/** * @file llsky.cpp * @brief IndraWorld sky class * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ // Ideas: // -haze should be controlled by global query from sims // -need secondary optical effects on sun (flare) // -stars should be brought down from sims // -star intensity should be driven by global ambient level from sims, // so that eclipses, etc can be easily done. // #include "llviewerprecompiledheaders.h" #include "llsky.h" // linden library includes #include "llerror.h" #include "llmath.h" #include "math.h" #include "v4color.h" #include "llviewerobjectlist.h" #include "llviewerobject.h" #include "llviewercamera.h" #include "pipeline.h" #include "lldrawpool.h" #include "llvosky.h" #include "llcubemap.h" #include "llviewercontrol.h" #include "llvowlsky.h" F32 azimuth_from_vector(const LLVector3 &v); F32 elevation_from_vector(const LLVector3 &v); LLSky gSky; // ---------------- LLSky ---------------- const F32 LLSky::NIGHTTIME_ELEVATION = -8.0f; // degrees const F32 LLSky::NIGHTTIME_ELEVATION_COS = (F32)sin(NIGHTTIME_ELEVATION*DEG_TO_RAD); ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// LLSky::LLSky() { // Set initial clear color to black // Set fog color mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f; mFogColor.mV[VALPHA] = 0.0f; mLightingGeneration = 0; mUpdatedThisFrame = TRUE; mSunPhase = 0.f; } LLSky::~LLSky() { } void LLSky::cleanup() { mVOSkyp = NULL; mVOWLSkyp = NULL; mVOGroundp = NULL; } void LLSky::destroyGL() { if (!mVOSkyp.isNull() && mVOSkyp->getCubeMap()) { mVOSkyp->cleanupGL(); } if (mVOWLSkyp.notNull()) { mVOWLSkyp->cleanupGL(); } } void LLSky::restoreGL() { if (mVOSkyp) { mVOSkyp->restoreGL(); } if (mVOWLSkyp) { mVOWLSkyp->restoreGL(); } } void LLSky::resetVertexBuffers() { if (gSky.mVOSkyp.notNull()) { gPipeline.resetVertexBuffers(gSky.mVOSkyp->mDrawable); gPipeline.resetVertexBuffers(gSky.mVOGroundp->mDrawable); gPipeline.markRebuild(gSky.mVOSkyp->mDrawable, LLDrawable::REBUILD_ALL, TRUE); gPipeline.markRebuild(gSky.mVOGroundp->mDrawable, LLDrawable::REBUILD_ALL, TRUE); } if (gSky.mVOWLSkyp.notNull()) { gSky.mVOWLSkyp->resetVertexBuffers(); gPipeline.resetVertexBuffers(gSky.mVOWLSkyp->mDrawable); gPipeline.markRebuild(gSky.mVOWLSkyp->mDrawable, LLDrawable::REBUILD_ALL, TRUE); } } void LLSky::setSunDirection(const LLVector3 &sun_direction, const LLVector3 &moon_direction) { if(mVOSkyp.notNull()) { mVOSkyp->setSunDirection(sun_direction, moon_direction); } } LLVector3 LLSky::getSunDirection() const { if (mVOSkyp) { return mVOSkyp->getToSun(); } else { return LLVector3::z_axis; } } LLVector3 LLSky::getMoonDirection() const { if (mVOSkyp) { return mVOSkyp->getToMoon(); } else { return LLVector3::z_axis; } } LLColor4 LLSky::getSunDiffuseColor() const { if (mVOSkyp) { return LLColor4(mVOSkyp->getSunDiffuseColor()); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } LLColor4 LLSky::getSunAmbientColor() const { if (mVOSkyp) { return LLColor4(mVOSkyp->getSunAmbientColor()); } else { return LLColor4(0.f, 0.f, 0.f, 1.f); } } LLColor4 LLSky::getMoonDiffuseColor() const { if (mVOSkyp) { return LLColor4(mVOSkyp->getMoonDiffuseColor()); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } LLColor4 LLSky::getMoonAmbientColor() const { if (mVOSkyp) { return LLColor4(mVOSkyp->getMoonAmbientColor()); } else { return LLColor4(0.f, 0.f, 0.f, 0.f); } } LLColor4 LLSky::getTotalAmbientColor() const { if (mVOSkyp) { return mVOSkyp->getTotalAmbientColor(); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } BOOL LLSky::sunUp() const { if (mVOSkyp) { return mVOSkyp->isSunUp(); } else { return TRUE; } } LLColor4U LLSky::getFadeColor() const { if (mVOSkyp) { return mVOSkyp->getFadeColor(); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } ////////////////////////////////////////////////////////////////////// // Public Methods ////////////////////////////////////////////////////////////////////// void LLSky::init(const LLVector3 &sun_direction) { LLGLState::checkStates(); LLGLState::checkTextureChannels(); mVOWLSkyp = static_cast(gObjectList.createObjectViewer(LLViewerObject::LL_VO_WL_SKY, NULL)); mVOWLSkyp->initSunDirection(sun_direction, LLVector3::zero); gPipeline.createObject(mVOWLSkyp.get()); LLGLState::checkStates(); LLGLState::checkTextureChannels(); mVOSkyp = (LLVOSky *)gObjectList.createObjectViewer(LLViewerObject::LL_VO_SKY, NULL); LLGLState::checkStates(); LLGLState::checkTextureChannels(); mVOSkyp->initSunDirection(sun_direction, LLVector3()); LLGLState::checkStates(); LLGLState::checkTextureChannels(); gPipeline.createObject((LLViewerObject *)mVOSkyp); LLGLState::checkStates(); LLGLState::checkTextureChannels(); mVOGroundp = (LLVOGround*)gObjectList.createObjectViewer(LLViewerObject::LL_VO_GROUND, NULL); LLVOGround *groundp = mVOGroundp; gPipeline.createObject((LLViewerObject *)groundp); LLGLState::checkStates(); LLGLState::checkTextureChannels(); gSky.setFogRatio(gSavedSettings.getF32("RenderFogRatio")); //////////////////////////// // // Legacy code, ignore // // // Get the parameters. mSunDefaultPosition = gSavedSettings.getVector3("SkySunDefaultPosition"); LLGLState::checkStates(); LLGLState::checkTextureChannels(); if (gSavedSettings.getBOOL("SkyOverrideSimSunPosition")) { setSunDirection(mSunDefaultPosition, -mSunDefaultPosition); } else { setSunDirection(sun_direction, -sun_direction); } LLGLState::checkStates(); LLGLState::checkTextureChannels(); mUpdatedThisFrame = TRUE; } void LLSky::setCloudDensityAtAgent(F32 cloud_density) { if (mVOSkyp) { mVOSkyp->setCloudDensity(cloud_density); } } void LLSky::setWind(const LLVector3& average_wind) { if (mVOSkyp) { mVOSkyp->setWind(average_wind); } } void LLSky::propagateHeavenlyBodies(F32 dt) { // if (!mOverrideSimSunPosition) // { // LLVector3 curr_dir = getSunDirection(); // LLVector3 diff = mSunTargDir - curr_dir; // const F32 dist = diff.normVec(); // if (dist > 0) // { // const F32 step = llmin (dist, 0.00005f); // //const F32 step = min (dist, 0.0001); // diff *= step; // curr_dir += diff; // curr_dir.normVec(); // if (mVOSkyp) // { // mVOSkyp->setSunDirection(curr_dir); // } // } // } } F32 LLSky::getSunPhase() const { return mSunPhase; } void LLSky::setSunPhase(const F32 phase) { mSunPhase = phase; } ////////////////////////////////////////////////////////////////////// // Private Methods ////////////////////////////////////////////////////////////////////// LLColor4 LLSky::getSkyFogColor() const { if (mVOSkyp) { return mVOSkyp->getSkyFogColor(); } return LLColor4(1.f, 1.f, 1.f, 1.f); } void LLSky::updateFog(const F32 distance) { if (mVOSkyp) { mVOSkyp->updateFog(distance); } } void LLSky::updateCull() { // *TODO: do culling for wl sky properly -Brad } void LLSky::updateSky() { if (!gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY)) { return; } if (mVOSkyp) { mVOSkyp->updateSky(); } } void LLSky::setFogRatio(const F32 fog_ratio) { if (mVOSkyp) { mVOSkyp->setFogRatio(fog_ratio); } } F32 LLSky::getFogRatio() const { if (mVOSkyp) { return mVOSkyp->getFogRatio(); } else { return 0.f; } } // Returns angle (DEGREES) between the horizontal plane and "v", // where the angle is negative when v.mV[VZ] < 0.0f F32 elevation_from_vector(const LLVector3 &v) { F32 elevation = 0.0f; F32 xy_component = (F32) sqrt(v.mV[VX] * v.mV[VX] + v.mV[VY] * v.mV[VY]); if (xy_component != 0.0f) { elevation = RAD_TO_DEG * (F32) atan(v.mV[VZ]/xy_component); } else { if (v.mV[VZ] > 0.f) { elevation = 90.f; } else { elevation = -90.f; } } return elevation; }