/** * @file llspatialpartition.cpp * @brief LLSpatialGroup class implementation and supporting functions * * $LicenseInfo:firstyear=2003&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "llspatialpartition.h" #include "llappviewer.h" #include "llcallstack.h" #include "lltexturecache.h" #include "lltexturefetch.h" #include "llimageworker.h" #include "llviewerwindow.h" #include "llviewerobjectlist.h" #include "llvovolume.h" #include "llvolume.h" #include "llvolumeoctree.h" #include "llviewercamera.h" #include "llface.h" #include "llfloatertools.h" #include "llviewercontrol.h" #include "llviewerregion.h" #include "llcamera.h" #include "pipeline.h" #include "llmeshrepository.h" #include "llrender.h" #include "lloctree.h" #include "llphysicsshapebuilderutil.h" #include "llvoavatar.h" #include "llvolumemgr.h" #include "llviewershadermgr.h" #include "llcontrolavatar.h" extern bool gShiftFrame; static U32 sZombieGroups = 0; U32 LLSpatialGroup::sNodeCount = 0; bool LLSpatialGroup::sNoDelete = false; static F32 sLastMaxTexPriority = 1.f; static F32 sCurMaxTexPriority = 1.f; // enable expensive sanity checks around redundant drawable and group insertion to LLCullResult #define LL_DEBUG_CULL_RESULT 0 //static counter for frame to switch LOD on void sg_assert(BOOL expr) { #if LL_OCTREE_PARANOIA_CHECK if (!expr) { LL_ERRS() << "Octree invalid!" << LL_ENDL; } #endif } //returns: // 0 if sphere and AABB are not intersecting // 1 if they are // 2 if AABB is entirely inside sphere S32 LLSphereAABB(const LLVector3& center, const LLVector3& size, const LLVector3& pos, const F32 &rad) { S32 ret = 2; LLVector3 min = center - size; LLVector3 max = center + size; for (U32 i = 0; i < 3; i++) { if (min.mV[i] > pos.mV[i] + rad || max.mV[i] < pos.mV[i] - rad) { //totally outside return 0; } if (min.mV[i] < pos.mV[i] - rad || max.mV[i] > pos.mV[i] + rad) { //intersecting ret = 1; } } return ret; } LLSpatialGroup::~LLSpatialGroup() { /*if (sNoDelete) { LL_ERRS() << "Illegal deletion of LLSpatialGroup!" << LL_ENDL; }*/ if (gDebugGL) { gPipeline.checkReferences(this); } if (hasState(DEAD)) { sZombieGroups--; } sNodeCount--; clearDrawMap(); } void LLSpatialGroup::clearDrawMap() { mDrawMap.clear(); } BOOL LLSpatialGroup::isHUDGroup() { return getSpatialPartition() && getSpatialPartition()->isHUDPartition() ; } void LLSpatialGroup::validate() { ll_assert_aligned(this,64); #if LL_OCTREE_PARANOIA_CHECK sg_assert(!isState(DIRTY)); sg_assert(!isDead()); LLVector4a myMin; myMin.setSub(mBounds[0], mBounds[1]); LLVector4a myMax; myMax.setAdd(mBounds[0], mBounds[1]); validateDrawMap(); for (element_iter i = getDataBegin(); i != getDataEnd(); ++i) { LLDrawable* drawable = *i; sg_assert(drawable->getSpatialGroup() == this); if (drawable->getSpatialBridge()) { sg_assert(drawable->getSpatialBridge() == getSpatialPartition()->asBridge()); } /*if (drawable->isSpatialBridge()) { LLSpatialPartition* part = drawable->asPartition(); if (!part) { LL_ERRS() << "Drawable reports it is a spatial bridge but not a partition." << LL_ENDL; } LLSpatialGroup* group = (LLSpatialGroup*) part->mOctree->getListener(0); group->validate(); }*/ } for (U32 i = 0; i < mOctreeNode->getChildCount(); ++i) { LLSpatialGroup* group = (LLSpatialGroup*) mOctreeNode->getChild(i)->getListener(0); group->validate(); //ensure all children are enclosed in this node LLVector4a center = group->mBounds[0]; LLVector4a size = group->mBounds[1]; LLVector4a min; min.setSub(center, size); LLVector4a max; max.setAdd(center, size); for (U32 j = 0; j < 3; j++) { sg_assert(min[j] >= myMin[j]-0.02f); sg_assert(max[j] <= myMax[j]+0.02f); } } #endif } void LLSpatialGroup::validateDrawMap() { #if LL_OCTREE_PARANOIA_CHECK for (draw_map_t::iterator i = mDrawMap.begin(); i != mDrawMap.end(); ++i) { LLSpatialGroup::drawmap_elem_t& draw_vec = i->second; for (drawmap_elem_t::iterator j = draw_vec.begin(); j != draw_vec.end(); ++j) { LLDrawInfo& params = **j; params.validate(); } } #endif } BOOL LLSpatialGroup::updateInGroup(LLDrawable *drawablep, BOOL immediate) { LL_PROFILE_ZONE_SCOPED; drawablep->updateSpatialExtents(); OctreeNode* parent = mOctreeNode->getOctParent(); if (mOctreeNode->isInside(drawablep->getPositionGroup()) && (mOctreeNode->contains(drawablep->getEntry()) || (drawablep->getBinRadius() > mOctreeNode->getSize()[0] && parent && parent->getElementCount() >= gOctreeMaxCapacity))) { unbound(); setState(OBJECT_DIRTY); //setState(GEOM_DIRTY); return TRUE; } return FALSE; } void LLSpatialGroup::expandExtents(const LLVector4a* addingExtents, const LLXformMatrix& currentTransform) { // Get coordinates of the adding extents const LLVector4a& min = addingExtents[0]; const LLVector4a& max = addingExtents[1]; // Get coordinates of all corners of the bounding box LLVector3 corners[] = { LLVector3(min[0], min[1], min[2]), LLVector3(min[0], min[1], max[2]), LLVector3(min[0], max[1], min[2]), LLVector3(min[0], max[1], max[2]), LLVector3(max[0], min[1], min[2]), LLVector3(max[0], min[1], max[2]), LLVector3(max[0], max[1], min[2]), LLVector3(max[0], max[1], max[2]) }; // New extents (to be expanded) LLVector3 extents[] = { LLVector3(mExtents[0].getF32ptr()), LLVector3(mExtents[1].getF32ptr()) }; LLQuaternion backwardRotation = ~currentTransform.getWorldRotation(); for (LLVector3& corner : corners) { // Make coordinates relative to the current position corner -= currentTransform.getWorldPosition(); // Rotate coordinates backward to the current rotation corner.rotVec(backwardRotation); // Expand root extents on the current corner for (int j = 0; j < 3; ++j) { if (corner[j] < extents[0][j]) extents[0][j] = corner[j]; if (corner[j] > extents[1][j]) extents[1][j] = corner[j]; } } // Set new expanded extents mExtents[0].load3(extents[0].mV); mExtents[1].load3(extents[1].mV); // Calculate new center and size mBounds[0].setAdd(mExtents[0], mExtents[1]); mBounds[0].mul(0.5f); mBounds[1].setSub(mExtents[0], mExtents[1]); mBounds[1].mul(0.5f); } BOOL LLSpatialGroup::addObject(LLDrawable *drawablep) { if(!drawablep) { return FALSE; } { drawablep->setGroup(this); setState(OBJECT_DIRTY | GEOM_DIRTY); setOcclusionState(LLSpatialGroup::DISCARD_QUERY, LLSpatialGroup::STATE_MODE_ALL_CAMERAS); gPipeline.markRebuild(this); if (drawablep->isSpatialBridge()) { mBridgeList.push_back((LLSpatialBridge*) drawablep); } if (drawablep->getRadius() > 1.f) { setState(IMAGE_DIRTY); } } return TRUE; } void LLSpatialGroup::rebuildGeom() { if (!isDead()) { getSpatialPartition()->rebuildGeom(this); if (hasState(LLSpatialGroup::MESH_DIRTY)) { gPipeline.markMeshDirty(this); } } } void LLSpatialGroup::rebuildMesh() { if (!isDead()) { getSpatialPartition()->rebuildMesh(this); } } void LLSpatialPartition::rebuildGeom(LLSpatialGroup* group) { if (group->isDead() || !group->hasState(LLSpatialGroup::GEOM_DIRTY)) { return; } if (group->changeLOD()) { group->mLastUpdateDistance = group->mDistance; group->mLastUpdateViewAngle = group->mViewAngle; } LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL; group->clearDrawMap(); //get geometry count U32 index_count = 0; U32 vertex_count = 0; addGeometryCount(group, vertex_count, index_count); if (vertex_count > 0 && index_count > 0) { //create vertex buffer containing volume geometry for this node { group->mBuilt = 1.f; if (group->mVertexBuffer.isNull() || group->mVertexBuffer->getNumVerts() != vertex_count || group->mVertexBuffer->getNumVerts() != index_count) { group->mVertexBuffer = new LLVertexBuffer(mVertexDataMask); if (!group->mVertexBuffer->allocateBuffer(vertex_count, index_count)) { LL_WARNS() << "Failed to allocate Vertex Buffer on rebuild to " << vertex_count << " vertices and " << index_count << " indices" << LL_ENDL; group->mVertexBuffer = NULL; group->mBufferMap.clear(); } } } if (group->mVertexBuffer) { getGeometry(group); } } else { group->mVertexBuffer = NULL; group->mBufferMap.clear(); } group->mLastUpdateTime = gFrameTimeSeconds; group->clearState(LLSpatialGroup::GEOM_DIRTY); } void LLSpatialPartition::rebuildMesh(LLSpatialGroup* group) { } LLSpatialGroup* LLSpatialGroup::getParent() { return (LLSpatialGroup*)LLViewerOctreeGroup::getParent(); } BOOL LLSpatialGroup::removeObject(LLDrawable *drawablep, BOOL from_octree) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL if(!drawablep) { return FALSE; } unbound(); if (mOctreeNode && !from_octree) { drawablep->setGroup(NULL); } else { drawablep->setGroup(NULL); setState(GEOM_DIRTY); gPipeline.markRebuild(this); if (drawablep->isSpatialBridge()) { for (bridge_list_t::iterator i = mBridgeList.begin(); i != mBridgeList.end(); ++i) { if (*i == drawablep) { mBridgeList.erase(i); break; } } } if (getElementCount() == 0) { //delete draw map on last element removal since a rebuild might never happen clearDrawMap(); } } return TRUE; } void LLSpatialGroup::shift(const LLVector4a &offset) { LLVector4a t = mOctreeNode->getCenter(); t.add(offset); mOctreeNode->setCenter(t); mOctreeNode->updateMinMax(); mBounds[0].add(offset); mExtents[0].add(offset); mExtents[1].add(offset); mObjectBounds[0].add(offset); mObjectExtents[0].add(offset); mObjectExtents[1].add(offset); if (!getSpatialPartition()->mRenderByGroup && getSpatialPartition()->mPartitionType != LLViewerRegion::PARTITION_TREE && getSpatialPartition()->mPartitionType != LLViewerRegion::PARTITION_TERRAIN && getSpatialPartition()->mPartitionType != LLViewerRegion::PARTITION_BRIDGE && getSpatialPartition()->mPartitionType != LLViewerRegion::PARTITION_AVATAR && getSpatialPartition()->mPartitionType != LLViewerRegion::PARTITION_CONTROL_AV) { setState(GEOM_DIRTY); gPipeline.markRebuild(this); } } class LLSpatialSetState : public OctreeTraveler { public: U32 mState; LLSpatialSetState(U32 state) : mState(state) { } virtual void visit(const OctreeNode* branch) { ((LLSpatialGroup*) branch->getListener(0))->setState(mState); } }; class LLSpatialSetStateDiff : public LLSpatialSetState { public: LLSpatialSetStateDiff(U32 state) : LLSpatialSetState(state) { } virtual void traverse(const OctreeNode* n) { LLSpatialGroup* group = (LLSpatialGroup*) n->getListener(0); if (!group->hasState(mState)) { OctreeTraveler::traverse(n); } } }; void LLSpatialGroup::setState(U32 state, S32 mode) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL llassert(state <= LLSpatialGroup::STATE_MASK); if (mode > STATE_MODE_SINGLE) { if (mode == STATE_MODE_DIFF) { LLSpatialSetStateDiff setter(state); setter.traverse(mOctreeNode); } else { LLSpatialSetState setter(state); setter.traverse(mOctreeNode); } } else { mState |= state; } } class LLSpatialClearState : public OctreeTraveler { public: U32 mState; LLSpatialClearState(U32 state) : mState(state) { } virtual void visit(const OctreeNode* branch) { ((LLSpatialGroup*) branch->getListener(0))->clearState(mState); } }; class LLSpatialClearStateDiff : public LLSpatialClearState { public: LLSpatialClearStateDiff(U32 state) : LLSpatialClearState(state) { } virtual void traverse(const OctreeNode* n) { LLSpatialGroup* group = (LLSpatialGroup*) n->getListener(0); if (group->hasState(mState)) { OctreeTraveler::traverse(n); } } }; void LLSpatialGroup::clearState(U32 state, S32 mode) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL llassert(state <= LLSpatialGroup::STATE_MASK); if (mode > STATE_MODE_SINGLE) { if (mode == STATE_MODE_DIFF) { LLSpatialClearStateDiff clearer(state); clearer.traverse(mOctreeNode); } else { LLSpatialClearState clearer(state); clearer.traverse(mOctreeNode); } } else { mState &= ~state; } } //====================================== // Octree Listener Implementation //====================================== LLSpatialGroup::LLSpatialGroup(OctreeNode* node, LLSpatialPartition* part) : LLOcclusionCullingGroup(node, part), mObjectBoxSize(1.f), mGeometryBytes(0), mSurfaceArea(0.f), mBuilt(0.f), mVertexBuffer(NULL), mDistance(0.f), mDepth(0.f), mLastUpdateDistance(-1.f), mLastUpdateTime(gFrameTimeSeconds) { ll_assert_aligned(this,16); sNodeCount++; mViewAngle.splat(0.f); mLastUpdateViewAngle.splat(-1.f); sg_assert(mOctreeNode->getListenerCount() == 0); setState(SG_INITIAL_STATE_MASK); gPipeline.markRebuild(this); // let the reflection map manager know about this spatial group mReflectionProbe = gPipeline.mReflectionMapManager.registerSpatialGroup(this); mRadius = 1; mPixelArea = 1024.f; } void LLSpatialGroup::updateDistance(LLCamera &camera) { if (LLViewerCamera::sCurCameraID != LLViewerCamera::CAMERA_WORLD) { LL_WARNS() << "Attempted to update distance for camera other than world camera!" << LL_ENDL; llassert(false); return; } if (gShiftFrame) { return; } #if !LL_RELEASE_FOR_DOWNLOAD if (hasState(LLSpatialGroup::OBJECT_DIRTY)) { LL_ERRS() << "Spatial group dirty on distance update." << LL_ENDL; } #endif if (!isEmpty()) { mRadius = getSpatialPartition()->mRenderByGroup ? mObjectBounds[1].getLength3().getF32() : (F32) mOctreeNode->getSize().getLength3().getF32(); mDistance = getSpatialPartition()->calcDistance(this, camera); mPixelArea = getSpatialPartition()->calcPixelArea(this, camera); } } F32 LLSpatialPartition::calcDistance(LLSpatialGroup* group, LLCamera& camera) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL LLVector4a eye; LLVector4a origin; origin.load3(camera.getOrigin().mV); eye.setSub(group->mObjectBounds[0], origin); F32 dist = 0.f; if (group->mDrawMap.find(LLRenderPass::PASS_ALPHA) != group->mDrawMap.end()) { LLVector4a v = eye; dist = eye.getLength3().getF32(); eye.normalize3fast(); if (!group->hasState(LLSpatialGroup::ALPHA_DIRTY)) { if (!group->getSpatialPartition()->isBridge()) { LLVector4a view_angle = eye; LLVector4a diff; diff.setSub(view_angle, group->mLastUpdateViewAngle); if (diff.getLength3().getF32() > 0.64f) { group->mViewAngle = view_angle; group->mLastUpdateViewAngle = view_angle; //for occasional alpha sorting within the group //NOTE: If there is a trivial way to detect that alpha sorting here would not change the render order, //not setting this node to dirty would be a very good thing group->setState(LLSpatialGroup::ALPHA_DIRTY); gPipeline.markRebuild(group); } } } //calculate depth of node for alpha sorting LLVector3 at = camera.getAtAxis(); LLVector4a ata; ata.load3(at.mV); LLVector4a t = ata; //front of bounding box t.mul(0.25f); t.mul(group->mObjectBounds[1]); v.sub(t); group->mDepth = v.dot3(ata).getF32(); } else { dist = eye.getLength3().getF32(); } #if !LL_RELEASE LL_DEBUGS("RiggedBox") << "calcDistance, group " << group << " camera " << origin << " obj bounds " << group->mObjectBounds[0] << ", " << group->mObjectBounds[1] << " dist " << dist << " radius " << group->mRadius << LL_ENDL; #endif if (dist < 16.f) { dist /= 16.f; dist *= dist; dist *= 16.f; } return dist; } F32 LLSpatialPartition::calcPixelArea(LLSpatialGroup* group, LLCamera& camera) { return LLPipeline::calcPixelArea(group->mObjectBounds[0], group->mObjectBounds[1], camera); } F32 LLSpatialGroup::getUpdateUrgency() const { if (!isVisible()) { return 0.f; } else { F32 time = gFrameTimeSeconds-mLastUpdateTime+4.f; return time + (mObjectBounds[1].dot3(mObjectBounds[1]).getF32()+1.f)/mDistance; } } BOOL LLSpatialGroup::changeLOD() { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL if (hasState(ALPHA_DIRTY | OBJECT_DIRTY)) { //a rebuild is going to happen, update distance and LoD return TRUE; } if (getSpatialPartition()->mSlopRatio > 0.f) { F32 ratio = (mDistance - mLastUpdateDistance)/(llmax(mLastUpdateDistance, mRadius)); // MAINT-8264 - this check is not robust if it needs to work // for bounding boxes much larger than the actual enclosed // objects, and using distance to box center is also // problematic. Consider the case that you have a large box // where the enclosed object is in one corner. As you zoom in // on the corner, the object gets much closer to the camera, // but the distance to the box center changes very little, and // an LOD change will not trigger, so object LOD gets "stuck" // at a too-low value. In the case of the above JIRA, the box // was large only due to another error, so this logic did not // need to be changed. if (fabsf(ratio) >= getSpatialPartition()->mSlopRatio) { LL_DEBUGS("RiggedBox") << "changeLOD true because of ratio compare " << fabsf(ratio) << " " << getSpatialPartition()->mSlopRatio << LL_ENDL; LL_DEBUGS("RiggedBox") << "sg " << this << "\nmDistance " << mDistance << " mLastUpdateDistance " << mLastUpdateDistance << " mRadius " << mRadius << " fab ratio " << fabsf(ratio) << " slop " << getSpatialPartition()->mSlopRatio << LL_ENDL; return TRUE; } } if (needsUpdate()) { return TRUE; } return FALSE; } void LLSpatialGroup::handleInsertion(const TreeNode* node, LLViewerOctreeEntry* entry) { addObject((LLDrawable*)entry->getDrawable()); unbound(); setState(OBJECT_DIRTY); } void LLSpatialGroup::handleRemoval(const TreeNode* node, LLViewerOctreeEntry* entry) { removeObject((LLDrawable*)entry->getDrawable(), TRUE); LLViewerOctreeGroup::handleRemoval(node, entry); } void LLSpatialGroup::handleDestruction(const TreeNode* node) { if(isDead()) { return; } setState(DEAD); for (element_iter i = getDataBegin(); i != getDataEnd(); ++i) { LLViewerOctreeEntry* entry = *i; if (entry->getGroup() == this) { if(entry->hasDrawable()) { ((LLDrawable*)entry->getDrawable())->setGroup(NULL); } } } clearDrawMap(); mVertexBuffer = NULL; mBufferMap.clear(); sZombieGroups++; mOctreeNode = NULL; } void LLSpatialGroup::handleChildAddition(const OctreeNode* parent, OctreeNode* child) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL if (child->getListenerCount() == 0) { new LLSpatialGroup(child, getSpatialPartition()); } else { OCT_ERRS << "LLSpatialGroup redundancy detected." << LL_ENDL; } unbound(); assert_states_valid(this); } void LLSpatialGroup::destroyGLState(bool keep_occlusion) { setState(LLSpatialGroup::GEOM_DIRTY | LLSpatialGroup::IMAGE_DIRTY); if (!keep_occlusion) { //going to need a rebuild gPipeline.markRebuild(this); } mLastUpdateTime = gFrameTimeSeconds; mVertexBuffer = NULL; mBufferMap.clear(); clearDrawMap(); if (!keep_occlusion) { releaseOcclusionQueryObjectNames(); } for (LLSpatialGroup::element_iter i = getDataBegin(); i != getDataEnd(); ++i) { LLDrawable* drawable = (LLDrawable*)(*i)->getDrawable(); if(!drawable) { continue; } for (S32 j = 0; j < drawable->getNumFaces(); j++) { LLFace* facep = drawable->getFace(j); if (facep) { facep->clearVertexBuffer(); } } } } //============================================== LLSpatialPartition::LLSpatialPartition(U32 data_mask, BOOL render_by_group, LLViewerRegion* regionp) : mRenderByGroup(render_by_group), mBridge(NULL) { mRegionp = regionp; mPartitionType = LLViewerRegion::PARTITION_NONE; mVertexDataMask = data_mask; mDepthMask = FALSE; mSlopRatio = 0.25f; mInfiniteFarClip = FALSE; new LLSpatialGroup(mOctree, this); } LLSpatialPartition::~LLSpatialPartition() { cleanup(); } LLSpatialGroup *LLSpatialPartition::put(LLDrawable *drawablep, BOOL was_visible) { LL_PROFILE_ZONE_SCOPED; drawablep->updateSpatialExtents(); //keep drawable from being garbage collected LLPointer ptr = drawablep; if(!drawablep->getGroup()) { assert_octree_valid(mOctree); mOctree->insert(drawablep->getEntry()); assert_octree_valid(mOctree); } LLSpatialGroup* group = drawablep->getSpatialGroup(); //llassert(group != NULL); if (group && was_visible && group->isOcclusionState(LLSpatialGroup::QUERY_PENDING)) { group->setOcclusionState(LLSpatialGroup::DISCARD_QUERY, LLSpatialGroup::STATE_MODE_ALL_CAMERAS); } return group; } BOOL LLSpatialPartition::remove(LLDrawable *drawablep, LLSpatialGroup *curp) { LL_PROFILE_ZONE_SCOPED; if (!curp->removeObject(drawablep)) { OCT_ERRS << "Failed to remove drawable from octree!" << LL_ENDL; } else { drawablep->setGroup(NULL); } assert_octree_valid(mOctree); return TRUE; } void LLSpatialPartition::move(LLDrawable *drawablep, LLSpatialGroup *curp, BOOL immediate) { LL_PROFILE_ZONE_SCOPED; // sanity check submitted by open source user bushing Spatula // who was seeing crashing here. (See VWR-424 reported by Bunny Mayne) if (!drawablep) { OCT_ERRS << "LLSpatialPartition::move was passed a bad drawable." << LL_ENDL; return; } BOOL was_visible = curp ? curp->isVisible() : FALSE; if (curp && curp->getSpatialPartition() != this) { //keep drawable from being garbage collected LLPointer ptr = drawablep; if (curp->getSpatialPartition()->remove(drawablep, curp)) { put(drawablep, was_visible); return; } else { OCT_ERRS << "Drawable lost between spatial partitions on outbound transition." << LL_ENDL; } } if (curp && curp->updateInGroup(drawablep, immediate)) { // Already updated, don't need to do anything assert_octree_valid(mOctree); return; } //keep drawable from being garbage collected LLPointer ptr = drawablep; if (curp && !remove(drawablep, curp)) { OCT_ERRS << "Move couldn't find existing spatial group!" << LL_ENDL; } put(drawablep, was_visible); } class LLSpatialShift : public OctreeTraveler { public: const LLVector4a& mOffset; LLSpatialShift(const LLVector4a& offset) : mOffset(offset) { } virtual void visit(const OctreeNode* branch) { ((LLSpatialGroup*) branch->getListener(0))->shift(mOffset); } }; void LLSpatialPartition::shift(const LLVector4a &offset) { //shift octree node bounding boxes by offset LLSpatialShift shifter(offset); shifter.traverse(mOctree); } class LLOctreeCull : public LLViewerOctreeCull { public: LLOctreeCull(LLCamera* camera) : LLViewerOctreeCull(camera) {} virtual bool earlyFail(LLViewerOctreeGroup* base_group) { if (LLPipeline::sReflectionRender) { return false; } LLSpatialGroup* group = (LLSpatialGroup*)base_group; group->checkOcclusion(); if (group->getOctreeNode()->getParent() && //never occlusion cull the root node LLPipeline::sUseOcclusion && //ignore occlusion if disabled group->isOcclusionState(LLSpatialGroup::OCCLUDED)) { gPipeline.markOccluder(group); return true; } return false; } virtual S32 frustumCheck(const LLViewerOctreeGroup* group) { S32 res = AABBInFrustumNoFarClipGroupBounds(group); if (res != 0) { res = llmin(res, AABBSphereIntersectGroupExtents(group)); } return res; } virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group) { S32 res = AABBInFrustumNoFarClipObjectBounds(group); if (res != 0) { res = llmin(res, AABBSphereIntersectObjectExtents(group)); } return res; } virtual void processGroup(LLViewerOctreeGroup* base_group) { LLSpatialGroup* group = (LLSpatialGroup*)base_group; /*if (group->needsUpdate() || group->getVisible(LLViewerCamera::sCurCameraID) < LLDrawable::getCurrentFrame() - 1) { group->doOcclusion(mCamera); }*/ gPipeline.markNotCulled(group, *mCamera); } }; class LLOctreeCullNoFarClip : public LLOctreeCull { public: LLOctreeCullNoFarClip(LLCamera* camera) : LLOctreeCull(camera) { } virtual S32 frustumCheck(const LLViewerOctreeGroup* group) { return AABBInFrustumNoFarClipGroupBounds(group); } virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group) { S32 res = AABBInFrustumNoFarClipObjectBounds(group); return res; } }; class LLOctreeCullShadow : public LLOctreeCull { public: LLOctreeCullShadow(LLCamera* camera) : LLOctreeCull(camera) { } virtual S32 frustumCheck(const LLViewerOctreeGroup* group) { return AABBInFrustumGroupBounds(group); } virtual S32 frustumCheckObjects(const LLViewerOctreeGroup* group) { return AABBInFrustumObjectBounds(group); } }; class LLOctreeCullVisExtents: public LLOctreeCullShadow { public: LLOctreeCullVisExtents(LLCamera* camera, LLVector4a& min, LLVector4a& max) : LLOctreeCullShadow(camera), mMin(min), mMax(max), mEmpty(TRUE) { } virtual bool earlyFail(LLViewerOctreeGroup* base_group) { LLSpatialGroup* group = (LLSpatialGroup*)base_group; if (group->getOctreeNode()->getParent() && //never occlusion cull the root node LLPipeline::sUseOcclusion && //ignore occlusion if disabled group->isOcclusionState(LLSpatialGroup::OCCLUDED)) { return true; } return false; } virtual void traverse(const OctreeNode* n) { LLSpatialGroup* group = (LLSpatialGroup*) n->getListener(0); if (earlyFail(group)) { return; } if ((mRes && group->hasState(LLSpatialGroup::SKIP_FRUSTUM_CHECK)) || mRes == 2) { //don't need to do frustum check OctreeTraveler::traverse(n); } else { mRes = frustumCheck(group); if (mRes) { //at least partially in, run on down OctreeTraveler::traverse(n); } mRes = 0; } } virtual void processGroup(LLViewerOctreeGroup* base_group) { LLSpatialGroup* group = (LLSpatialGroup*)base_group; llassert(!group->hasState(LLSpatialGroup::DIRTY) && !group->isEmpty()); if (mRes < 2) { if (AABBInFrustumObjectBounds(group) > 0) { mEmpty = FALSE; const LLVector4a* exts = group->getObjectExtents(); update_min_max(mMin, mMax, exts[0]); update_min_max(mMin, mMax, exts[1]); } } else { mEmpty = FALSE; const LLVector4a* exts = group->getExtents(); update_min_max(mMin, mMax, exts[0]); update_min_max(mMin, mMax, exts[1]); } } BOOL mEmpty; LLVector4a& mMin; LLVector4a& mMax; }; class LLOctreeCullDetectVisible: public LLOctreeCullShadow { public: LLOctreeCullDetectVisible(LLCamera* camera) : LLOctreeCullShadow(camera), mResult(FALSE) { } virtual bool earlyFail(LLViewerOctreeGroup* base_group) { LLSpatialGroup* group = (LLSpatialGroup*)base_group; if (mResult || //already found a node, don't check any more (group->getOctreeNode()->getParent() && //never occlusion cull the root node LLPipeline::sUseOcclusion && //ignore occlusion if disabled group->isOcclusionState(LLSpatialGroup::OCCLUDED))) { return true; } return false; } virtual void processGroup(LLViewerOctreeGroup* base_group) { if (base_group->isVisible()) { mResult = TRUE; } } BOOL mResult; }; class LLOctreeSelect : public LLOctreeCull { public: LLOctreeSelect(LLCamera* camera, std::vector* results) : LLOctreeCull(camera), mResults(results) { } virtual bool earlyFail(LLViewerOctreeGroup* group) { return false; } virtual void preprocess(LLViewerOctreeGroup* group) { } virtual void processGroup(LLViewerOctreeGroup* base_group) { LLSpatialGroup* group = (LLSpatialGroup*)base_group; OctreeNode* branch = group->getOctreeNode(); for (OctreeNode::const_element_iter i = branch->getDataBegin(); i != branch->getDataEnd(); ++i) { LLDrawable* drawable = (LLDrawable*)(*i)->getDrawable(); if(!drawable) { continue; } if (!drawable->isDead()) { if (drawable->isSpatialBridge()) { drawable->setVisible(*mCamera, mResults, TRUE); } else { mResults->push_back(drawable); } } } } std::vector* mResults; }; void drawBox(const LLVector3& c, const LLVector3& r) { LLVertexBuffer::unbind(); gGL.begin(LLRender::TRIANGLE_STRIP); //left front gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,1,1))).mV); //right front gGL.vertex3fv((c+r.scaledVec(LLVector3(1,1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(1,1,1))).mV); //right back gGL.vertex3fv((c+r.scaledVec(LLVector3(1,-1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(1,-1,1))).mV); //left back gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,-1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,-1,1))).mV); //left front gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,1,1))).mV); gGL.end(); //bottom gGL.begin(LLRender::TRIANGLE_STRIP); gGL.vertex3fv((c+r.scaledVec(LLVector3(1,1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(1,-1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,1,-1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,-1,-1))).mV); gGL.end(); //top gGL.begin(LLRender::TRIANGLE_STRIP); gGL.vertex3fv((c+r.scaledVec(LLVector3(1,1,1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,1,1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(1,-1,1))).mV); gGL.vertex3fv((c+r.scaledVec(LLVector3(-1,-1,1))).mV); gGL.end(); } void drawBox(const LLVector4a& c, const LLVector4a& r) { drawBox(reinterpret_cast(c), reinterpret_cast(r)); } void drawBoxOutline(const LLVector3& pos, const LLVector3& size) { llassert(pos.isFinite()); llassert(size.isFinite()); llassert(!llisnan(pos.mV[0])); llassert(!llisnan(pos.mV[1])); llassert(!llisnan(pos.mV[2])); llassert(!llisnan(size.mV[0])); llassert(!llisnan(size.mV[1])); llassert(!llisnan(size.mV[2])); LLVector3 v1 = size.scaledVec(LLVector3( 1, 1,1)); LLVector3 v2 = size.scaledVec(LLVector3(-1, 1,1)); LLVector3 v3 = size.scaledVec(LLVector3(-1,-1,1)); LLVector3 v4 = size.scaledVec(LLVector3( 1,-1,1)); gGL.begin(LLRender::LINES); //top gGL.vertex3fv((pos+v1).mV); gGL.vertex3fv((pos+v2).mV); gGL.vertex3fv((pos+v2).mV); gGL.vertex3fv((pos+v3).mV); gGL.vertex3fv((pos+v3).mV); gGL.vertex3fv((pos+v4).mV); gGL.vertex3fv((pos+v4).mV); gGL.vertex3fv((pos+v1).mV); //bottom gGL.vertex3fv((pos-v1).mV); gGL.vertex3fv((pos-v2).mV); gGL.vertex3fv((pos-v2).mV); gGL.vertex3fv((pos-v3).mV); gGL.vertex3fv((pos-v3).mV); gGL.vertex3fv((pos-v4).mV); gGL.vertex3fv((pos-v4).mV); gGL.vertex3fv((pos-v1).mV); //right gGL.vertex3fv((pos+v1).mV); gGL.vertex3fv((pos-v3).mV); gGL.vertex3fv((pos+v4).mV); gGL.vertex3fv((pos-v2).mV); //left gGL.vertex3fv((pos+v2).mV); gGL.vertex3fv((pos-v4).mV); gGL.vertex3fv((pos+v3).mV); gGL.vertex3fv((pos-v1).mV); gGL.end(); } void drawBoxOutline(const LLVector4a& pos, const LLVector4a& size) { drawBoxOutline(reinterpret_cast(pos), reinterpret_cast(size)); } void LLSpatialPartition::restoreGL() { } BOOL LLSpatialPartition::getVisibleExtents(LLCamera& camera, LLVector3& visMin, LLVector3& visMax) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL; LLVector4a visMina, visMaxa; visMina.load3(visMin.mV); visMaxa.load3(visMax.mV); { LLSpatialGroup* group = (LLSpatialGroup*) mOctree->getListener(0); group->rebound(); } LLOctreeCullVisExtents vis(&camera, visMina, visMaxa); vis.traverse(mOctree); visMin.set(visMina.getF32ptr()); visMax.set(visMaxa.getF32ptr()); return vis.mEmpty; } BOOL LLSpatialPartition::visibleObjectsInFrustum(LLCamera& camera) { LLOctreeCullDetectVisible vis(&camera); vis.traverse(mOctree); return vis.mResult; } S32 LLSpatialPartition::cull(LLCamera &camera, std::vector* results, BOOL for_select) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL; #if LL_OCTREE_PARANOIA_CHECK ((LLSpatialGroup*)mOctree->getListener(0))->checkStates(); #endif { LLSpatialGroup* group = (LLSpatialGroup*) mOctree->getListener(0); group->rebound(); } #if LL_OCTREE_PARANOIA_CHECK ((LLSpatialGroup*)mOctree->getListener(0))->validate(); #endif LLOctreeSelect selecter(&camera, results); selecter.traverse(mOctree); return 0; } extern BOOL gCubeSnapshot; S32 LLSpatialPartition::cull(LLCamera &camera, bool do_occlusion) { LL_PROFILE_ZONE_SCOPED_CATEGORY_SPATIAL; #if LL_OCTREE_PARANOIA_CHECK ((LLSpatialGroup*)mOctree->getListener(0))->checkStates(); #endif LLSpatialGroup* group = (LLSpatialGroup*) mOctree->getListener(0); group->rebound(); #if LL_OCTREE_PARANOIA_CHECK ((LLSpatialGroup*)mOctree->getListener(0))->validate(); #endif if (LLPipeline::sShadowRender) { LLOctreeCullShadow culler(&camera); culler.traverse(mOctree); } else if (mInfiniteFarClip || (!LLPipeline::sUseFarClip && !gCubeSnapshot)) { LLOctreeCullNoFarClip culler(&camera); culler.traverse(mOctree); } else { LLOctreeCull culler(&camera); culler.traverse(mOctree); } return 0; } void pushVerts(LLDrawInfo* params) { LLRenderPass::applyModelMatrix(*params); params->mVertexBuffer->setBuffer(); params->mVertexBuffer->drawRange(LLRender::TRIANGLES, params->mStart, params->mEnd, params->mCount, params->mOffset); } void pushVerts(LLSpatialGroup* group) { LLDrawInfo* params = NULL; for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i) { for (LLSpatialGroup::drawmap_elem_t::iterator j = i->second.begin(); j != i->second.end(); ++j) { params = *j; pushVerts(params); } } } void pushVerts(LLFace* face) { if (face) { llassert(face->verify()); face->renderIndexed(); } } void pushVerts(LLDrawable* drawable) { for (S32 i = 0; i < drawable->getNumFaces(); ++i) { pushVerts(drawable->getFace(i)); } } void pushVerts(LLVolume* volume) { LLVertexBuffer::unbind(); for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = volume->getVolumeFace(i); LLVertexBuffer::drawElements(LLRender::TRIANGLES, face.mPositions, NULL, face.mNumIndices, face.mIndices); } } void pushBufferVerts(LLVertexBuffer* buffer) { if (buffer) { buffer->setBuffer(); buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0); } } void pushBufferVerts(LLSpatialGroup* group, bool push_alpha = true) { if (group->getSpatialPartition()->mRenderByGroup) { if (!group->mDrawMap.empty()) { LLDrawInfo* params = *(group->mDrawMap.begin()->second.begin()); LLRenderPass::applyModelMatrix(*params); if (push_alpha) { pushBufferVerts(group->mVertexBuffer); } for (LLSpatialGroup::buffer_map_t::iterator i = group->mBufferMap.begin(); i != group->mBufferMap.end(); ++i) { for (LLSpatialGroup::buffer_texture_map_t::iterator j = i->second.begin(); j != i->second.end(); ++j) { for (LLSpatialGroup::buffer_list_t::iterator k = j->second.begin(); k != j->second.end(); ++k) { pushBufferVerts(*k); } } } } } /*else { //const LLVector4a* bounds = group->getBounds(); //drawBox(bounds[0], bounds[1]); }*/ } void pushVertsColorCoded(LLSpatialGroup* group) { LLDrawInfo* params = NULL; static const LLColor4 colors[] = { LLColor4::green, LLColor4::green1, LLColor4::green2, LLColor4::green3, LLColor4::green4, LLColor4::green5, LLColor4::green6 }; static const U32 col_count = LL_ARRAY_SIZE(colors); U32 col = 0; for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i) { for (LLSpatialGroup::drawmap_elem_t::iterator j = i->second.begin(); j != i->second.end(); ++j) { params = *j; LLRenderPass::applyModelMatrix(*params); gGL.diffuseColor4f(colors[col].mV[0], colors[col].mV[1], colors[col].mV[2], 0.5f); params->mVertexBuffer->setBuffer(); params->mVertexBuffer->drawRange(LLRender::TRIANGLES, params->mStart, params->mEnd, params->mCount, params->mOffset); col = (col+1)%col_count; } } } // return false if drawable is rigged and: // - a linked rigged drawable has a different spatial group // - a linked rigged drawable face has the wrong draw order index bool check_rigged_group(LLDrawable* drawable) { #if 0 if (drawable->isState(LLDrawable::RIGGED)) { LLSpatialGroup* group = drawable->getSpatialGroup(); LLDrawable* root = drawable->getRoot(); if (root->isState(LLDrawable::RIGGED) && root->getSpatialGroup() != group) { llassert(false); return false; } S32 last_draw_index = -1; if (root->isState(LLDrawable::RIGGED)) { for (auto& face : root->getFaces()) { if ((S32) face->getDrawOrderIndex() <= last_draw_index) { llassert(false); return false; } last_draw_index = face->getDrawOrderIndex(); } } for (auto& child : root->getVObj()->getChildren()) { if (child->mDrawable->isState(LLDrawable::RIGGED)) { for (auto& face : child->mDrawable->getFaces()) { if ((S32) face->getDrawOrderIndex() <= last_draw_index) { llassert(false); return false; } last_draw_index = face->getDrawOrderIndex(); } } if (child->mDrawable->getSpatialGroup() != group) { llassert(false); return false; } } } #endif return true; } void renderOctree(LLSpatialGroup* group) { //render solid object bounding box, color //coded by buffer usage and activity gGL.setSceneBlendType(LLRender::BT_ADD_WITH_ALPHA); LLVector4 col; if (group->mBuilt > 0.f) { group->mBuilt -= 2.f * gFrameIntervalSeconds.value(); col.setVec(0.1f,0.1f,1,0.1f); { LLGLDepthTest gl_depth(FALSE, FALSE); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); gGL.diffuseColor4f(1,0,0,group->mBuilt); gGL.flush(); glLineWidth(5.f); const LLVector4a* bounds = group->getObjectBounds(); drawBoxOutline(bounds[0], bounds[1]); gGL.flush(); glLineWidth(1.f); gGL.flush(); LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; for (LLSpatialGroup::element_iter i = group->getDataBegin(); i != group->getDataEnd(); ++i) { LLDrawable* drawable = (LLDrawable*)(*i)->getDrawable(); if(!drawable || drawable->getNumFaces() == 0) { continue; } llassert(check_rigged_group(drawable)); if (!group->getSpatialPartition()->isBridge()) { gGL.pushMatrix(); LLVector3 trans = drawable->getRegion()->getOriginAgent(); gGL.translatef(trans.mV[0], trans.mV[1], trans.mV[2]); } LLFace* face = drawable->getFace(0); bool rigged = face->isState(LLFace::RIGGED); gDebugProgram.bind(rigged); gGL.diffuseColor4f(1, 0, 0, 1); if (rigged) { gGL.pushMatrix(); gGL.loadMatrix(gGLModelView); if (lastAvatar != face->mAvatar || lastMeshId != face->mSkinInfo->mHash) { if (!LLRenderPass::uploadMatrixPalette(face->mAvatar, face->mSkinInfo)) { continue; } lastAvatar = face->mAvatar; lastMeshId = face->mSkinInfo->mHash; } } for (S32 j = 0; j < drawable->getNumFaces(); j++) { LLFace* face = drawable->getFace(j); if (face && face->getVertexBuffer()) { LLVOVolume* vol = drawable->getVOVolume(); if (gFrameTimeSeconds - face->mLastUpdateTime < 0.5f) { if (vol && vol->isShrinkWrapped()) { gGL.diffuseColor4f(0, 1, 1, group->mBuilt); } else { gGL.diffuseColor4f(0, 1, 0, group->mBuilt); } } else if (gFrameTimeSeconds - face->mLastMoveTime < 0.5f) { if (vol && vol->isShrinkWrapped()) { gGL.diffuseColor4f(1, 1, 0, group->mBuilt); } else { gGL.diffuseColor4f(1, 0, 0, group->mBuilt); } } else { continue; } face->getVertexBuffer()->setBuffer(); face->getVertexBuffer()->draw(LLRender::TRIANGLES, face->getIndicesCount(), face->getIndicesStart()); } } if (rigged) { gGL.popMatrix(); } if (!group->getSpatialPartition()->isBridge()) { gGL.popMatrix(); } } glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); gDebugProgram.bind(); // make sure non-rigged variant is bound gGL.diffuseColor4f(1,1,1,1); } } gGL.diffuseColor4fv(col.mV); LLVector4a fudge; fudge.splat(0.001f); gGL.setSceneBlendType(LLRender::BT_ALPHA); { //draw opaque outline gGL.diffuseColor4f(0,1,1,1); const LLVector4a* bounds = group->getBounds(); drawBoxOutline(bounds[0], bounds[1]); } } std::set visible_selected_groups; void renderXRay(LLSpatialGroup* group, LLCamera* camera) { BOOL render_objects = (!LLPipeline::sUseOcclusion || !group->isOcclusionState(LLSpatialGroup::OCCLUDED)) && group->isVisible() && !group->isEmpty(); if (render_objects) { pushBufferVerts(group, false); bool selected = false; for (LLSpatialGroup::element_iter iter = group->getDataBegin(); iter != group->getDataEnd(); ++iter) { LLDrawable* drawable = (LLDrawable*)(*iter)->getDrawable(); if (drawable->getVObj().notNull() && drawable->getVObj()->isSelected()) { selected = true; break; } } if (selected) { //store for rendering occlusion volume as overlay if (!group->getSpatialPartition()->isBridge()) { visible_selected_groups.insert(group); } else { visible_selected_groups.insert(group->getSpatialPartition()->asBridge()->getSpatialGroup()); } } } } void renderCrossHairs(LLVector3 position, F32 size, LLColor4 color) { gGL.color4fv(color.mV); gGL.begin(LLRender::LINES); { gGL.vertex3fv((position - LLVector3(size, 0.f, 0.f)).mV); gGL.vertex3fv((position + LLVector3(size, 0.f, 0.f)).mV); gGL.vertex3fv((position - LLVector3(0.f, size, 0.f)).mV); gGL.vertex3fv((position + LLVector3(0.f, size, 0.f)).mV); gGL.vertex3fv((position - LLVector3(0.f, 0.f, size)).mV); gGL.vertex3fv((position + LLVector3(0.f, 0.f, size)).mV); } gGL.end(); } void renderUpdateType(LLDrawable* drawablep) { LLViewerObject* vobj = drawablep->getVObj(); if (!vobj || OUT_UNKNOWN == vobj->getLastUpdateType()) { return; } LLGLEnable blend(GL_BLEND); switch (vobj->getLastUpdateType()) { case OUT_FULL: gGL.diffuseColor4f(0,1,0,0.5f); break; case OUT_TERSE_IMPROVED: gGL.diffuseColor4f(0,1,1,0.5f); break; case OUT_FULL_COMPRESSED: if (vobj->getLastUpdateCached()) { gGL.diffuseColor4f(1,0,0,0.5f); } else { gGL.diffuseColor4f(1,1,0,0.5f); } break; case OUT_FULL_CACHED: gGL.diffuseColor4f(0,0,1,0.5f); break; default: LL_WARNS() << "Unknown update_type " << vobj->getLastUpdateType() << LL_ENDL; break; }; S32 num_faces = drawablep->getNumFaces(); if (num_faces) { for (S32 i = 0; i < num_faces; ++i) { pushVerts(drawablep->getFace(i)); } } } void renderBoundingBox(LLDrawable* drawable, BOOL set_color = TRUE) { if (set_color) { if (drawable->isSpatialBridge()) { gGL.diffuseColor4f(1,0.5f,0,1); // orange } else if (drawable->getVOVolume()) { if (drawable->isRoot()) { gGL.diffuseColor4f(1,1,0,1); // yellow } else { gGL.diffuseColor4f(0,1,0,1); // green } } else if (drawable->getVObj()) { switch (drawable->getVObj()->getPCode()) { case LLViewerObject::LL_VO_SURFACE_PATCH: gGL.diffuseColor4f(0,1,1,1); // cyan break; case LLViewerObject::LL_VO_CLOUDS: // no longer used break; case LLViewerObject::LL_VO_PART_GROUP: case LLViewerObject::LL_VO_HUD_PART_GROUP: gGL.diffuseColor4f(0,0,1,1); // blue break; case LLViewerObject::LL_VO_VOID_WATER: case LLViewerObject::LL_VO_WATER: gGL.diffuseColor4f(0,0.5f,1,1); // medium blue break; case LL_PCODE_LEGACY_TREE: gGL.diffuseColor4f(0,0.5f,0,1); // dark green break; default: LLControlAvatar *cav = dynamic_cast(drawable->getVObj()->asAvatar()); if (cav) { bool has_pos_constraint = (cav->mPositionConstraintFixup != LLVector3()); bool has_scale_constraint = (cav->mScaleConstraintFixup != 1.0f); if (has_pos_constraint || has_scale_constraint) { gGL.diffuseColor4f(1,0,0,1); } else { gGL.diffuseColor4f(0,1,0.5,1); } } else { gGL.diffuseColor4f(1,0,1,1); // magenta } break; } } else { gGL.diffuseColor4f(1,0,0,1); } } const LLVector4a* ext; LLVector4a pos, size; if (drawable->getVOVolume()) { //render face bounding boxes for (S32 i = 0; i < drawable->getNumFaces(); i++) { LLFace* facep = drawable->getFace(i); if (facep) { ext = facep->mExtents; pos.setAdd(ext[0], ext[1]); pos.mul(0.5f); size.setSub(ext[1], ext[0]); size.mul(0.5f); drawBoxOutline(pos,size); } } } //render drawable bounding box ext = drawable->getSpatialExtents(); pos.setAdd(ext[0], ext[1]); pos.mul(0.5f); size.setSub(ext[1], ext[0]); size.mul(0.5f); LLViewerObject* vobj = drawable->getVObj(); if (vobj && vobj->onActiveList()) { gGL.flush(); glLineWidth(llmax(4.f*sinf(gFrameTimeSeconds*2.f)+1.f, 1.f)); //glLineWidth(4.f*(sinf(gFrameTimeSeconds*2.f)*0.25f+0.75f)); stop_glerror(); drawBoxOutline(pos,size); gGL.flush(); glLineWidth(1.f); } else { drawBoxOutline(pos,size); } } void renderNormals(LLDrawable *drawablep) { if (!drawablep->isVisible()) return; LLVertexBuffer::unbind(); LLVOVolume *vol = drawablep->getVOVolume(); if (vol) { LLVolume *volume = vol->getVolume(); // Drawable's normals & tangents are stored in model space, i.e. before any scaling is applied. // // SL-13490, using pos + normal to compute the 2nd vertex of a normal line segment doesn't // work when there's a non-uniform scale in the mix. Normals require MVP-inverse-transpose // transform. We get that effect here by pre-applying the inverse scale (twice, because // one forward scale will be re-applied via the MVP in the vertex shader) LLVector3 scale_v3 = vol->getScale(); float scale_len = scale_v3.length(); LLVector4a obj_scale(scale_v3.mV[VX], scale_v3.mV[VY], scale_v3.mV[VZ]); obj_scale.normalize3(); // Normals &tangent line segments get scaled along with the object. Divide by scale length // to keep the as-viewed lengths (relatively) constant with the debug setting length float draw_length = gSavedSettings.getF32("RenderDebugNormalScale") / scale_len; // Create inverse-scale vector for normals LLVector4a inv_scale(1.0 / scale_v3.mV[VX], 1.0 / scale_v3.mV[VY], 1.0 / scale_v3.mV[VZ]); inv_scale.mul(inv_scale); // Squared, to apply inverse scale twice inv_scale.normalize3fast(); gGL.pushMatrix(); gGL.multMatrix((F32 *) vol->getRelativeXform().mMatrix); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i) { const LLVolumeFace &face = volume->getVolumeFace(i); gGL.flush(); gGL.diffuseColor4f(1, 1, 0, 1); gGL.begin(LLRender::LINES); for (S32 j = 0; j < face.mNumVertices; ++j) { LLVector4a n, p; n.setMul(face.mNormals[j], 1.0); n.mul(inv_scale); // Pre-scale normal, so it's left with an inverse-transpose xform after MVP n.normalize3fast(); n.mul(draw_length); p.setAdd(face.mPositions[j], n); gGL.vertex3fv(face.mPositions[j].getF32ptr()); gGL.vertex3fv(p.getF32ptr()); } gGL.end(); // Tangents are simple vectors and do not require reorientation via pre-scaling if (face.mTangents) { gGL.flush(); gGL.diffuseColor4f(0, 1, 1, 1); gGL.begin(LLRender::LINES); for (S32 j = 0; j < face.mNumVertices; ++j) { LLVector4a t, p; t.setMul(face.mTangents[j], 1.0f); t.normalize3fast(); t.mul(draw_length); p.setAdd(face.mPositions[j], t); gGL.vertex3fv(face.mPositions[j].getF32ptr()); gGL.vertex3fv(p.getF32ptr()); } gGL.end(); } } gGL.popMatrix(); } } S32 get_physics_detail(const LLVolumeParams& volume_params, const LLVector3& scale) { const S32 DEFAULT_DETAIL = 1; const F32 LARGE_THRESHOLD = 5.f; const F32 MEGA_THRESHOLD = 25.f; S32 detail = DEFAULT_DETAIL; F32 avg_scale = (scale[0]+scale[1]+scale[2])/3.f; if (avg_scale > LARGE_THRESHOLD) { detail += 1; if (avg_scale > MEGA_THRESHOLD) { detail += 1; } } return detail; } void renderMeshBaseHull(LLVOVolume* volume, U32 data_mask, LLColor4& color) { LLUUID mesh_id = volume->getVolume()->getParams().getSculptID(); LLModel::Decomposition* decomp = gMeshRepo.getDecomposition(mesh_id); const LLVector3 center(0,0,0); const LLVector3 size(0.25f,0.25f,0.25f); if (decomp) { if (!decomp->mBaseHullMesh.empty()) { gGL.diffuseColor4fv(color.mV); LLVertexBuffer::drawArrays(LLRender::TRIANGLES, decomp->mBaseHullMesh.mPositions); } else { gMeshRepo.buildPhysicsMesh(*decomp); gGL.diffuseColor4f(0,1,1,1); drawBoxOutline(center, size); } } else { gGL.diffuseColor3f(1,0,1); drawBoxOutline(center, size); } } void render_hull(LLModel::PhysicsMesh& mesh, const LLColor4& color) { gGL.diffuseColor4fv(color.mV); LLVertexBuffer::drawArrays(LLRender::TRIANGLES, mesh.mPositions); } void renderPhysicsShape(LLDrawable* drawable, LLVOVolume* volume, bool wireframe) { U8 physics_type = volume->getPhysicsShapeType(); if (physics_type == LLViewerObject::PHYSICS_SHAPE_NONE || volume->isFlexible()) { return; } //not allowed to return at this point without rendering *something* F32 threshold = gSavedSettings.getF32("ObjectCostHighThreshold"); F32 cost = volume->getObjectCost(); LLColor4 low = gSavedSettings.getColor4("ObjectCostLowColor"); LLColor4 mid = gSavedSettings.getColor4("ObjectCostMidColor"); LLColor4 high = gSavedSettings.getColor4("ObjectCostHighColor"); F32 normalizedCost = 1.f - exp( -(cost / threshold) ); LLColor4 color; if ( normalizedCost <= 0.5f ) { color = lerp( low, mid, 2.f * normalizedCost ); } else { color = lerp( mid, high, 2.f * ( normalizedCost - 0.5f ) ); } if (wireframe) { color = color * 0.5f; } U32 data_mask = LLVertexBuffer::MAP_VERTEX; LLVolumeParams volume_params = volume->getVolume()->getParams(); LLPhysicsVolumeParams physics_params(volume_params, physics_type == LLViewerObject::PHYSICS_SHAPE_CONVEX_HULL); LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification physics_spec; LLPhysicsShapeBuilderUtil::determinePhysicsShape(physics_params, volume->getScale(), physics_spec); U32 type = physics_spec.getType(); LLVector3 center(0,0,0); LLVector3 size(0.25f,0.25f,0.25f); gGL.pushMatrix(); gGL.multMatrix((F32*) volume->getRelativeXform().mMatrix); if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::USER_MESH) { LLUUID mesh_id = volume->getVolume()->getParams().getSculptID(); LLModel::Decomposition* decomp = gMeshRepo.getDecomposition(mesh_id); if (decomp) { //render a physics based mesh gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); if (!decomp->mHull.empty()) { //decomposition exists, use that if (decomp->mMesh.empty()) { gMeshRepo.buildPhysicsMesh(*decomp); } for (U32 i = 0; i < decomp->mMesh.size(); ++i) { render_hull(decomp->mMesh[i], color); } } else if (!decomp->mPhysicsShapeMesh.empty()) { //decomp has physics mesh, render that mesh gGL.diffuseColor4fv(color.mV); LLVertexBuffer::drawArrays(LLRender::TRIANGLES, decomp->mPhysicsShapeMesh.mPositions); } else { //no mesh or decomposition, render base hull renderMeshBaseHull(volume, data_mask, color); if (decomp->mPhysicsShapeMesh.empty()) { //attempt to fetch physics shape mesh if available gMeshRepo.fetchPhysicsShape(mesh_id); } } } else { gGL.diffuseColor3f(1,1,0); drawBoxOutline(center, size); } } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::USER_CONVEX || type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::PRIM_CONVEX) { if (volume->isMesh()) { renderMeshBaseHull(volume, data_mask, color); } else { LLVolumeParams volume_params = volume->getVolume()->getParams(); S32 detail = get_physics_detail(volume_params, volume->getScale()); LLVolume* phys_volume = LLPrimitive::sVolumeManager->refVolume(volume_params, detail); if (!phys_volume->mHullPoints) { //build convex hull std::vector pos; std::vector index; S32 index_offset = 0; for (S32 i = 0; i < phys_volume->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = phys_volume->getVolumeFace(i); if (index_offset + face.mNumVertices > 65535) { continue; } for (S32 j = 0; j < face.mNumVertices; ++j) { pos.push_back(LLVector3(face.mPositions[j].getF32ptr())); } for (S32 j = 0; j < face.mNumIndices; ++j) { index.push_back(face.mIndices[j]+index_offset); } index_offset += face.mNumVertices; } if (!pos.empty() && !index.empty()) { LLCDMeshData mesh; mesh.mIndexBase = &index[0]; mesh.mVertexBase = pos[0].mV; mesh.mNumVertices = pos.size(); mesh.mVertexStrideBytes = 12; mesh.mIndexStrideBytes = 6; mesh.mIndexType = LLCDMeshData::INT_16; mesh.mNumTriangles = index.size()/3; LLCDMeshData res; LLConvexDecomposition::getInstance()->generateSingleHullMeshFromMesh( &mesh, &res ); //copy res into phys_volume phys_volume->mHullPoints = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*res.mNumVertices); phys_volume->mNumHullPoints = res.mNumVertices; S32 idx_size = (res.mNumTriangles*3*2+0xF) & ~0xF; phys_volume->mHullIndices = (U16*) ll_aligned_malloc_16(idx_size); phys_volume->mNumHullIndices = res.mNumTriangles*3; const F32* v = res.mVertexBase; for (S32 i = 0; i < res.mNumVertices; ++i) { F32* p = (F32*) ((U8*)v+i*res.mVertexStrideBytes); phys_volume->mHullPoints[i].load3(p); } if (res.mIndexType == LLCDMeshData::INT_16) { for (S32 i = 0; i < res.mNumTriangles; ++i) { U16* idx = (U16*) (((U8*)res.mIndexBase)+i*res.mIndexStrideBytes); phys_volume->mHullIndices[i*3+0] = idx[0]; phys_volume->mHullIndices[i*3+1] = idx[1]; phys_volume->mHullIndices[i*3+2] = idx[2]; } } else { for (S32 i = 0; i < res.mNumTriangles; ++i) { U32* idx = (U32*) (((U8*)res.mIndexBase)+i*res.mIndexStrideBytes); phys_volume->mHullIndices[i*3+0] = (U16) idx[0]; phys_volume->mHullIndices[i*3+1] = (U16) idx[1]; phys_volume->mHullIndices[i*3+2] = (U16) idx[2]; } } } } if (phys_volume->mHullPoints) { //render hull gGL.diffuseColor4fv(color.mV); LLVertexBuffer::unbind(); LLVertexBuffer::drawElements(LLRender::TRIANGLES, phys_volume->mHullPoints, NULL, phys_volume->mNumHullIndices, phys_volume->mHullIndices); } else { gGL.diffuseColor4f(1,0,1,1); drawBoxOutline(center, size); } LLPrimitive::sVolumeManager->unrefVolume(phys_volume); } } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::BOX) { if (!wireframe) { LLVector3 center = physics_spec.getCenter(); LLVector3 scale = physics_spec.getScale(); LLVector3 vscale = volume->getScale() * 2.f; scale.set(scale[0] / vscale[0], scale[1] / vscale[1], scale[2] / vscale[2]); gGL.diffuseColor4fv(color.mV); drawBox(center, scale); } } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::SPHERE) { if (!wireframe) { LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_CIRCLE_HALF, LL_PCODE_PATH_CIRCLE); volume_params.setBeginAndEndS(0.f, 1.f); volume_params.setBeginAndEndT(0.f, 1.f); volume_params.setRatio(1, 1); volume_params.setShear(0, 0); LLVolume* sphere = LLPrimitive::sVolumeManager->refVolume(volume_params, 3); gGL.diffuseColor4fv(color.mV); pushVerts(sphere); LLPrimitive::sVolumeManager->unrefVolume(sphere); } } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::CYLINDER) { if (!wireframe) { LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_CIRCLE, LL_PCODE_PATH_LINE); volume_params.setBeginAndEndS(0.f, 1.f); volume_params.setBeginAndEndT(0.f, 1.f); volume_params.setRatio(1, 1); volume_params.setShear(0, 0); LLVolume* cylinder = LLPrimitive::sVolumeManager->refVolume(volume_params, 3); gGL.diffuseColor4fv(color.mV); pushVerts(cylinder); LLPrimitive::sVolumeManager->unrefVolume(cylinder); } } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::PRIM_MESH) { LLVolumeParams volume_params = volume->getVolume()->getParams(); S32 detail = get_physics_detail(volume_params, volume->getScale()); LLVolume* phys_volume = LLPrimitive::sVolumeManager->refVolume(volume_params, detail); gGL.diffuseColor4fv(color.mV); pushVerts(phys_volume); LLPrimitive::sVolumeManager->unrefVolume(phys_volume); } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::PRIM_CONVEX) { LLVolumeParams volume_params = volume->getVolume()->getParams(); S32 detail = get_physics_detail(volume_params, volume->getScale()); LLVolume* phys_volume = LLPrimitive::sVolumeManager->refVolume(volume_params, detail); if (phys_volume->mHullPoints && phys_volume->mHullIndices) { llassert(LLGLSLShader::sCurBoundShader != 0); LLVertexBuffer::unbind(); glVertexPointer(3, GL_FLOAT, 16, phys_volume->mHullPoints); gGL.diffuseColor4fv(color.mV); gGL.syncMatrices(); glDrawElements(GL_TRIANGLES, phys_volume->mNumHullIndices, GL_UNSIGNED_SHORT, phys_volume->mHullIndices); } else { gGL.diffuseColor3f(1,0,1); drawBoxOutline(center, size); gMeshRepo.buildHull(volume_params, detail); } LLPrimitive::sVolumeManager->unrefVolume(phys_volume); } else if (type == LLPhysicsShapeBuilderUtil::PhysicsShapeSpecification::SCULPT) { //TODO: implement sculpted prim physics display } else { LL_ERRS() << "Unhandled type" << LL_ENDL; } gGL.popMatrix(); } void renderPhysicsShapes(LLSpatialGroup* group, bool wireframe) { for (OctreeNode::const_element_iter i = group->getDataBegin(); i != group->getDataEnd(); ++i) { LLDrawable* drawable = (LLDrawable*)(*i)->getDrawable(); if(!drawable) { continue; } if (drawable->isSpatialBridge()) { LLSpatialBridge* bridge = drawable->asPartition()->asBridge(); if (bridge) { gGL.pushMatrix(); gGL.multMatrix((F32*)bridge->mDrawable->getRenderMatrix().mMatrix); bridge->renderPhysicsShapes(wireframe); gGL.popMatrix(); } } else { LLVOVolume* volume = drawable->getVOVolume(); if (volume && !volume->isAttachment() && volume->getPhysicsShapeType() != LLViewerObject::PHYSICS_SHAPE_NONE ) { if (!group->getSpatialPartition()->isBridge()) { gGL.pushMatrix(); LLVector3 trans = drawable->getRegion()->getOriginAgent(); gGL.translatef(trans.mV[0], trans.mV[1], trans.mV[2]); renderPhysicsShape(drawable, volume, wireframe); gGL.popMatrix(); } else { renderPhysicsShape(drawable, volume, wireframe); } } else { #if 0 LLViewerObject* object = drawable->getVObj(); if (object && object->getPCode() == LLViewerObject::LL_VO_SURFACE_PATCH) { gGL.pushMatrix(); gGL.multMatrix((F32*) object->getRegion()->mRenderMatrix.mMatrix); //push face vertices for terrain for (S32 i = 0; i < drawable->getNumFaces(); ++i) { LLFace* face = drawable->getFace(i); if (face) { LLVertexBuffer* buff = face->getVertexBuffer(); if (buff) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); buff->setBuffer(); gGL.diffuseColor4f(0.2f, 0.5f, 0.3f, 0.5f); buff->draw(LLRender::TRIANGLES, buff->getNumIndices(), 0); gGL.diffuseColor4f(0.2f, 1.f, 0.3f, 0.75f); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); buff->draw(LLRender::TRIANGLES, buff->getNumIndices(), 0); } } } gGL.popMatrix(); } #endif } } } } void renderTexturePriority(LLDrawable* drawable) { for (int face=0; facegetNumFaces(); ++face) { LLFace *facep = drawable->getFace(face); LLVector4 cold(0,0,0.25f); LLVector4 hot(1,0.25f,0.25f); LLVector4 boost_cold(0,0,0,0); LLVector4 boost_hot(0,1,0,1); LLGLDisable blend(GL_BLEND); //LLViewerTexture* imagep = facep->getTexture(); //if (imagep) if (facep) { //F32 vsize = imagep->mMaxVirtualSize; F32 vsize = facep->getPixelArea(); if (vsize > sCurMaxTexPriority) { sCurMaxTexPriority = vsize; } F32 t = vsize/sLastMaxTexPriority; LLVector4 col = lerp(cold, hot, t); gGL.diffuseColor4fv(col.mV); } //else //{ // gGL.diffuseColor4f(1,0,1,1); //} LLVector4a center; center.setAdd(facep->mExtents[1],facep->mExtents[0]); center.mul(0.5f); LLVector4a size; size.setSub(facep->mExtents[1],facep->mExtents[0]); size.mul(0.5f); size.add(LLVector4a(0.01f)); drawBox(center, size); /*S32 boost = imagep->getBoostLevel(); if (boost>LLGLTexture::BOOST_NONE) { F32 t = (F32) boost / (F32) (LLGLTexture::BOOST_MAX_LEVEL-1); LLVector4 col = lerp(boost_cold, boost_hot, t); LLGLEnable blend_on(GL_BLEND); gGL.blendFunc(GL_SRC_ALPHA, GL_ONE); gGL.diffuseColor4fv(col.mV); drawBox(center, size); gGL.blendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); }*/ } } void renderPoints(LLDrawable* drawablep) { LLGLDepthTest depth(GL_FALSE, GL_FALSE); if (drawablep->getNumFaces()) { gGL.begin(LLRender::POINTS); gGL.diffuseColor3f(1,1,1); for (S32 i = 0; i < drawablep->getNumFaces(); i++) { LLFace * face = drawablep->getFace(i); if (face) { gGL.vertex3fv(face->mCenterLocal.mV); } } gGL.end(); } } void renderTextureAnim(LLDrawInfo* params) { if (!params->mTextureMatrix) { return; } LLGLEnable blend(GL_BLEND); gGL.diffuseColor4f(1,1,0,0.5f); pushVerts(params); } void renderBatchSize(LLDrawInfo* params) { LLGLEnable offset(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.f, 1.f); LLGLSLShader* old_shader = LLGLSLShader::sCurBoundShaderPtr; bool bind = false; if (params->mAvatar) { gGL.pushMatrix(); gGL.loadMatrix(gGLModelView); bind = true; old_shader->mRiggedVariant->bind(); LLRenderPass::uploadMatrixPalette(*params); } gGL.diffuseColor4ubv(params->getDebugColor().mV); pushVerts(params); if (bind) { gGL.popMatrix(); old_shader->bind(); } } void renderTexelDensity(LLDrawable* drawable) { if (LLViewerTexture::sDebugTexelsMode == LLViewerTexture::DEBUG_TEXELS_OFF || LLViewerTexture::sCheckerBoardImagep.isNull()) { return; } LLGLEnable _(GL_BLEND); LLMatrix4 checkerboard_matrix; S32 discard_level = -1; for (S32 f = 0; f < drawable->getNumFaces(); f++) { LLFace* facep = drawable->getFace(f); LLVertexBuffer* buffer = facep->getVertexBuffer(); LLViewerTexture* texturep = facep->getTexture(); if (texturep == NULL) continue; switch(LLViewerTexture::sDebugTexelsMode) { case LLViewerTexture::DEBUG_TEXELS_CURRENT: discard_level = -1; break; case LLViewerTexture::DEBUG_TEXELS_DESIRED: { LLViewerFetchedTexture* fetched_texturep = dynamic_cast(texturep); discard_level = fetched_texturep ? fetched_texturep->getDesiredDiscardLevel() : -1; break; } default: case LLViewerTexture::DEBUG_TEXELS_FULL: discard_level = 0; break; } checkerboard_matrix.initScale(LLVector3(texturep->getWidth(discard_level) / 8, texturep->getHeight(discard_level) / 8, 1.f)); gGL.getTexUnit(0)->bind(LLViewerTexture::sCheckerBoardImagep, TRUE); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadMatrix((GLfloat*)&checkerboard_matrix.mMatrix); if (buffer && (facep->getGeomCount() >= 3)) { buffer->setBuffer(); U16 start = facep->getGeomStart(); U16 end = start + facep->getGeomCount()-1; U32 count = facep->getIndicesCount(); U16 offset = facep->getIndicesStart(); buffer->drawRange(LLRender::TRIANGLES, start, end, count, offset); } gGL.loadIdentity(); gGL.matrixMode(LLRender::MM_MODELVIEW); } //S32 num_textures = llmax(1, (S32)params->mTextureList.size()); //for (S32 i = 0; i < num_textures; i++) //{ // LLViewerTexture* texturep = params->mTextureList.empty() ? params->mTexture.get() : params->mTextureList[i].get(); // if (texturep == NULL) continue; // LLMatrix4 checkboard_matrix; // S32 discard_level = -1; // switch(LLViewerTexture::sDebugTexelsMode) // { // case LLViewerTexture::DEBUG_TEXELS_CURRENT: // discard_level = -1; // break; // case LLViewerTexture::DEBUG_TEXELS_DESIRED: // { // LLViewerFetchedTexture* fetched_texturep = dynamic_cast(texturep); // discard_level = fetched_texturep ? fetched_texturep->getDesiredDiscardLevel() : -1; // break; // } // default: // case LLViewerTexture::DEBUG_TEXELS_FULL: // discard_level = 0; // break; // } // checkboard_matrix.initScale(LLVector3(texturep->getWidth(discard_level) / 8, texturep->getHeight(discard_level) / 8, 1.f)); // gGL.getTexUnit(i)->activate(); // glMatrixMode(GL_TEXTURE); // glPushMatrix(); // glLoadIdentity(); // //gGL.matrixMode(LLRender::MM_TEXTURE); // glLoadMatrixf((GLfloat*) checkboard_matrix.mMatrix); // gGL.getTexUnit(i)->bind(LLViewerTexture::sCheckerBoardImagep, TRUE); // pushVerts(params, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0 | LLVertexBuffer::MAP_COLOR | LLVertexBuffer::MAP_NORMAL ); // glPopMatrix(); // glMatrixMode(GL_MODELVIEW); // //gGL.matrixMode(LLRender::MM_MODELVIEW); //} } void renderLights(LLDrawable* drawablep) { if (!drawablep->isLight()) { return; } if (drawablep->getNumFaces()) { LLGLEnable blend(GL_BLEND); gGL.diffuseColor4f(0,1,1,0.5f); for (S32 i = 0; i < drawablep->getNumFaces(); i++) { LLFace * face = drawablep->getFace(i); if (face) { pushVerts(face); } } const LLVector4a* ext = drawablep->getSpatialExtents(); LLVector4a pos; pos.setAdd(ext[0], ext[1]); pos.mul(0.5f); LLVector4a size; size.setSub(ext[1], ext[0]); size.mul(0.5f); { LLGLDepthTest depth(GL_FALSE, GL_TRUE); gGL.diffuseColor4f(1,1,1,1); drawBoxOutline(pos, size); } gGL.diffuseColor4f(1,1,0,1); F32 rad = drawablep->getVOVolume()->getLightRadius(); drawBoxOutline(pos, LLVector4a(rad)); } } class LLRenderOctreeRaycast : public LLOctreeTriangleRayIntersect { public: LLRenderOctreeRaycast(const LLVector4a& start, const LLVector4a& dir, F32* closest_t) : LLOctreeTriangleRayIntersect(start, dir, NULL, closest_t, NULL, NULL, NULL, NULL) { } void visit(const LLOctreeNode* branch) { LLVolumeOctreeListener* vl = (LLVolumeOctreeListener*) branch->getListener(0); LLVector3 center, size; if (branch->isEmpty()) { gGL.diffuseColor3f(1.f,0.2f,0.f); center.set(branch->getCenter().getF32ptr()); size.set(branch->getSize().getF32ptr()); } else { gGL.diffuseColor3f(0.75f, 1.f, 0.f); center.set(vl->mBounds[0].getF32ptr()); size.set(vl->mBounds[1].getF32ptr()); } drawBoxOutline(center, size); for (U32 i = 0; i < 2; i++) { LLGLDepthTest depth(GL_TRUE, GL_FALSE, i == 1 ? GL_LEQUAL : GL_GREATER); if (i == 1) { gGL.diffuseColor4f(0,1,1,0.5f); } else { gGL.diffuseColor4f(0,0.5f,0.5f, 0.25f); drawBoxOutline(center, size); } if (i == 1) { gGL.flush(); glLineWidth(3.f); } gGL.begin(LLRender::TRIANGLES); for (LLOctreeNode::const_element_iter iter = branch->getDataBegin(); iter != branch->getDataEnd(); ++iter) { const LLVolumeTriangle* tri = *iter; gGL.vertex3fv(tri->mV[0]->getF32ptr()); gGL.vertex3fv(tri->mV[1]->getF32ptr()); gGL.vertex3fv(tri->mV[2]->getF32ptr()); } gGL.end(); if (i == 1) { gGL.flush(); glLineWidth(1.f); } } } }; void renderRaycast(LLDrawable* drawablep) { if (drawablep->getNumFaces()) { LLGLEnable blend(GL_BLEND); gGL.diffuseColor4f(0,1,1,0.5f); LLVOVolume* vobj = drawablep->getVOVolume(); if (vobj && !vobj->isDead()) { //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); //pushVerts(drawablep->getFace(gDebugRaycastFaceHit), LLVertexBuffer::MAP_VERTEX); //glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); LLVolume* volume = vobj->getVolume(); bool transform = true; if (drawablep->isState(LLDrawable::RIGGED)) { volume = vobj->getRiggedVolume(); transform = false; } if (volume) { LLVector3 trans = drawablep->getRegion()->getOriginAgent(); for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = volume->getVolumeFace(i); gGL.pushMatrix(); gGL.translatef(trans.mV[0], trans.mV[1], trans.mV[2]); gGL.multMatrix((F32*) vobj->getRelativeXform().mMatrix); LLVector4a start, end; if (transform) { LLVector3 v_start(gDebugRaycastStart.getF32ptr()); LLVector3 v_end(gDebugRaycastEnd.getF32ptr()); v_start = vobj->agentPositionToVolume(v_start); v_end = vobj->agentPositionToVolume(v_end); start.load3(v_start.mV); end.load3(v_end.mV); } else { start = gDebugRaycastStart; end = gDebugRaycastEnd; } LLVector4a dir; dir.setSub(end, start); gGL.flush(); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); { //render face positions LLVertexBuffer::unbind(); gGL.diffuseColor4f(0,1,1,0.5f); glVertexPointer(3, GL_FLOAT, sizeof(LLVector4a), face.mPositions); gGL.syncMatrices(); glDrawElements(GL_TRIANGLES, face.mNumIndices, GL_UNSIGNED_SHORT, face.mIndices); } if (!volume->isUnique()) { F32 t = 1.f; if (!face.getOctree()) { ((LLVolumeFace*) &face)->createOctree(); } LLRenderOctreeRaycast render(start, dir, &t); render.traverse(face.getOctree()); } gGL.popMatrix(); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } } } else if (drawablep->isAvatar()) { if (drawablep->getVObj() == gDebugRaycastObject) { LLGLDepthTest depth(GL_FALSE); LLVOAvatar* av = (LLVOAvatar*) drawablep->getVObj().get(); av->renderCollisionVolumes(); } } if (drawablep->getVObj() == gDebugRaycastObject) { // draw intersection point gGL.pushMatrix(); gGL.loadMatrix(gGLModelView); LLVector3 translate(gDebugRaycastIntersection.getF32ptr()); gGL.translatef(translate.mV[0], translate.mV[1], translate.mV[2]); LLCoordFrame orient; LLVector4a debug_binormal; debug_binormal.setCross3(gDebugRaycastNormal, gDebugRaycastTangent); debug_binormal.mul(gDebugRaycastTangent.getF32ptr()[3]); LLVector3 normal(gDebugRaycastNormal.getF32ptr()); LLVector3 binormal(debug_binormal.getF32ptr()); orient.lookDir(normal, binormal); LLMatrix4 rotation; orient.getRotMatrixToParent(rotation); gGL.multMatrix((float*)rotation.mMatrix); gGL.diffuseColor4f(1,0,0,0.5f); drawBox(LLVector3(0, 0, 0), LLVector3(0.1f, 0.022f, 0.022f)); gGL.diffuseColor4f(0,1,0,0.5f); drawBox(LLVector3(0, 0, 0), LLVector3(0.021f, 0.1f, 0.021f)); gGL.diffuseColor4f(0,0,1,0.5f); drawBox(LLVector3(0, 0, 0), LLVector3(0.02f, 0.02f, 0.1f)); gGL.popMatrix(); // draw bounding box of prim const LLVector4a* ext = drawablep->getSpatialExtents(); LLVector4a pos; pos.setAdd(ext[0], ext[1]); pos.mul(0.5f); LLVector4a size; size.setSub(ext[1], ext[0]); size.mul(0.5f); LLGLDepthTest depth(GL_FALSE, GL_TRUE); gGL.diffuseColor4f(0,0.5f,0.5f,1); drawBoxOutline(pos, size); } } } void renderAvatarCollisionVolumes(LLVOAvatar* avatar) { avatar->renderCollisionVolumes(); } void renderAvatarBones(LLVOAvatar* avatar) { avatar->renderBones(); } void renderAgentTarget(LLVOAvatar* avatar) { // render these for self only (why, i don't know) if (avatar->isSelf()) { renderCrossHairs(avatar->getPositionAgent(), 0.2f, LLColor4(1, 0, 0, 0.8f)); renderCrossHairs(avatar->mDrawable->getPositionAgent(), 0.2f, LLColor4(0, 1, 0, 0.8f)); renderCrossHairs(avatar->mRoot->getWorldPosition(), 0.2f, LLColor4(1, 1, 1, 0.8f)); renderCrossHairs(avatar->mPelvisp->getWorldPosition(), 0.2f, LLColor4(0, 0, 1, 0.8f)); } } static void setTextureAreaDebugText(LLDrawable* drawablep) { LLVOVolume* vobjp = drawablep->getVOVolume(); if (vobjp) { if (drawablep->mDistanceWRTCamera < 32.f) { std::ostringstream str; //for (S32 i = 0; i < vobjp->getNumTEs(); ++i) S32 i = 0; { if (i < drawablep->getNumFaces()) { LLFace* facep = drawablep->getFace(i); if (facep) { LLViewerTexture* imagep = facep->getTexture(); if (imagep) { str << llformat("D - %.2f", sqrtf(imagep->getMaxVirtualSize())); } imagep = vobjp->getTENormalMap(i); if (imagep && imagep != LLViewerFetchedTexture::sDefaultImagep) { str << llformat("\nN - %.2f", sqrtf(imagep->getMaxVirtualSize())); } imagep = vobjp->getTESpecularMap(i); if (imagep && imagep != LLViewerFetchedTexture::sDefaultImagep) { str << llformat("\nS - %.2f", sqrtf(imagep->getMaxVirtualSize())); } str << "\n\n"; } vobjp->setDebugText(str.str()); } } } else { vobjp->setDebugText("."); } } } class LLOctreeRenderNonOccluded : public OctreeTraveler { public: LLCamera* mCamera; LLOctreeRenderNonOccluded(LLCamera* camera): mCamera(camera) {} virtual void traverse(const OctreeNode* node) { LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0); const LLVector4a* bounds = group->getBounds(); if (!mCamera || mCamera->AABBInFrustumNoFarClip(bounds[0], bounds[1])) { node->accept(this); stop_glerror(); for (U32 i = 0; i < node->getChildCount(); i++) { traverse(node->getChild(i)); stop_glerror(); } //draw tight fit bounding boxes for spatial group if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCTREE)) { group->rebuildGeom(); group->rebuildMesh(); renderOctree(group); stop_glerror(); } } } virtual void visit(const OctreeNode* branch) { LLSpatialGroup* group = (LLSpatialGroup*) branch->getListener(0); const LLVector4a* bounds = group->getBounds(); if (group->hasState(LLSpatialGroup::GEOM_DIRTY) || (mCamera && !mCamera->AABBInFrustumNoFarClip(bounds[0], bounds[1]))) { return; } group->rebuildGeom(); group->rebuildMesh(); if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_BBOXES)) { if (!group->isEmpty()) { gGL.diffuseColor3f(0,0,1); const LLVector4a* obj_bounds = group->getObjectBounds(); drawBoxOutline(obj_bounds[0], obj_bounds[1]); } } for (OctreeNode::const_element_iter i = branch->getDataBegin(); i != branch->getDataEnd(); ++i) { LLDrawable* drawable = (LLDrawable*)(*i)->getDrawable(); if(!drawable || drawable->isDead()) { continue; } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_BBOXES)) { renderBoundingBox(drawable); } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_NORMALS)) { renderNormals(drawable); } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_TEXTURE_AREA)) { setTextureAreaDebugText(drawable); } /*if (drawable->getVOVolume() && gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_TEXTURE_PRIORITY)) { renderTexturePriority(drawable); }*/ if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_POINTS)) { renderPoints(drawable); } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_LIGHTS)) { renderLights(drawable); } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_RAYCAST)) { renderRaycast(drawable); } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_UPDATE_TYPE)) { renderUpdateType(drawable); } if(gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_TEXEL_DENSITY)) { renderTexelDensity(drawable); } LLVOAvatar* avatar = dynamic_cast(drawable->getVObj().get()); if (avatar && gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_AVATAR_VOLUME)) { renderAvatarCollisionVolumes(avatar); } if (avatar && gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_AVATAR_JOINTS)) { renderAvatarBones(avatar); } if (avatar && gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_AGENT_TARGET)) { renderAgentTarget(avatar); } #if 0 if (gDebugGL) { for (U32 i = 0; i < drawable->getNumFaces(); ++i) { LLFace* facep = drawable->getFace(i); if (facep) { U8 index = facep->getTextureIndex(); if (facep->mDrawInfo) { if (index < FACE_DO_NOT_BATCH_TEXTURES) { if (facep->mDrawInfo->mTextureList.size() <= index) { LL_ERRS() << "Face texture index out of bounds." << LL_ENDL; } else if (facep->mDrawInfo->mTextureList[index] != facep->getTexture()) { LL_ERRS() << "Face texture index incorrect." << LL_ENDL; } } } } } } #endif } for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i) { LLSpatialGroup::drawmap_elem_t& draw_vec = i->second; for (LLSpatialGroup::drawmap_elem_t::iterator j = draw_vec.begin(); j != draw_vec.end(); ++j) { LLDrawInfo* draw_info = *j; if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_TEXTURE_ANIM)) { renderTextureAnim(draw_info); } if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_BATCH_SIZE)) { renderBatchSize(draw_info); } } } } }; class LLOctreeRenderXRay : public OctreeTraveler { public: LLCamera* mCamera; LLOctreeRenderXRay(LLCamera* camera): mCamera(camera) {} virtual void traverse(const OctreeNode* node) { LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0); const LLVector4a* bounds = group->getBounds(); if (!mCamera || mCamera->AABBInFrustumNoFarClip(bounds[0], bounds[1])) { node->accept(this); stop_glerror(); for (U32 i = 0; i < node->getChildCount(); i++) { traverse(node->getChild(i)); stop_glerror(); } //render visibility wireframe if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCCLUSION)) { group->rebuildGeom(); group->rebuildMesh(); gGL.flush(); gGL.pushMatrix(); gGLLastMatrix = NULL; gGL.loadMatrix(gGLModelView); renderXRay(group, mCamera); stop_glerror(); gGLLastMatrix = NULL; gGL.popMatrix(); } } } virtual void visit(const OctreeNode* node) {} }; class LLOctreeRenderPhysicsShapes : public OctreeTraveler { public: LLCamera* mCamera; bool mWireframe; LLOctreeRenderPhysicsShapes(LLCamera* camera, bool wireframe): mCamera(camera), mWireframe(wireframe) {} virtual void traverse(const OctreeNode* node) { LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0); const LLVector4a* bounds = group->getBounds(); if (!mCamera || mCamera->AABBInFrustumNoFarClip(bounds[0], bounds[1])) { node->accept(this); stop_glerror(); for (U32 i = 0; i < node->getChildCount(); i++) { traverse(node->getChild(i)); stop_glerror(); } group->rebuildGeom(); group->rebuildMesh(); renderPhysicsShapes(group, mWireframe); } } virtual void visit(const OctreeNode* branch) { } }; class LLOctreePushBBoxVerts : public OctreeTraveler { public: LLCamera* mCamera; LLOctreePushBBoxVerts(LLCamera* camera): mCamera(camera) {} virtual void traverse(const OctreeNode* node) { LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0); const LLVector4a* bounds = group->getBounds(); if (!mCamera || mCamera->AABBInFrustum(bounds[0], bounds[1])) { node->accept(this); for (U32 i = 0; i < node->getChildCount(); i++) { traverse(node->getChild(i)); } } } virtual void visit(const OctreeNode* branch) { LLSpatialGroup* group = (LLSpatialGroup*) branch->getListener(0); const LLVector4a* bounds = group->getBounds(); if (group->hasState(LLSpatialGroup::GEOM_DIRTY) || (mCamera && !mCamera->AABBInFrustumNoFarClip(bounds[0], bounds[1]))) { return; } for (OctreeNode::const_element_iter i = branch->getDataBegin(); i != branch->getDataEnd(); ++i) { LLDrawable* drawable = (LLDrawable*)(*i)->getDrawable(); if(!drawable) { continue; } renderBoundingBox(drawable, FALSE); } } }; void LLSpatialPartition::renderIntersectingBBoxes(LLCamera* camera) { LLOctreePushBBoxVerts pusher(camera); pusher.traverse(mOctree); } class LLOctreeStateCheck : public OctreeTraveler { public: U32 mInheritedMask[LLViewerCamera::NUM_CAMERAS]; LLOctreeStateCheck() { for (U32 i = 0; i < LLViewerCamera::NUM_CAMERAS; i++) { mInheritedMask[i] = 0; } } virtual void traverse(const OctreeNode* node) { LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0); node->accept(this); U32 temp[LLViewerCamera::NUM_CAMERAS]; for (U32 i = 0; i < LLViewerCamera::NUM_CAMERAS; i++) { temp[i] = mInheritedMask[i]; mInheritedMask[i] |= group->mOcclusionState[i] & LLSpatialGroup::OCCLUDED; } for (U32 i = 0; i < node->getChildCount(); i++) { traverse(node->getChild(i)); } for (U32 i = 0; i < LLViewerCamera::NUM_CAMERAS; i++) { mInheritedMask[i] = temp[i]; } } virtual void visit(const OctreeNode* state) { LLSpatialGroup* group = (LLSpatialGroup*) state->getListener(0); for (U32 i = 0; i < LLViewerCamera::NUM_CAMERAS; i++) { if (mInheritedMask[i] && !(group->mOcclusionState[i] & mInheritedMask[i])) { LL_ERRS() << "Spatial group failed inherited mask test." << LL_ENDL; } } if (group->hasState(LLSpatialGroup::DIRTY)) { assert_parent_state(group, LLSpatialGroup::DIRTY); } } void assert_parent_state(LLSpatialGroup* group, U32 state) { LLSpatialGroup* parent = group->getParent(); while (parent) { if (!parent->hasState(state)) { LL_ERRS() << "Spatial group failed parent state check." << LL_ENDL; } parent = parent->getParent(); } } }; void LLSpatialPartition::renderPhysicsShapes(bool wireframe) { LLSpatialBridge* bridge = asBridge(); LLCamera* camera = LLViewerCamera::getInstance(); if (bridge) { camera = NULL; } gGL.flush(); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); LLOctreeRenderPhysicsShapes render_physics(camera, wireframe); render_physics.traverse(mOctree); gGL.flush(); } void LLSpatialPartition::renderDebug() { if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCTREE | LLPipeline::RENDER_DEBUG_OCCLUSION | LLPipeline::RENDER_DEBUG_LIGHTS | LLPipeline::RENDER_DEBUG_BATCH_SIZE | LLPipeline::RENDER_DEBUG_UPDATE_TYPE | LLPipeline::RENDER_DEBUG_BBOXES | LLPipeline::RENDER_DEBUG_NORMALS | LLPipeline::RENDER_DEBUG_POINTS | LLPipeline::RENDER_DEBUG_TEXTURE_AREA | LLPipeline::RENDER_DEBUG_TEXTURE_ANIM | LLPipeline::RENDER_DEBUG_RAYCAST | LLPipeline::RENDER_DEBUG_AVATAR_VOLUME | LLPipeline::RENDER_DEBUG_AVATAR_JOINTS | LLPipeline::RENDER_DEBUG_AGENT_TARGET | LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA | LLPipeline::RENDER_DEBUG_TEXEL_DENSITY)) { return; } gDebugProgram.bind(); if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_TEXTURE_PRIORITY)) { //sLastMaxTexPriority = lerp(sLastMaxTexPriority, sCurMaxTexPriority, gFrameIntervalSeconds); sLastMaxTexPriority = (F32) LLViewerCamera::getInstance()->getScreenPixelArea(); sCurMaxTexPriority = 0.f; } LLGLDisable cullface(GL_CULL_FACE); LLGLEnable blend(GL_BLEND); gGL.setSceneBlendType(LLRender::BT_ALPHA); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); gPipeline.disableLights(); LLSpatialBridge* bridge = asBridge(); LLCamera* camera = LLViewerCamera::getInstance(); if (bridge) { camera = NULL; } LLOctreeStateCheck checker; checker.traverse(mOctree); LLOctreeRenderNonOccluded render_debug(camera); render_debug.traverse(mOctree); if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCCLUSION)) { { LLGLEnable cull(GL_CULL_FACE); LLGLEnable blend(GL_BLEND); LLGLDepthTest depth_under(GL_TRUE, GL_FALSE, GL_GREATER); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); gGL.diffuseColor4f(0.5f, 0.0f, 0, 0.25f); LLGLEnable offset(GL_POLYGON_OFFSET_LINE); glPolygonOffset(-1.f, -1.f); LLOctreeRenderXRay xray(camera); xray.traverse(mOctree); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } } gDebugProgram.unbind(); } void LLSpatialGroup::drawObjectBox(LLColor4 col) { gGL.diffuseColor4fv(col.mV); LLVector4a size; size = mObjectBounds[1]; size.mul(1.01f); size.add(LLVector4a(0.001f)); drawBox(mObjectBounds[0], size); } bool LLSpatialPartition::isHUDPartition() { return mPartitionType == LLViewerRegion::PARTITION_HUD ; } BOOL LLSpatialPartition::isVisible(const LLVector3& v) { if (!LLViewerCamera::getInstance()->sphereInFrustum(v, 4.0f)) { return FALSE; } return TRUE; } LL_ALIGN_PREFIX(16) class LLOctreeIntersect : public LLOctreeTraveler> { public: LL_ALIGN_16(LLVector4a mStart); LL_ALIGN_16(LLVector4a mEnd); S32 *mFaceHit; LLVector4a *mIntersection; LLVector2 *mTexCoord; LLVector4a *mNormal; LLVector4a *mTangent; LLDrawable* mHit; BOOL mPickTransparent; BOOL mPickRigged; BOOL mPickUnselectable; BOOL mPickReflectionProbe; LLOctreeIntersect(const LLVector4a& start, const LLVector4a& end, BOOL pick_transparent, BOOL pick_rigged, BOOL pick_unselectable, BOOL pick_reflection_probe, S32* face_hit, LLVector4a* intersection, LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent) : mStart(start), mEnd(end), mFaceHit(face_hit), mIntersection(intersection), mTexCoord(tex_coord), mNormal(normal), mTangent(tangent), mHit(NULL), mPickTransparent(pick_transparent), mPickRigged(pick_rigged), mPickUnselectable(pick_unselectable), mPickReflectionProbe(pick_reflection_probe) { } virtual void visit(const OctreeNode* branch) { for (OctreeNode::const_element_iter i = branch->getDataBegin(); i != branch->getDataEnd(); ++i) { check(*i); } } virtual LLDrawable* check(const OctreeNode* node) { node->accept(this); for (U32 i = 0; i < node->getChildCount(); i++) { const OctreeNode* child = node->getChild(i); LLVector3 res; LLSpatialGroup* group = (LLSpatialGroup*) child->getListener(0); LLVector4a size; LLVector4a center; const LLVector4a* bounds = group->getBounds(); size = bounds[1]; center = bounds[0]; LLVector4a local_start = mStart; LLVector4a local_end = mEnd; if (group->getSpatialPartition()->isBridge()) { LLMatrix4 local_matrix = group->getSpatialPartition()->asBridge()->mDrawable->getRenderMatrix(); local_matrix.invert(); LLMatrix4a local_matrix4a; local_matrix4a.loadu(local_matrix); local_matrix4a.affineTransform(mStart, local_start); local_matrix4a.affineTransform(mEnd, local_end); } if (LLLineSegmentBoxIntersect(local_start, local_end, center, size)) { check(child); } } return mHit; } virtual bool check(LLViewerOctreeEntry* entry) { LLDrawable* drawable = (LLDrawable*)entry->getDrawable(); if (!drawable || !gPipeline.hasRenderType(drawable->getRenderType()) || !drawable->isVisible()) { return false; } if (drawable->isSpatialBridge()) { LLSpatialPartition *part = drawable->asPartition(); LLSpatialBridge* bridge = part->asBridge(); if (bridge && gPipeline.hasRenderType(bridge->mDrawableType)) { check(part->mOctree); } } else { LLViewerObject* vobj = drawable->getVObj(); if (vobj && (!vobj->isReflectionProbe() || mPickReflectionProbe)) { if (vobj->getClickAction() == CLICK_ACTION_IGNORE && !LLFloater::isVisible(gFloaterTools)) { return false; } LLVector4a intersection; bool skip_check = false; if (vobj->isAvatar()) { LLVOAvatar* avatar = (LLVOAvatar*) vobj; if ((mPickRigged) || ((avatar->isSelf()) && (LLFloater::isVisible(gFloaterTools)))) { LLViewerObject* hit = avatar->lineSegmentIntersectRiggedAttachments(mStart, mEnd, -1, mPickTransparent, mPickRigged, mPickUnselectable, mFaceHit, &intersection, mTexCoord, mNormal, mTangent); if (hit) { mEnd = intersection; if (mIntersection) { *mIntersection = intersection; } mHit = hit->mDrawable; skip_check = true; } } } if (!skip_check && vobj->lineSegmentIntersect(mStart, mEnd, -1, (mPickReflectionProbe && vobj->isReflectionProbe()) ? TRUE : mPickTransparent, // always pick transparent when picking selection probe mPickRigged, mPickUnselectable, mFaceHit, &intersection, mTexCoord, mNormal, mTangent)) { mEnd = intersection; // shorten ray so we only find CLOSER hits if (mIntersection) { *mIntersection = intersection; } mHit = vobj->mDrawable; } } } return false; } } LL_ALIGN_POSTFIX(16); LLDrawable* LLSpatialPartition::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, BOOL pick_transparent, BOOL pick_rigged, BOOL pick_unselectable, BOOL pick_reflection_probe, S32* face_hit, // return the face hit LLVector4a* intersection, // return the intersection point LLVector2* tex_coord, // return the texture coordinates of the intersection point LLVector4a* normal, // return the surface normal at the intersection point LLVector4a* tangent // return the surface tangent at the intersection point ) { LLOctreeIntersect intersect(start, end, pick_transparent, pick_rigged, pick_unselectable, pick_reflection_probe, face_hit, intersection, tex_coord, normal, tangent); LLDrawable* drawable = intersect.check(mOctree); return drawable; } LLDrawable* LLSpatialGroup::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, BOOL pick_transparent, BOOL pick_rigged, BOOL pick_unselectable, BOOL pick_reflection_probe, S32* face_hit, // return the face hit LLVector4a* intersection, // return the intersection point LLVector2* tex_coord, // return the texture coordinates of the intersection point LLVector4a* normal, // return the surface normal at the intersection point LLVector4a* tangent // return the surface tangent at the intersection point ) { LLOctreeIntersect intersect(start, end, pick_transparent, pick_rigged, pick_unselectable, pick_reflection_probe, face_hit, intersection, tex_coord, normal, tangent); LLDrawable* drawable = intersect.check(getOctreeNode()); return drawable; } LLDrawInfo::LLDrawInfo(U16 start, U16 end, U32 count, U32 offset, LLViewerTexture* texture, LLVertexBuffer* buffer, bool fullbright, U8 bump) : mVertexBuffer(buffer), mTexture(texture), mStart(start), mEnd(end), mCount(count), mOffset(offset), mFullbright(fullbright), mBump(bump), mBlendFuncSrc(LLRender::BF_SOURCE_ALPHA), mBlendFuncDst(LLRender::BF_ONE_MINUS_SOURCE_ALPHA), mHasGlow(false), mEnvIntensity(0.0f), mAlphaMaskCutoff(0.5f) { mVertexBuffer->validateRange(mStart, mEnd, mCount, mOffset); } LLDrawInfo::~LLDrawInfo() { if (gDebugGL) { gPipeline.checkReferences(this); } } LLColor4U LLDrawInfo::getDebugColor() const { LLColor4U color; LLCRC hash; hash.update((U8*)this + sizeof(S32), sizeof(LLDrawInfo) - sizeof(S32)); *((U32*) color.mV) = hash.getCRC(); color.mV[3] = 200; return color; } void LLDrawInfo::validate() { mVertexBuffer->validateRange(mStart, mEnd, mCount, mOffset); } U64 LLDrawInfo::getSkinHash() { return mSkinInfo ? mSkinInfo->mHash : 0; } LLCullResult::LLCullResult() { mVisibleGroupsAllocated = 0; mAlphaGroupsAllocated = 0; mRiggedAlphaGroupsAllocated = 0; mOcclusionGroupsAllocated = 0; mDrawableGroupsAllocated = 0; mVisibleListAllocated = 0; mVisibleBridgeAllocated = 0; mVisibleGroups.clear(); mVisibleGroups.push_back(NULL); mVisibleGroupsEnd = &mVisibleGroups[0]; mAlphaGroups.clear(); mAlphaGroups.push_back(NULL); mAlphaGroupsEnd = &mAlphaGroups[0]; mRiggedAlphaGroups.clear(); mRiggedAlphaGroups.push_back(NULL); mRiggedAlphaGroupsEnd = &mRiggedAlphaGroups[0]; mOcclusionGroups.clear(); mOcclusionGroups.push_back(NULL); mOcclusionGroupsEnd = &mOcclusionGroups[0]; mDrawableGroups.clear(); mDrawableGroups.push_back(NULL); mDrawableGroupsEnd = &mDrawableGroups[0]; mVisibleList.clear(); mVisibleList.push_back(NULL); mVisibleListEnd = &mVisibleList[0]; mVisibleBridge.clear(); mVisibleBridge.push_back(NULL); mVisibleBridgeEnd = &mVisibleBridge[0]; for (U32 i = 0; i < LLRenderPass::NUM_RENDER_TYPES; i++) { mRenderMap[i].clear(); mRenderMap[i].push_back(NULL); mRenderMapEnd[i] = &mRenderMap[i][0]; mRenderMapAllocated[i] = 0; } clear(); } template void LLCullResult::pushBack(T& head, U32& count, V* val) { head[count] = val; head.push_back(NULL); count++; } void LLCullResult::clear() { mVisibleGroupsSize = 0; mVisibleGroupsEnd = &mVisibleGroups[0]; mAlphaGroupsSize = 0; mAlphaGroupsEnd = &mAlphaGroups[0]; mRiggedAlphaGroupsSize = 0; mRiggedAlphaGroupsEnd = &mRiggedAlphaGroups[0]; mOcclusionGroupsSize = 0; mOcclusionGroupsEnd = &mOcclusionGroups[0]; mDrawableGroupsSize = 0; mDrawableGroupsEnd = &mDrawableGroups[0]; mVisibleListSize = 0; mVisibleListEnd = &mVisibleList[0]; mVisibleBridgeSize = 0; mVisibleBridgeEnd = &mVisibleBridge[0]; for (U32 i = 0; i < LLRenderPass::NUM_RENDER_TYPES; i++) { for (U32 j = 0; j < mRenderMapSize[i]; j++) { mRenderMap[i][j] = 0; } mRenderMapSize[i] = 0; mRenderMapEnd[i] = &(mRenderMap[i][0]); } } LLCullResult::sg_iterator LLCullResult::beginVisibleGroups() { return &mVisibleGroups[0]; } LLCullResult::sg_iterator LLCullResult::endVisibleGroups() { return mVisibleGroupsEnd; } LLCullResult::sg_iterator LLCullResult::beginAlphaGroups() { return &mAlphaGroups[0]; } LLCullResult::sg_iterator LLCullResult::endAlphaGroups() { return mAlphaGroupsEnd; } LLCullResult::sg_iterator LLCullResult::beginRiggedAlphaGroups() { return &mRiggedAlphaGroups[0]; } LLCullResult::sg_iterator LLCullResult::endRiggedAlphaGroups() { return mRiggedAlphaGroupsEnd; } LLCullResult::sg_iterator LLCullResult::beginOcclusionGroups() { return &mOcclusionGroups[0]; } LLCullResult::sg_iterator LLCullResult::endOcclusionGroups() { return mOcclusionGroupsEnd; } LLCullResult::sg_iterator LLCullResult::beginDrawableGroups() { return &mDrawableGroups[0]; } LLCullResult::sg_iterator LLCullResult::endDrawableGroups() { return mDrawableGroupsEnd; } LLCullResult::drawable_iterator LLCullResult::beginVisibleList() { return &mVisibleList[0]; } LLCullResult::drawable_iterator LLCullResult::endVisibleList() { return mVisibleListEnd; } LLCullResult::bridge_iterator LLCullResult::beginVisibleBridge() { return &mVisibleBridge[0]; } LLCullResult::bridge_iterator LLCullResult::endVisibleBridge() { return mVisibleBridgeEnd; } LLCullResult::drawinfo_iterator LLCullResult::beginRenderMap(U32 type) { return &mRenderMap[type][0]; } LLCullResult::drawinfo_iterator LLCullResult::endRenderMap(U32 type) { return mRenderMapEnd[type]; } void LLCullResult::pushVisibleGroup(LLSpatialGroup* group) { if (mVisibleGroupsSize < mVisibleGroupsAllocated) { mVisibleGroups[mVisibleGroupsSize] = group; } else { pushBack(mVisibleGroups, mVisibleGroupsAllocated, group); } ++mVisibleGroupsSize; mVisibleGroupsEnd = &mVisibleGroups[mVisibleGroupsSize]; } void LLCullResult::pushAlphaGroup(LLSpatialGroup* group) { if (mAlphaGroupsSize < mAlphaGroupsAllocated) { mAlphaGroups[mAlphaGroupsSize] = group; } else { pushBack(mAlphaGroups, mAlphaGroupsAllocated, group); } ++mAlphaGroupsSize; mAlphaGroupsEnd = &mAlphaGroups[mAlphaGroupsSize]; } void LLCullResult::pushRiggedAlphaGroup(LLSpatialGroup* group) { if (mRiggedAlphaGroupsSize < mRiggedAlphaGroupsAllocated) { mRiggedAlphaGroups[mRiggedAlphaGroupsSize] = group; } else { pushBack(mRiggedAlphaGroups, mRiggedAlphaGroupsAllocated, group); } ++mRiggedAlphaGroupsSize; mRiggedAlphaGroupsEnd = &mRiggedAlphaGroups[mRiggedAlphaGroupsSize]; } void LLCullResult::pushOcclusionGroup(LLSpatialGroup* group) { if (mOcclusionGroupsSize < mOcclusionGroupsAllocated) { mOcclusionGroups[mOcclusionGroupsSize] = group; } else { pushBack(mOcclusionGroups, mOcclusionGroupsAllocated, group); } ++mOcclusionGroupsSize; mOcclusionGroupsEnd = &mOcclusionGroups[mOcclusionGroupsSize]; } void LLCullResult::pushDrawableGroup(LLSpatialGroup* group) { #if LL_DEBUG_CULL_RESULT // group must NOT be in the drawble groups list already llassert(std::find(&mDrawableGroups[0], mDrawableGroupsEnd, group) == mDrawableGroupsEnd); #endif if (mDrawableGroupsSize < mDrawableGroupsAllocated) { mDrawableGroups[mDrawableGroupsSize] = group; } else { pushBack(mDrawableGroups, mDrawableGroupsAllocated, group); } ++mDrawableGroupsSize; mDrawableGroupsEnd = &mDrawableGroups[mDrawableGroupsSize]; } void LLCullResult::pushDrawable(LLDrawable* drawable) { #if LL_DEBUG_CULL_RESULT // drawable must NOT be in the visible list already llassert(std::find(&mVisibleList[0], mVisibleListEnd, drawable) == mVisibleListEnd); #endif if (mVisibleListSize < mVisibleListAllocated) { mVisibleList[mVisibleListSize] = drawable; } else { pushBack(mVisibleList, mVisibleListAllocated, drawable); } ++mVisibleListSize; mVisibleListEnd = &mVisibleList[mVisibleListSize]; } void LLCullResult::pushBridge(LLSpatialBridge* bridge) { if (mVisibleBridgeSize < mVisibleBridgeAllocated) { mVisibleBridge[mVisibleBridgeSize] = bridge; } else { pushBack(mVisibleBridge, mVisibleBridgeAllocated, bridge); } ++mVisibleBridgeSize; mVisibleBridgeEnd = &mVisibleBridge[mVisibleBridgeSize]; } void LLCullResult::pushDrawInfo(U32 type, LLDrawInfo* draw_info) { if (mRenderMapSize[type] < mRenderMapAllocated[type]) { mRenderMap[type][mRenderMapSize[type]] = draw_info; } else { pushBack(mRenderMap[type], mRenderMapAllocated[type], draw_info); } ++mRenderMapSize[type]; mRenderMapEnd[type] = &(mRenderMap[type][mRenderMapSize[type]]); } void LLCullResult::assertDrawMapsEmpty() { for (U32 i = 0; i < LLRenderPass::NUM_RENDER_TYPES; i++) { if (mRenderMapSize[i] != 0) { LL_ERRS() << "Stale LLDrawInfo's in LLCullResult!" << " (mRenderMapSize[" << i << "] = " << mRenderMapSize[i] << ")" << LL_ENDL; } } }