/** * @file llvlcomposition.cpp * @brief Viewer-side representation of a composition layer... * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "llvlcomposition.h" #include "llerror.h" #include "v3math.h" #include "llsurface.h" #include "lltextureview.h" #include "llviewertexture.h" #include "llviewertexturelist.h" #include "llfetchedgltfmaterial.h" #include "llgltfmateriallist.h" #include "llviewerregion.h" #include "noise.h" #include "llregionhandle.h" // for from_region_handle #include "llviewercontrol.h" static const U32 BASE_SIZE = 128; F32 bilinear(const F32 v00, const F32 v01, const F32 v10, const F32 v11, const F32 x_frac, const F32 y_frac) { // Not sure if this is the right math... // Take weighted average of all four points (bilinear interpolation) F32 result; const F32 inv_x_frac = 1.f - x_frac; const F32 inv_y_frac = 1.f - y_frac; result = inv_x_frac*inv_y_frac*v00 + x_frac*inv_y_frac*v10 + inv_x_frac*y_frac*v01 + x_frac*y_frac*v11; return result; } LLTerrainMaterials::LLTerrainMaterials() { for (S32 i = 0; i < ASSET_COUNT; ++i) { mMaterialTexturesSet[i] = false; } } LLTerrainMaterials::~LLTerrainMaterials() { } BOOL LLTerrainMaterials::generateMaterials() { if (texturesReady(TRUE)) { return TRUE; } if (materialsReady(TRUE)) { return TRUE; } return FALSE; } LLUUID LLTerrainMaterials::getDetailAssetID(S32 asset) { llassert(mDetailTextures[asset] && mDetailMaterials[asset]); // *HACK: Assume both the the material and texture were fetched in the same // way using the same UUID. However, we may not know at this point which // one will load. return mDetailTextures[asset]->getID(); } LLPointer fetch_terrain_texture(const LLUUID& id) { if (id.isNull()) { return nullptr; } LLPointer tex = LLViewerTextureManager::getFetchedTexture(id); tex->setNoDelete(); return tex; } void LLTerrainMaterials::setDetailAssetID(S32 asset, const LLUUID& id) { // This is terrain texture, but we are not setting it as BOOST_TERRAIN // since we will be manipulating it later as needed. mDetailTextures[asset] = fetch_terrain_texture(id); LLPointer& mat = mDetailMaterials[asset]; mat = id.isNull() ? nullptr : gGLTFMaterialList.getMaterial(id); mMaterialTexturesSet[asset] = false; } LLTerrainMaterials::Type LLTerrainMaterials::getMaterialType() { LL_PROFILE_ZONE_SCOPED; const BOOL use_textures = texturesReady() || !materialsReady(); return use_textures ? Type::TEXTURE : Type::PBR; } BOOL LLTerrainMaterials::texturesReady(BOOL boost) { BOOL ready = TRUE; for (S32 i = 0; i < ASSET_COUNT; i++) { if (!textureReady(mDetailTextures[i], boost)) { ready = FALSE; } } return ready; } BOOL LLTerrainMaterials::materialsReady(BOOL boost) { #if 1 static bool sRenderTerrainPBREnabled = gSavedSettings.get("RenderTerrainPBREnabled"); static LLCachedControl sRenderTerrainPBRForce(gSavedSettings, "RenderTerrainPBRForce", false); if (sRenderTerrainPBREnabled && sRenderTerrainPBRForce) { bool defined = true; for (S32 i = 0; i < ASSET_COUNT; i++) { if (!mDetailMaterials[i]) { defined = false; break; } } if (defined) { return TRUE; } } #endif BOOL ready = TRUE; for (S32 i = 0; i < ASSET_COUNT; i++) { if (!materialReady(mDetailMaterials[i], mMaterialTexturesSet[i], boost)) { ready = FALSE; } } return ready; } // Boost the texture loading priority // Return true when ready to use (i.e. texture is sufficiently loaded) // static BOOL LLTerrainMaterials::textureReady(LLPointer& tex, BOOL boost) { llassert(tex.notNull()); if (tex->getDiscardLevel() < 0) { if (boost) { tex->setBoostLevel(LLGLTexture::BOOST_TERRAIN); // in case we are at low detail tex->addTextureStats(BASE_SIZE*BASE_SIZE); } return FALSE; } if ((tex->getDiscardLevel() != 0 && (tex->getWidth() < BASE_SIZE || tex->getHeight() < BASE_SIZE))) { if (boost) { S32 width = tex->getFullWidth(); S32 height = tex->getFullHeight(); S32 min_dim = llmin(width, height); S32 ddiscard = 0; while (min_dim > BASE_SIZE && ddiscard < MAX_DISCARD_LEVEL) { ddiscard++; min_dim /= 2; } tex->setBoostLevel(LLGLTexture::BOOST_TERRAIN); // in case we are at low detail tex->setMinDiscardLevel(ddiscard); tex->addTextureStats(BASE_SIZE*BASE_SIZE); // priority } return FALSE; } if (tex->getComponents() == 0) { return FALSE; } return TRUE; } // Boost the loading priority of every known texture in the material // Return true when ready to use (i.e. material and all textures within are sufficiently loaded) // static BOOL LLTerrainMaterials::materialReady(LLPointer& mat, bool& textures_set, BOOL boost) { if (!mat || !mat->isLoaded()) { return FALSE; } // Material is loaded, but textures may not be if (!textures_set) { // *NOTE: These can sometimes be set to to nullptr due to // updateTEMaterialTextures. For the sake of robustness, we emulate // that fetching behavior by setting textures of null IDs to nullptr. mat->mBaseColorTexture = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR]); mat->mNormalTexture = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_NORMAL]); mat->mMetallicRoughnessTexture = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_METALLIC_ROUGHNESS]); mat->mEmissiveTexture = fetch_terrain_texture(mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_EMISSIVE]); textures_set = true; return FALSE; } if (mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR].notNull() && !textureReady(mat->mBaseColorTexture, boost)) { return FALSE; } if (mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_NORMAL].notNull() && !textureReady(mat->mNormalTexture, boost)) { return FALSE; } if (mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_METALLIC_ROUGHNESS].notNull() && !textureReady(mat->mMetallicRoughnessTexture, boost)) { return FALSE; } if (mat->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_EMISSIVE].notNull() && !textureReady(mat->mEmissiveTexture, boost)) { return FALSE; } return TRUE; } LLVLComposition::LLVLComposition(LLSurface *surfacep, const U32 width, const F32 scale) : LLTerrainMaterials(), LLViewerLayer(width, scale) { // Load Terrain Textures - Original ones setDetailAssetID(0, TERRAIN_DIRT_DETAIL); setDetailAssetID(1, TERRAIN_GRASS_DETAIL); setDetailAssetID(2, TERRAIN_MOUNTAIN_DETAIL); setDetailAssetID(3, TERRAIN_ROCK_DETAIL); mSurfacep = surfacep; // Initialize the texture matrix to defaults. for (S32 i = 0; i < CORNER_COUNT; ++i) { mStartHeight[i] = gSavedSettings.getF32("TerrainColorStartHeight"); mHeightRange[i] = gSavedSettings.getF32("TerrainColorHeightRange"); } } LLVLComposition::~LLVLComposition() { LLTerrainMaterials::~LLTerrainMaterials(); } void LLVLComposition::setSurface(LLSurface *surfacep) { mSurfacep = surfacep; } BOOL LLVLComposition::generateHeights(const F32 x, const F32 y, const F32 width, const F32 height) { if (!mParamsReady) { // All the parameters haven't been set yet (we haven't gotten the message from the sim) return FALSE; } llassert(mSurfacep); if (!mSurfacep || !mSurfacep->getRegion()) { // We don't always have the region yet here.... return FALSE; } S32 x_begin, y_begin, x_end, y_end; x_begin = ll_round( x * mScaleInv ); y_begin = ll_round( y * mScaleInv ); x_end = ll_round( (x + width) * mScaleInv ); y_end = ll_round( (y + width) * mScaleInv ); if (x_end > mWidth) { x_end = mWidth; } if (y_end > mWidth) { y_end = mWidth; } LLVector3d origin_global = from_region_handle(mSurfacep->getRegion()->getHandle()); // For perlin noise generation... const F32 slope_squared = 1.5f*1.5f; const F32 xyScale = 4.9215f; //0.93284f; const F32 zScale = 4; //0.92165f; const F32 z_offset = 0.f; const F32 noise_magnitude = 2.f; // Degree to which noise modulates composition layer (versus // simple height) const F32 xyScaleInv = (1.f / xyScale); const F32 zScaleInv = (1.f / zScale); const F32 inv_width = 1.f/mWidth; // OK, for now, just have the composition value equal the height at the point. for (S32 j = y_begin; j < y_end; j++) { for (S32 i = x_begin; i < x_end; i++) { F32 vec[3]; F32 vec1[3]; F32 twiddle; // Bilinearly interpolate the start height and height range of the textures F32 start_height = bilinear(mStartHeight[SOUTHWEST], mStartHeight[SOUTHEAST], mStartHeight[NORTHWEST], mStartHeight[NORTHEAST], i*inv_width, j*inv_width); // These will be bilinearly interpolated F32 height_range = bilinear(mHeightRange[SOUTHWEST], mHeightRange[SOUTHEAST], mHeightRange[NORTHWEST], mHeightRange[NORTHEAST], i*inv_width, j*inv_width); // These will be bilinearly interpolated LLVector3 location(i*mScale, j*mScale, 0.f); F32 height = mSurfacep->resolveHeightRegion(location) + z_offset; // Step 0: Measure the exact height at this texel vec[0] = (F32)(origin_global.mdV[VX]+location.mV[VX])*xyScaleInv; // Adjust to non-integer lattice vec[1] = (F32)(origin_global.mdV[VY]+location.mV[VY])*xyScaleInv; vec[2] = height*zScaleInv; // // Choose material value by adding to the exact height a random value // vec1[0] = vec[0]*(0.2222222222f); vec1[1] = vec[1]*(0.2222222222f); vec1[2] = vec[2]*(0.2222222222f); twiddle = noise2(vec1)*6.5f; // Low freq component for large divisions twiddle += turbulence2(vec, 2)*slope_squared; // High frequency component twiddle *= noise_magnitude; F32 scaled_noisy_height = (height + twiddle - start_height) * F32(ASSET_COUNT) / height_range; scaled_noisy_height = llmax(0.f, scaled_noisy_height); scaled_noisy_height = llmin(3.f, scaled_noisy_height); *(mDatap + i + j*mWidth) = scaled_noisy_height; } } return TRUE; } LLTerrainMaterials gLocalTerrainMaterials; BOOL LLVLComposition::generateComposition() { if (!mParamsReady) { // All the parameters haven't been set yet (we haven't gotten the message from the sim) return FALSE; } return LLTerrainMaterials::generateMaterials(); } BOOL LLVLComposition::generateMinimapTileLand(const F32 x, const F32 y, const F32 width, const F32 height) { LL_PROFILE_ZONE_SCOPED llassert(mSurfacep); llassert(x >= 0.f); llassert(y >= 0.f); /////////////////////////// // // Generate raw data arrays for surface textures // // // These have already been validated by generateComposition. U8* st_data[ASSET_COUNT]; S32 st_data_size[ASSET_COUNT]; // for debugging const bool use_textures = getMaterialType() != LLTerrainMaterials::Type::PBR; // *TODO: Remove this as it is reduandant computation (first and foremost // because getMaterialType() does something similar, but also... shouldn't // the textures/materials already be loaded by now?) if (use_textures) { if (!texturesReady()) { return FALSE; } } else { if (!materialsReady()) { return FALSE; } } for (S32 i = 0; i < ASSET_COUNT; i++) { if (mRawImages[i].isNull()) { // Read back a raw image for this discard level, if it exists LLViewerFetchedTexture* tex; LLViewerFetchedTexture* tex_emissive; // Can be null bool has_base_color_factor; bool has_emissive_factor; LLColor3 base_color_factor; LLColor3 emissive_factor; if (use_textures) { tex = mDetailTextures[i]; tex_emissive = nullptr; has_base_color_factor = false; has_emissive_factor = false; llassert(tex); } else { tex = mDetailMaterials[i]->mBaseColorTexture; tex_emissive = mDetailMaterials[i]->mEmissiveTexture; base_color_factor = LLColor3(mDetailMaterials[i]->mBaseColor); // *HACK: Treat alpha as black base_color_factor *= (mDetailMaterials[i]->mBaseColor.mV[VW]); emissive_factor = mDetailMaterials[i]->mEmissiveColor; has_base_color_factor = (base_color_factor.mV[VX] != 1.f || base_color_factor.mV[VY] != 1.f || base_color_factor.mV[VZ] != 1.f); has_emissive_factor = (emissive_factor.mV[VX] != 1.f || emissive_factor.mV[VY] != 1.f || emissive_factor.mV[VZ] != 1.f); } if (!tex) { tex = LLViewerFetchedTexture::sWhiteImagep; } // tex_emissive can be null, and then will be ignored S32 min_dim = llmin(tex->getFullWidth(), tex->getFullHeight()); S32 ddiscard = 0; while (min_dim > BASE_SIZE && ddiscard < MAX_DISCARD_LEVEL) { ddiscard++; min_dim /= 2; } BOOL delete_raw = (tex->reloadRawImage(ddiscard) != NULL) ; if(tex->getRawImageLevel() != ddiscard) { // Raw image is not ready, will enter here again later. if (tex->getFetchPriority() <= 0.0f && !tex->hasSavedRawImage()) { tex->setBoostLevel(LLGLTexture::BOOST_MAP); tex->forceToRefetchTexture(ddiscard); } if(delete_raw) { tex->destroyRawImage() ; } return FALSE; } if (tex_emissive) { if(tex_emissive->getRawImageLevel() != ddiscard) { // Raw image is not ready, will enter here again later. if (tex_emissive->getFetchPriority() <= 0.0f && !tex_emissive->hasSavedRawImage()) { tex_emissive->setBoostLevel(LLGLTexture::BOOST_MAP); tex_emissive->forceToRefetchTexture(ddiscard); } if(delete_raw) { tex_emissive->destroyRawImage() ; } return FALSE; } } mRawImages[i] = tex->getRawImage() ; if(delete_raw) { tex->destroyRawImage() ; } // *TODO: This isn't quite right for PBR: // 1) It does not convert the color images from SRGB to linear // before mixing (which will always require copying the image). // 2) It mixes emissive and base color before mixing terrain // materials, but it should be the other way around // 3) The composite function used to put emissive into base color // is not an alpha blend. // Long-term, we should consider a method that is more // maintainable. Shaders, perhaps? Bake shaders to textures? LLPointer raw_emissive; if (tex_emissive) { raw_emissive = tex_emissive->getRawImage(); if (has_emissive_factor || tex_emissive->getWidth(ddiscard) != BASE_SIZE || tex_emissive->getHeight(ddiscard) != BASE_SIZE || tex_emissive->getComponents() != 4) { LLPointer newraw_emissive = new LLImageRaw(BASE_SIZE, BASE_SIZE, 4); // Copy RGB, leave alpha alone (set to opaque by default) newraw_emissive->copy(mRawImages[i]); if (has_emissive_factor) { newraw_emissive->tint(emissive_factor); } raw_emissive = newraw_emissive; // deletes old } } if (has_base_color_factor || raw_emissive || tex->getWidth(ddiscard) != BASE_SIZE || tex->getHeight(ddiscard) != BASE_SIZE || tex->getComponents() != 3) { LLPointer newraw = new LLImageRaw(BASE_SIZE, BASE_SIZE, 3); newraw->composite(mRawImages[i]); if (has_base_color_factor) { newraw->tint(base_color_factor); } // Apply emissive texture if (raw_emissive) { newraw->composite(raw_emissive); } mRawImages[i] = newraw; // deletes old } } st_data[i] = mRawImages[i]->getData(); st_data_size[i] = mRawImages[i]->getDataSize(); } /////////////////////////////////////// // // Generate and clamp x/y bounding box. // // S32 x_begin, y_begin, x_end, y_end; x_begin = (S32)(x * mScaleInv); y_begin = (S32)(y * mScaleInv); x_end = ll_round( (x + width) * mScaleInv ); y_end = ll_round( (y + width) * mScaleInv ); if (x_end > mWidth) { llassert(false); x_end = mWidth; } if (y_end > mWidth) { llassert(false); y_end = mWidth; } /////////////////////////////////////////// // // Generate target texture information, stride ratios. // // LLViewerTexture *texturep; U32 tex_width, tex_height, tex_comps; U32 tex_stride; F32 tex_x_scalef, tex_y_scalef; S32 tex_x_begin, tex_y_begin, tex_x_end, tex_y_end; F32 tex_x_ratiof, tex_y_ratiof; texturep = mSurfacep->getSTexture(); tex_width = texturep->getWidth(); tex_height = texturep->getHeight(); tex_comps = texturep->getComponents(); tex_stride = tex_width * tex_comps; U32 st_comps = 3; U32 st_width = BASE_SIZE; U32 st_height = BASE_SIZE; if (tex_comps != st_comps) { llassert(false); return FALSE; } tex_x_scalef = (F32)tex_width / (F32)mWidth; tex_y_scalef = (F32)tex_height / (F32)mWidth; tex_x_begin = (S32)((F32)x_begin * tex_x_scalef); tex_y_begin = (S32)((F32)y_begin * tex_y_scalef); tex_x_end = (S32)((F32)x_end * tex_x_scalef); tex_y_end = (S32)((F32)y_end * tex_y_scalef); tex_x_ratiof = (F32)mWidth*mScale / (F32)tex_width; tex_y_ratiof = (F32)mWidth*mScale / (F32)tex_height; LLPointer raw = new LLImageRaw(tex_width, tex_height, tex_comps); U8 *rawp = raw->getData(); F32 st_x_stride, st_y_stride; st_x_stride = ((F32)st_width / (F32)mTexScaleX)*((F32)mWidth / (F32)tex_width); st_y_stride = ((F32)st_height / (F32)mTexScaleY)*((F32)mWidth / (F32)tex_height); llassert(st_x_stride > 0.f); llassert(st_y_stride > 0.f); //////////////////////////////// // // Iterate through the target texture, striding through the // subtextures and interpolating appropriately. // // F32 sti, stj; S32 st_offset; sti = (tex_x_begin * st_x_stride) - st_width*(llfloor((tex_x_begin * st_x_stride)/st_width)); stj = (tex_y_begin * st_y_stride) - st_height*(llfloor((tex_y_begin * st_y_stride)/st_height)); st_offset = (llfloor(stj * st_width) + llfloor(sti)) * st_comps; for (S32 j = tex_y_begin; j < tex_y_end; j++) { U32 offset = j * tex_stride + tex_x_begin * tex_comps; sti = (tex_x_begin * st_x_stride) - st_width*((U32)(tex_x_begin * st_x_stride)/st_width); for (S32 i = tex_x_begin; i < tex_x_end; i++) { S32 tex0, tex1; F32 composition = getValueScaled(i*tex_x_ratiof, j*tex_y_ratiof); tex0 = llfloor( composition ); tex0 = llclamp(tex0, 0, 3); composition -= tex0; tex1 = tex0 + 1; tex1 = llclamp(tex1, 0, 3); st_offset = (lltrunc(sti) + lltrunc(stj)*st_width) * st_comps; for (U32 k = 0; k < tex_comps; k++) { // Linearly interpolate based on composition. if (st_offset >= st_data_size[tex0] || st_offset >= st_data_size[tex1]) { // SJB: This shouldn't be happening, but does... Rounding error? //LL_WARNS() << "offset 0 [" << tex0 << "] =" << st_offset << " >= size=" << st_data_size[tex0] << LL_ENDL; //LL_WARNS() << "offset 1 [" << tex1 << "] =" << st_offset << " >= size=" << st_data_size[tex1] << LL_ENDL; } else { F32 a = *(st_data[tex0] + st_offset); F32 b = *(st_data[tex1] + st_offset); rawp[ offset ] = (U8)lltrunc( a + composition * (b - a) ); } offset++; st_offset++; } sti += st_x_stride; if (sti >= st_width) { sti -= st_width; } } stj += st_y_stride; if (stj >= st_height) { stj -= st_height; } } if (!texturep->hasGLTexture()) { texturep->createGLTexture(0, raw); } texturep->setSubImage(raw, tex_x_begin, tex_y_begin, tex_x_end - tex_x_begin, tex_y_end - tex_y_begin); for (S32 i = 0; i < ASSET_COUNT; i++) { // Un-boost detatil textures (will get re-boosted if rendering in high detail) mDetailTextures[i]->setBoostLevel(LLGLTexture::BOOST_NONE); mDetailTextures[i]->setMinDiscardLevel(MAX_DISCARD_LEVEL + 1); } return TRUE; } F32 LLVLComposition::getStartHeight(S32 corner) { return mStartHeight[corner]; } void LLVLComposition::setDetailAssetID(S32 asset, const LLUUID& id) { if (id.isNull()) { return; } LLTerrainMaterials::setDetailAssetID(asset, id); mRawImages[asset] = NULL; } void LLVLComposition::setStartHeight(S32 corner, const F32 start_height) { mStartHeight[corner] = start_height; } F32 LLVLComposition::getHeightRange(S32 corner) { return mHeightRange[corner]; } void LLVLComposition::setHeightRange(S32 corner, const F32 range) { mHeightRange[corner] = range; }