(region_agent[0], region_agent[1], region_agent[2]);
	for(std::set<LLVOCacheGroup*>::iterator iter = mOccludedGroups.begin(); iter != mOccludedGroups.end(); ++iter)
	{
		LLVOCacheGroup* group = *iter;
		if(group->isOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION))
		{
			group->doOcclusion(camera, &shift);
			group->clearOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION);
		}
	}

	//safe to clear mOccludedGroups here because only the world camera accesses it.
	mOccludedGroups.clear();
	sNeedsOcclusionCheck = FALSE;
}

void LLVOCachePartition::resetOccluders()
{
	if(mOccludedGroups.empty())
	{
		return;
	}

	for(std::set<LLVOCacheGroup*>::iterator iter = mOccludedGroups.begin(); iter != mOccludedGroups.end(); ++iter)
	{
		LLVOCacheGroup* group = *iter;
		group->clearOcclusionState(LLOcclusionCullingGroup::ACTIVE_OCCLUSION);
	}	
	mOccludedGroups.clear();
	sNeedsOcclusionCheck = FALSE;
}

void LLVOCachePartition::removeOccluder(LLVOCacheGroup* group)
{
	if(mOccludedGroups.empty())
	{
		return;
	}
	mOccludedGroups.erase(group);
}
//-------------------------------------------------------------------
//LLVOCache
//-------------------------------------------------------------------
// Format string used to construct filename for the object cache
static const char OBJECT_CACHE_FILENAME[] = "objects_%d_%d.slc";

const U32 MAX_NUM_OBJECT_ENTRIES = 128 ;
const U32 MIN_ENTRIES_TO_PURGE = 16 ;
const U32 INVALID_TIME = 0 ;
const char* object_cache_dirname = "objectcache";
const char* header_filename = "object.cache";


LLVOCache::LLVOCache(bool read_only) :
	mInitialized(false),
	mReadOnly(read_only),
	mNumEntries(0),
	mCacheSize(1)
{
	mEnabled = gSavedSettings.getBOOL("ObjectCacheEnabled");
	mLocalAPRFilePoolp = new LLVolatileAPRPool() ;
}

LLVOCache::~LLVOCache()
{
	if(mEnabled)
	{
		writeCacheHeader();
		clearCacheInMemory();
	}
	delete mLocalAPRFilePoolp;
}

void LLVOCache::setDirNames(ELLPath location)
{
	mHeaderFileName = gDirUtilp->getExpandedFilename(location, object_cache_dirname, header_filename);
	mObjectCacheDirName = gDirUtilp->getExpandedFilename(location, object_cache_dirname);
}

void LLVOCache::initCache(ELLPath location, U32 size, U32 cache_version)
{
	if(!mEnabled)
	{
		LL_WARNS() << "Not initializing cache: Cache is currently disabled." << LL_ENDL;
		return ;
	}

	if(mInitialized)
	{
		LL_WARNS() << "Cache already initialized." << LL_ENDL;
		return ;
	}
	mInitialized = true;

	setDirNames(location);
	if (!mReadOnly)
	{
		LLFile::mkdir(mObjectCacheDirName);
	}
	mCacheSize = llclamp(size, MIN_ENTRIES_TO_PURGE, MAX_NUM_OBJECT_ENTRIES);
	mMetaInfo.mVersion = cache_version;

#if defined(ADDRESS_SIZE)
	U32 expected_address = ADDRESS_SIZE;
#else
	U32 expected_address = 32;
#endif
	mMetaInfo.mAddressSize = expected_address;

	readCacheHeader();	

	if( mMetaInfo.mVersion != cache_version
		|| mMetaInfo.mAddressSize != expected_address) 
	{
		mMetaInfo.mVersion = cache_version ;
		mMetaInfo.mAddressSize = expected_address;
		if(mReadOnly) //disable cache
		{
			clearCacheInMemory();
		}
		else //delete the current cache if the format does not match.
		{			
			removeCache();
		}
	}	
}
	
void LLVOCache::removeCache(ELLPath location, bool started) 
{
	if(started)
	{
		removeCache();
		return;
	}

	if(mReadOnly)
	{
		LL_WARNS() << "Not removing cache at " << location << ": Cache is currently in read-only mode." << LL_ENDL;
		return ;
	}	

	LL_INFOS() << "about to remove the object cache due to settings." << LL_ENDL ;

	std::string mask = "*";
	std::string cache_dir = gDirUtilp->getExpandedFilename(location, object_cache_dirname);
	LL_INFOS() << "Removing cache at " << cache_dir << LL_ENDL;
	gDirUtilp->deleteFilesInDir(cache_dir, mask); //delete all files
	LLFile::rmdir(cache_dir);

	clearCacheInMemory();
	mInitialized = false;
}

void LLVOCache::removeCache() 
{
	if(!mInitialized)
	{
		//OK to remove cache even it is not initialized.
		LL_WARNS() << "Object cache is not initialized yet." << LL_ENDL;
	}

	if(mReadOnly)
	{
		LL_WARNS() << "Not clearing object cache: Cache is currently in read-only mode." << LL_ENDL;
		return ;
	}

	std::string mask = "*";
	LL_INFOS() << "Removing object cache at " << mObjectCacheDirName << LL_ENDL;
	gDirUtilp->deleteFilesInDir(mObjectCacheDirName, mask); 

	clearCacheInMemory() ;
	writeCacheHeader();
}

void LLVOCache::removeEntry(HeaderEntryInfo* entry) 
{
	llassert_always(mInitialized);
	if(mReadOnly)
	{
		return;
	}
	if(!entry)
	{
		return;
	}

	header_entry_queue_t::iterator iter = mHeaderEntryQueue.find(entry);
	if(iter != mHeaderEntryQueue.end())
	{		
		mHandleEntryMap.erase(entry->mHandle);		
		mHeaderEntryQueue.erase(iter);
		removeFromCache(entry);
		delete entry;

		mNumEntries = mHandleEntryMap.size() ;
	}
}

void LLVOCache::removeEntry(U64 handle) 
{
	handle_entry_map_t::iterator iter = mHandleEntryMap.find(handle) ;
	if(iter == mHandleEntryMap.end()) //no cache
	{
		return ;
	}
	HeaderEntryInfo* entry = iter->second ;
	removeEntry(entry) ;
}

void LLVOCache::clearCacheInMemory()
{
	if(!mHeaderEntryQueue.empty()) 
	{
		for(header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin(); iter != mHeaderEntryQueue.end(); ++iter)
		{
			delete *iter ;
		}
		mHeaderEntryQueue.clear();
		mHandleEntryMap.clear();
		mNumEntries = 0 ;
	}

}

void LLVOCache::getObjectCacheFilename(U64 handle, std::string& filename) 
{
	U32 region_x, region_y;

	grid_from_region_handle(handle, &region_x, &region_y);
	filename = gDirUtilp->getExpandedFilename(LL_PATH_CACHE, object_cache_dirname,
			   llformat(OBJECT_CACHE_FILENAME, region_x, region_y));

	return ;
}

void LLVOCache::removeFromCache(HeaderEntryInfo* entry)
{
	if(mReadOnly)
	{
		LL_WARNS() << "Not removing cache for handle " << entry->mHandle << ": Cache is currently in read-only mode." << LL_ENDL;
		return ;
	}

	std::string filename;
	getObjectCacheFilename(entry->mHandle, filename);
	LLAPRFile::remove(filename, mLocalAPRFilePoolp);
	entry->mTime = INVALID_TIME ;
	updateEntry(entry) ; //update the head file.
}

void LLVOCache::readCacheHeader()
{
	if(!mEnabled)
	{
		LL_WARNS() << "Not reading cache header: Cache is currently disabled." << LL_ENDL;
		return;
	}

	//clear stale info.
	clearCacheInMemory();	

	bool success = true ;
	if (LLAPRFile::isExist(mHeaderFileName, mLocalAPRFilePoolp))
	{
		LLAPRFile apr_file(mHeaderFileName, APR_READ|APR_BINARY, mLocalAPRFilePoolp);		
		
		//read the meta element
		success = check_read(&apr_file, &mMetaInfo, sizeof(HeaderMetaInfo)) ;
		
		if(success)
		{
			HeaderEntryInfo* entry = NULL ;
			mNumEntries = 0 ;
			U32 num_read = 0 ;
			while(num_read++ < MAX_NUM_OBJECT_ENTRIES)
			{
				if(!entry)
				{
					entry = new HeaderEntryInfo() ;
				}
				success = check_read(&apr_file, entry, sizeof(HeaderEntryInfo));
								
				if(!success) //failed
				{
					LL_WARNS() << "Error reading cache header entry. (entry_index=" << mNumEntries << ")" << LL_ENDL;
					delete entry ;
					entry = NULL ;
					break ;
				}
				else if(entry->mTime == INVALID_TIME)
				{
					continue ; //an empty entry
				}

				entry->mIndex = mNumEntries++ ;
				mHeaderEntryQueue.insert(entry) ;
				mHandleEntryMap[entry->mHandle] = entry ;
				entry = NULL ;
			}
			if(entry)
			{
				delete entry ;
			}
		}

		//---------
		//debug code
		//----------
		//std::string name ;
		//for(header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin() ; success && iter != mHeaderEntryQueue.end(); ++iter)
		//{
		//	getObjectCacheFilename((*iter)->mHandle, name) ;
		//	LL_INFOS() << name << LL_ENDL ;
		//}
		//-----------
	}
	else
	{
		writeCacheHeader() ;
	}

	if(!success)
	{
		removeCache() ; //failed to read header, clear the cache
	}
	else if(mNumEntries >= mCacheSize)
	{
		purgeEntries(mCacheSize) ;
	}

	return ;
}

void LLVOCache::writeCacheHeader()
{
	if (!mEnabled)
	{
		LL_WARNS() << "Not writing cache header: Cache is currently disabled." << LL_ENDL;
		return;
	}

	if(mReadOnly)
	{
		LL_WARNS() << "Not writing cache header: Cache is currently in read-only mode." << LL_ENDL;
		return;
	}

	bool success = true ;
	{
		LLAPRFile apr_file(mHeaderFileName, APR_CREATE|APR_WRITE|APR_BINARY, mLocalAPRFilePoolp);

		//write the meta element
		success = check_write(&apr_file, &mMetaInfo, sizeof(HeaderMetaInfo)) ;


		mNumEntries = 0 ;	
		for(header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin() ; success && iter != mHeaderEntryQueue.end(); ++iter)
		{
			(*iter)->mIndex = mNumEntries++ ;
			success = check_write(&apr_file, (void*)*iter, sizeof(HeaderEntryInfo));
		}
	
		mNumEntries = mHeaderEntryQueue.size() ;
		if(success && mNumEntries < MAX_NUM_OBJECT_ENTRIES)
		{
			HeaderEntryInfo* entry = new HeaderEntryInfo() ;
			entry->mTime = INVALID_TIME ;
			for(S32 i = mNumEntries ; success && i < MAX_NUM_OBJECT_ENTRIES ; i++)
			{
				//fill the cache with the default entry.
				success = check_write(&apr_file, entry, sizeof(HeaderEntryInfo)) ;			

			}
			delete entry ;
		}
	}

	if(!success)
	{
		clearCacheInMemory() ;
		mReadOnly = TRUE ; //disable the cache.
	}
	return ;
}

BOOL LLVOCache::updateEntry(const HeaderEntryInfo* entry)
{
	LLAPRFile apr_file(mHeaderFileName, APR_WRITE|APR_BINARY, mLocalAPRFilePoolp);
	apr_file.seek(APR_SET, entry->mIndex * sizeof(HeaderEntryInfo) + sizeof(HeaderMetaInfo)) ;

	return check_write(&apr_file, (void*)entry, sizeof(HeaderEntryInfo)) ;
}

void LLVOCache::readFromCache(U64 handle, const LLUUID& id, LLVOCacheEntry::vocache_entry_map_t& cache_entry_map) 
{
	if(!mEnabled)
	{
		LL_WARNS() << "Not reading cache for handle " << handle << "): Cache is currently disabled." << LL_ENDL;
		return ;
	}
	llassert_always(mInitialized);

	handle_entry_map_t::iterator iter = mHandleEntryMap.find(handle) ;
	if(iter == mHandleEntryMap.end()) //no cache
	{
		LL_WARNS() << "No handle map entry for " << handle << LL_ENDL;
		return ;
	}

	bool success = true ;
	{
		std::string filename;
		LLUUID cache_id;
		getObjectCacheFilename(handle, filename);
		LLAPRFile apr_file(filename, APR_READ|APR_BINARY, mLocalAPRFilePoolp);
	
		success = check_read(&apr_file, cache_id.mData, UUID_BYTES);
	
		if(success)
		{		
			if(cache_id != id)
			{
				LL_INFOS() << "Cache ID doesn't match for this region, discarding"<< LL_ENDL;
				success = false ;
			}

			if(success)
			{
				S32 num_entries;  // if removal was enabled during write num_entries might be wrong
				success = check_read(&apr_file, &num_entries, sizeof(S32)) ;
	
				if(success)
				{
					for (S32 i = 0; i < num_entries && apr_file.eof() != APR_EOF; i++)
					{
						LLPointer<LLVOCacheEntry> entry = new LLVOCacheEntry(&apr_file);
						if (!entry->getLocalID())
						{
							LL_WARNS() << "Aborting cache file load for " << filename << ", cache file corruption!" << LL_ENDL;
							success = false ;
							break ;
						}
						cache_entry_map[entry->getLocalID()] = entry;
					}
				}
			}
		}		
	}
	
	if(!success)
	{
		if(cache_entry_map.empty())
		{
			removeEntry(iter->second) ;
		}
	}

	return ;
}

void LLVOCache::readGenericExtrasFromCache(U64 handle, const LLUUID& id, LLVOCacheEntry::vocache_gltf_overrides_map_t& cache_extras_entry_map)
{
    LL_DEBUGS() << "TODO" << LL_ENDL;
}

void LLVOCache::purgeEntries(U32 size)
{
	while(mHeaderEntryQueue.size() > size)
	{
		header_entry_queue_t::iterator iter = mHeaderEntryQueue.begin() ;
		HeaderEntryInfo* entry = *iter ;			
		mHandleEntryMap.erase(entry->mHandle);
		mHeaderEntryQueue.erase(iter) ;
		removeFromCache(entry) ;
		delete entry;
	}
	mNumEntries = mHandleEntryMap.size() ;
}

void LLVOCache::writeToCache(U64 handle, const LLUUID& id, const LLVOCacheEntry::vocache_entry_map_t& cache_entry_map, BOOL dirty_cache, bool removal_enabled) 
{
	if(!mEnabled)
	{
		LL_WARNS() << "Not writing cache for handle " << handle << "): Cache is currently disabled." << LL_ENDL;
		return ;
	}
	llassert_always(mInitialized);

	if(mReadOnly)
	{
		LL_WARNS() << "Not writing cache for handle " << handle << "): Cache is currently in read-only mode." << LL_ENDL;
		return ;
	}	

	HeaderEntryInfo* entry;
	handle_entry_map_t::iterator iter = mHandleEntryMap.find(handle) ;
	if(iter == mHandleEntryMap.end()) //new entry
	{				
		if(mNumEntries >= mCacheSize - 1)
		{
			purgeEntries(mCacheSize - 1) ;
		}

		entry = new HeaderEntryInfo();
		entry->mHandle = handle ;
		entry->mTime = time(NULL) ;
		entry->mIndex = mNumEntries++;
		mHeaderEntryQueue.insert(entry) ;
		mHandleEntryMap[handle] = entry ;
	}
	else
	{
		// Update access time.
		entry = iter->second ;		

		//resort
		mHeaderEntryQueue.erase(entry) ;
		
		entry->mTime = time(NULL) ;
		mHeaderEntryQueue.insert(entry) ;
	}

	//update cache header
	if(!updateEntry(entry))
	{
		LL_WARNS() << "Failed to update cache header index " << entry->mIndex << ". handle = " << handle << LL_ENDL;
		return ; //update failed.
	}

	if(!dirty_cache)
	{
		LL_WARNS() << "Skipping write to cache for handle " << handle << ": cache not dirty" << LL_ENDL;
		return ; //nothing changed, no need to update.
	}

	//write to cache file
	bool success = true ;
	{
		std::string filename;
		getObjectCacheFilename(handle, filename);
		LLAPRFile apr_file(filename, APR_CREATE|APR_WRITE|APR_BINARY|APR_TRUNCATE, mLocalAPRFilePoolp);
	
		success = check_write(&apr_file, (void*)id.mData, UUID_BYTES);
	
		if(success)
		{
			S32 num_entries = cache_entry_map.size(); // if removal is enabled num_entries might be wrong
			success = check_write(&apr_file, &num_entries, sizeof(S32));
            if (success)
            {
                const S32 buffer_size = 32768; //should be large enough for couple MAX_ENTRY_BODY_SIZE
                U8 data_buffer[buffer_size]; // generaly entries are fairly small, so collect them and drop onto disk in one go
                S32 size_in_buffer = 0;

                // This can have a lot of entries, so might be better to dump them into buffer first and write in one go.
                for (LLVOCacheEntry::vocache_entry_map_t::const_iterator iter = cache_entry_map.begin(); success && iter != cache_entry_map.end(); ++iter)
                {
                    if (!removal_enabled || iter->second->isValid())
                    {
                        S32 size = iter->second->writeToBuffer(data_buffer + size_in_buffer);

                        if (size > ENTRY_HEADER_SIZE) // body is minimum of 1
                        {
                            size_in_buffer += size;
                        }
                        else
                        {
                            success = false;
                            break;
                        }

                        // Make sure we have space in buffer for next element
                        if (buffer_size - size_in_buffer < MAX_ENTRY_BODY_SIZE + ENTRY_HEADER_SIZE)
                        {
                            success = check_write(&apr_file, (void*)data_buffer, size_in_buffer);
                            size_in_buffer = 0;
                            if (!success)
                            {
                                break;
                            }
                        }
                    }
                }

                if (success && size_in_buffer > 0)
                {
                    // final write
                    success = check_write(&apr_file, (void*)data_buffer, size_in_buffer);
                    size_in_buffer = 0;
                }
            }
		}
	}

	if(!success)
	{
		removeEntry(entry) ;
	}

	return ;
}

void LLVOCache::writeGenericExtrasToCache(U64 handle, const LLUUID& id, const LLVOCacheEntry::vocache_gltf_overrides_map_t& cache_extras_entry_map, BOOL dirty_cache, bool removal_enabled)
{
}