/** * @file llphysicsmotion.cpp * @brief Implementation of LLPhysicsMotion class. * * $LicenseInfo:firstyear=2001&license=viewergpl$ * * Copyright (c) 2001-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ //----------------------------------------------------------------------------- // Header Files //----------------------------------------------------------------------------- #include "llviewerprecompiledheaders.h" #include "linden_common.h" #include "m3math.h" #include "v3dmath.h" #include "llphysicsmotion.h" #include "llcharacter.h" #include "llviewercontrol.h" #include "llviewervisualparam.h" #include "llvoavatarself.h" typedef std::map controller_map_t; typedef std::map default_controller_map_t; #define MIN_REQUIRED_PIXEL_AREA_BREAST_MOTION 0.f; inline F64 llsgn(const F64 a) { if (a >= 0) return 1; return -1; } /* At a high level, this works by setting temporary parameters that are not stored in the avatar's list of params, and are not conveyed to other users. We accomplish this by creating some new temporary driven params inside avatar_lad that are then driven by the actual params that the user sees and sets. For example, in the old system, the user sets a param called breast bouyancy, which controls the Z value of the breasts. In our new system, the user still sets the breast bouyancy, but that param is redefined as a driver param so that affects a new temporary driven param that the bounce is applied to. */ class LLPhysicsMotion { public: /* param_user_name: The param (if any) that the user sees and controls. This is what the particular property would look like without physics. For example, it may be the breast gravity. This param's value should will not be altered, and is only used as a reference point for the rest position of the body party. This is usually a driver param and the param(s) that physics is altering are the driven params. param_driven_name: The param whose value is actually set by the physics. If you leave this blank (which should suffice normally), the physics will assume that param_user_name is a driver param and will set the params that the driver is in charge of (i.e. the "driven" params). joint_name: The joint that the body part is attached to. The joint is used to determine the orientation (rotation) of the body part. character: The avatar that this physics affects. motion_direction_vec: The direction (in world coordinates) that determines the motion. For example, (0,0,1) is up-down, and means that up-down motion is what determines how this joint moves. controllers: The various settings (e.g. spring force, mass) that determine how the body part behaves. */ LLPhysicsMotion(const std::string ¶m_user_name, const std::string ¶m_driven_name, const std::string &joint_name, LLCharacter *character, const LLVector3 &motion_direction_vec, const controller_map_t &controllers) : mParamUserName(param_user_name), mParamDrivenName(param_driven_name), mJointName(joint_name), mMotionDirectionVec(motion_direction_vec), mParamUser(NULL), mParamDriven(NULL), mParamControllers(controllers), mCharacter(character), mLastTime(0), mPosition_local(0), mVelocityJoint_local(0), mPositionLastUpdate_local(0) { mJointState = new LLJointState; } BOOL initialize(); ~LLPhysicsMotion() {} BOOL onUpdate(F32 time); LLPointer getJointState() { return mJointState; } protected: F32 getParamValue(const std::string& controller_key) { const controller_map_t::const_iterator& entry = mParamControllers.find(controller_key); if (entry == mParamControllers.end()) { return sDefaultController[controller_key]; } const std::string& param_name = (*entry).second.c_str(); return mCharacter->getVisualParamWeight(param_name.c_str()); } void setParamValue(LLViewerVisualParam *param, const F32 new_value_local); F32 toLocal(const LLVector3 &world); F32 calculateVelocity_local(const F32 time_delta); F32 calculateAcceleration_local(F32 velocity_local, const F32 time_delta); private: const std::string mParamDrivenName; const std::string mParamUserName; const LLVector3 mMotionDirectionVec; const std::string mJointName; F32 mPosition_local; F32 mVelocityJoint_local; // How fast the joint is moving F32 mAccelerationJoint_local; // Acceleration on the joint F32 mVelocity_local; // How fast the param is moving F32 mPositionLastUpdate_local; LLVector3 mPosition_world; LLViewerVisualParam *mParamUser; LLViewerVisualParam *mParamDriven; const controller_map_t mParamControllers; LLPointer mJointState; LLCharacter *mCharacter; F32 mLastTime; static default_controller_map_t sDefaultController; }; default_controller_map_t initDefaultController() { default_controller_map_t controller; controller["Mass"] = 0.2f; controller["Smoothing"] = 2.0f; controller["Gravity"] = 0.0f; controller["Damping"] = .05f; controller["Drag"] = 0.15f; controller["MaxSpeed"] = 0.1f; controller["Spring"] = 0.1f; controller["Gain"] = 10.0f; return controller; } default_controller_map_t LLPhysicsMotion::sDefaultController = initDefaultController(); BOOL LLPhysicsMotion::initialize() { if (!mJointState->setJoint(mCharacter->getJoint(mJointName.c_str()))) return FALSE; mJointState->setUsage(LLJointState::ROT); mParamUser = (LLViewerVisualParam*)mCharacter->getVisualParam(mParamUserName.c_str()); if (mParamDrivenName != "") mParamDriven = (LLViewerVisualParam*)mCharacter->getVisualParam(mParamDrivenName.c_str()); if (mParamUser == NULL) { llinfos << "Failure reading in [ " << mParamUserName << " ]" << llendl; return FALSE; } return TRUE; } LLPhysicsMotionController::LLPhysicsMotionController(const LLUUID &id) : LLMotion(id), mCharacter(NULL) { mName = "breast_motion"; } LLPhysicsMotionController::~LLPhysicsMotionController() { for (motion_vec_t::iterator iter = mMotions.begin(); iter != mMotions.end(); ++iter) { delete (*iter); } } BOOL LLPhysicsMotionController::onActivate() { return TRUE; } void LLPhysicsMotionController::onDeactivate() { } LLMotion::LLMotionInitStatus LLPhysicsMotionController::onInitialize(LLCharacter *character) { mCharacter = character; mMotions.clear(); // Breast Cleavage { controller_map_t controller; controller["Mass"] = "Breast_Physics_Mass"; controller["Smoothing"] = "Breast_Physics_Smoothing"; controller["Gravity"] = "Breast_Physics_Gravity"; controller["Damping"] = "Breast_Physics_InOut_Damping"; controller["Drag"] = "Breast_Physics_InOut_Drag"; controller["MaxSpeed"] = "Breast_Physics_InOut_Max_Velocity"; controller["Spring"] = "Breast_Physics_InOut_Spring"; controller["Gain"] = "Breast_Physics_InOut_Gain"; LLPhysicsMotion *motion = new LLPhysicsMotion("Breast_Physics_InOut_Controller", "", "mChest", character, LLVector3(-1,0,0), controller); if (!motion->initialize()) { llassert_always(FALSE); return STATUS_FAILURE; } addMotion(motion); } // Breast Bounce { controller_map_t controller; controller["Mass"] = "Breast_Physics_Mass"; controller["Smoothing"] = "Breast_Physics_Smoothing"; controller["Gravity"] = "Breast_Physics_Gravity"; controller["Damping"] = "Breast_Physics_UpDown_Damping"; controller["Drag"] = "Breast_Physics_UpDown_Drag"; controller["MaxSpeed"] = "Breast_Physics_UpDown_Max_Velocity"; controller["Spring"] = "Breast_Physics_UpDown_Spring"; controller["Gain"] = "Breast_Physics_UpDown_Gain"; LLPhysicsMotion *motion = new LLPhysicsMotion("Breast_Physics_UpDown_Controller", "", "mChest", character, LLVector3(0,0,1), controller); if (!motion->initialize()) { llassert_always(FALSE); return STATUS_FAILURE; } addMotion(motion); } // Butt Bounce { controller_map_t controller; controller["Mass"] = "Butt_Physics_Mass"; controller["Smoothing"] = "Butt_Physics_Smoothing"; controller["Gravity"] = "Butt_Physics_Gravity"; controller["Damping"] = "Butt_Physics_UpDown_Damping"; controller["Drag"] = "Butt_Physics_UpDown_Drag"; controller["MaxSpeed"] = "Butt_Physics_UpDown_Max_Velocity"; controller["Spring"] = "Butt_Physics_UpDown_Spring"; controller["Gain"] = "Butt_Physics_UpDown_Gain"; LLPhysicsMotion *motion = new LLPhysicsMotion("Butt_Physics_UpDown_Controller", "", "mPelvis", character, LLVector3(0,0,1), controller); if (!motion->initialize()) { llassert_always(FALSE); return STATUS_FAILURE; } addMotion(motion); } // Butt LeftRight { controller_map_t controller; controller["Mass"] = "Butt_Physics_Mass"; controller["Smoothing"] = "Butt_Physics_Smoothing"; controller["Gravity"] = "Butt_Physics_Gravity"; controller["Damping"] = "Butt_Physics_LeftRight_Damping"; controller["Drag"] = "Butt_Physics_LeftRight_Drag"; controller["MaxSpeed"] = "Butt_Physics_LeftRight_Max_Velocity"; controller["Spring"] = "Butt_Physics_LeftRight_Spring"; controller["Gain"] = "Butt_Physics_LeftRight_Gain"; LLPhysicsMotion *motion = new LLPhysicsMotion("Butt_Physics_LeftRight_Controller", "", "mPelvis", character, LLVector3(0,1,0), controller); if (!motion->initialize()) { llassert_always(FALSE); return STATUS_FAILURE; } addMotion(motion); } // Belly Bounce { controller_map_t controller; controller["Mass"] = "Belly_Physics_Mass"; controller["Smoothing"] = "Belly_Physics_Smoothing"; controller["Gravity"] = "Belly_Physics_Gravity"; controller["Damping"] = "Belly_Physics_UpDown_Damping"; controller["Drag"] = "Belly_Physics_UpDown_Drag"; controller["MaxSpeed"] = "Belly_Physics_UpDown_Max_Velocity"; controller["Spring"] = "Belly_Physics_UpDown_Spring"; controller["Gain"] = "Belly_Physics_UpDown_Gain"; LLPhysicsMotion *motion = new LLPhysicsMotion("Belly_Physics_UpDown_Controller", "", "mPelvis", character, LLVector3(0,0,-1), controller); if (!motion->initialize()) { llassert_always(FALSE); return STATUS_FAILURE; } addMotion(motion); } return STATUS_SUCCESS; } void LLPhysicsMotionController::addMotion(LLPhysicsMotion *motion) { addJointState(motion->getJointState()); mMotions.push_back(motion); } F32 LLPhysicsMotionController::getMinPixelArea() { return MIN_REQUIRED_PIXEL_AREA_BREAST_MOTION; } // Local space means "parameter space". F32 LLPhysicsMotion::toLocal(const LLVector3 &world) { LLJoint *joint = mJointState->getJoint(); const LLQuaternion rotation_world = joint->getWorldRotation(); LLVector3 dir_world = mMotionDirectionVec * rotation_world; dir_world.normalize(); return world * dir_world; } F32 LLPhysicsMotion::calculateVelocity_local(const F32 time_delta) { LLJoint *joint = mJointState->getJoint(); const LLVector3 position_world = joint->getWorldPosition(); const LLQuaternion rotation_world = joint->getWorldRotation(); const LLVector3 last_position_world = mPosition_world; const LLVector3 velocity_world = (position_world-last_position_world) / time_delta; const F32 velocity_local = toLocal(velocity_world); return velocity_local; } F32 LLPhysicsMotion::calculateAcceleration_local(const F32 velocity_local, const F32 time_delta) { const F32 smoothing = getParamValue("Smoothing"); const F32 acceleration_local = velocity_local - mVelocityJoint_local; const F32 smoothed_acceleration_local = acceleration_local * 1.0/smoothing + mAccelerationJoint_local * (smoothing-1.0)/smoothing; return smoothed_acceleration_local; } BOOL LLPhysicsMotionController::onUpdate(F32 time, U8* joint_mask) { // Skip if disabled globally. if (!gSavedSettings.getBOOL("AvatarPhysics")) { return TRUE; } BOOL update_visuals = FALSE; for (motion_vec_t::iterator iter = mMotions.begin(); iter != mMotions.end(); ++iter) { LLPhysicsMotion *motion = (*iter); update_visuals |= motion->onUpdate(time); } if (update_visuals) mCharacter->updateVisualParams(); return TRUE; } // Return TRUE if character has to update visual params. BOOL LLPhysicsMotion::onUpdate(F32 time) { // static FILE *mFileWrite = fopen("c:\\temp\\avatar_data.txt","w"); if (!mParamUser) return FALSE; if (!mLastTime) { mLastTime = time; return FALSE; } //////////////////////////////////////////////////////////////////////////////// // Get all parameters and settings // const F32 time_delta = time - mLastTime; if (time_delta > 3.0 || time_delta <= 0.01) { mLastTime = time; return FALSE; } // Higher LOD is better. This controls the granularity // and frequency of updates for the motions. const F32 lod_factor = LLVOAvatar::sPhysicsLODFactor; if (lod_factor == 0) { return TRUE; } LLJoint *joint = mJointState->getJoint(); const F32 behavior_mass = getParamValue("Mass"); const F32 behavior_gravity = getParamValue("Gravity"); const F32 behavior_spring = getParamValue("Spring"); const F32 behavior_gain = getParamValue("Gain"); const F32 behavior_damping = getParamValue("Damping"); const F32 behavior_drag = getParamValue("Drag"); const BOOL physics_test = gSavedSettings.getBOOL("AvatarPhysicsTest"); F32 behavior_maxspeed = getParamValue("MaxSpeed"); if (physics_test) behavior_maxspeed = 100.0f; if (behavior_maxspeed == 0) return FALSE; F32 position_current_local = llclamp(mPosition_local, 0.0f, 1.0f); // Normalized [0,1] range // Normalize the param position to be from [0,1]. // We have to use normalized values because there may be more than one driven param, // and each of these driven params may have its own range. // This means we'll do all our calculations in normalized [0,1] local coordinates. F32 position_user_local = mParamUser->getWeight(); position_user_local = (position_user_local - mParamUser->getMinWeight()) / (mParamUser->getMaxWeight() - mParamUser->getMinWeight()); // // End parameters and settings //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Calculate velocity and acceleration in parameter space. // const F32 velocity_joint_local = calculateVelocity_local(time_delta); const F32 acceleration_joint_local = calculateAcceleration_local(velocity_joint_local, time_delta); // // End velocity and acceleration //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Calculate the total force // // Spring force is a restoring force towards the original user-set breast position. // F = kx const F32 spring_length = position_current_local - position_user_local; const F32 force_spring = -spring_length * behavior_spring; // Acceleration is the force that comes from the change in velocity of the torso. // F = ma const F32 force_accel = behavior_gain * (acceleration_joint_local * behavior_mass); // Gravity always points downward in world space. // F = mg const LLVector3 gravity_world(0,0,1); const F32 force_gravity = behavior_gain * (toLocal(gravity_world) * behavior_gravity * behavior_mass); // Damping is a restoring force that opposes the current velocity. // F = -kv const F32 force_damping = -behavior_damping * mVelocity_local; // Drag is a force imparted by velocity (intuitively it is similar to wind resistance) // F = .5kv^2 const F32 force_drag = .5*behavior_drag*velocity_joint_local*velocity_joint_local*llsgn(velocity_joint_local); const F32 force_net = (force_accel + force_gravity + force_spring + force_damping + force_drag); // // End total force //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Calculate new params // // Calculate the new acceleration based on the net force. // a = F/m const F32 acceleration_new_local = force_net / behavior_mass; F32 velocity_new_local = mVelocity_local + acceleration_new_local; velocity_new_local = llclamp(velocity_new_local, -behavior_maxspeed, behavior_maxspeed); // Temporary debugging setting to cause all avatars to move, for profiling purposes. if (physics_test) { velocity_new_local = sin(time*4.0); } // Calculate the new parameters, or remain unchanged if max speed is 0. const F32 position_new_local = (behavior_maxspeed != 0) ? (position_current_local + velocity_new_local*time_delta) : position_user_local; // Zero out the velocity if the param is being pushed beyond its limits. if (position_new_local < 0 || position_new_local > 1) { velocity_new_local = 0; } const F32 position_new_local_clamped = llclamp(position_new_local, 0.0f, 1.0f); // Set the new param. // If a specific param has been declared, then set that one. // Otherwise, assume that the param is a driver param, and // set the params that it drives. if (mParamDriven) { setParamValue(mParamDriven,position_new_local_clamped); } else { LLDriverParam *driver_param = dynamic_cast(mParamUser); llassert_always(driver_param); if (driver_param) { for (LLDriverParam::entry_list_t::iterator iter = driver_param->mDriven.begin(); iter != driver_param->mDriven.end(); ++iter) { LLDrivenEntry &entry = (*iter); LLViewerVisualParam *driven_param = entry.mParam; setParamValue(driven_param,position_new_local_clamped); } } } // // End calculate new params //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Conditionally update the visual params // // Updating the visual params (i.e. what the user sees) is fairly expensive. // So only update if the params have changed enough, and also take into account // the graphics LOD settings. BOOL update_visuals = FALSE; // For non-self, if the avatar is small enough visually, then don't update. const F32 area_for_max_settings = 0.0; const F32 area_for_min_settings = 1400.0; const F32 area_for_this_setting = area_for_max_settings + (area_for_min_settings-area_for_max_settings)*(1.0-lod_factor); const F32 pixel_area = fsqrtf(mCharacter->getPixelArea()); const BOOL is_self = (dynamic_cast(mCharacter) != NULL); if ((pixel_area > area_for_this_setting) || is_self) { const F32 position_diff_local = llabs(mPositionLastUpdate_local-position_new_local_clamped); const F32 min_delta = (1.01f-lod_factor)*0.4f; if (llabs(position_diff_local) > min_delta) { update_visuals = TRUE; mPositionLastUpdate_local = position_new_local; } } // // End update visual params //////////////////////////////////////////////////////////////////////////////// mVelocityJoint_local = velocity_joint_local; mVelocity_local = velocity_new_local; mAccelerationJoint_local = acceleration_joint_local; mPosition_local = position_new_local; mPosition_world = joint->getWorldPosition(); mLastTime = time; /* // Write out debugging info into a spreadsheet. if (mFileWrite != NULL && is_self) { fprintf(mFileWrite,"%f\t%f\t%f \t\t%f \t\t%f\t%f\t%f\t \t\t%f\t%f\t%f\t%f\t%f \t\t%f\t%f\t%f\n", position_new_local, velocity_new_local, acceleration_new_local, time_delta, mPosition_world[0], mPosition_world[1], mPosition_world[2], force_net, force_spring, force_accel, force_damping, force_drag, spring_length, velocity_joint_local, acceleration_joint_local ); } */ return update_visuals; } // Range of new_value_local is assumed to be [0 , 1] normalized. void LLPhysicsMotion::setParamValue(LLViewerVisualParam *param, F32 new_value_normalized) { const F32 value_min_local = param->getMinWeight(); const F32 value_max_local = param->getMaxWeight(); const F32 new_value_local = value_min_local + (value_max_local-value_min_local) * new_value_normalized; mCharacter->setVisualParamWeight(param, new_value_local, FALSE); }