/** * @file llmeshrepository.cpp * @brief Mesh repository implementation. * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "apr_pools.h" #include "apr_dso.h" #include "llhttpstatuscodes.h" #include "llmeshrepository.h" #include "llagent.h" #include "llappviewer.h" #include "llbufferstream.h" #include "llcallbacklist.h" #include "llcurl.h" #include "lldatapacker.h" #include "llfloatermodelpreview.h" #include "llfloaterperms.h" #include "lleconomy.h" #include "llimagej2c.h" #include "llhost.h" #include "llnotificationsutil.h" #include "llsd.h" #include "llsdutil_math.h" #include "llsdserialize.h" #include "llthread.h" #include "llvfile.h" #include "llviewercontrol.h" #include "llviewerinventory.h" #include "llviewermenufile.h" #include "llviewerobjectlist.h" #include "llviewerregion.h" #include "llviewertexturelist.h" #include "llvolume.h" #include "llvolumemgr.h" #include "llvovolume.h" #include "llworld.h" #include "material_codes.h" #include "pipeline.h" #include "llinventorymodel.h" #include "llfoldertype.h" #include "llviewerparcelmgr.h" #include "lluploadfloaterobservers.h" #include "boost/lexical_cast.hpp" #ifndef LL_WINDOWS #include "netdb.h" #endif #include LLMeshRepository gMeshRepo; const U32 MAX_MESH_REQUESTS_PER_SECOND = 100; // Maximum mesh version to support. Three least significant digits are reserved for the minor version, // with major version changes indicating a format change that is not backwards compatible and should not // be parsed by viewers that don't specifically support that version. For example, if the integer "1" is // present, the version is 0.001. A viewer that can parse version 0.001 can also parse versions up to 0.999, // but not 1.0 (integer 1000). // See wiki at https://wiki.secondlife.com/wiki/Mesh/Mesh_Asset_Format const S32 MAX_MESH_VERSION = 999; U32 LLMeshRepository::sBytesReceived = 0; U32 LLMeshRepository::sHTTPRequestCount = 0; U32 LLMeshRepository::sHTTPRetryCount = 0; U32 LLMeshRepository::sLODProcessing = 0; U32 LLMeshRepository::sLODPending = 0; U32 LLMeshRepository::sCacheBytesRead = 0; U32 LLMeshRepository::sCacheBytesWritten = 0; U32 LLMeshRepository::sPeakKbps = 0; const U32 MAX_TEXTURE_UPLOAD_RETRIES = 5; static S32 dump_num = 0; std::string make_dump_name(std::string prefix, S32 num) { return prefix + boost::lexical_cast(num) + std::string(".xml"); } void dump_llsd_to_file(const LLSD& content, std::string filename); LLSD llsd_from_file(std::string filename); std::string header_lod[] = { "lowest_lod", "low_lod", "medium_lod", "high_lod" }; //get the number of bytes resident in memory for given volume U32 get_volume_memory_size(const LLVolume* volume) { U32 indices = 0; U32 vertices = 0; for (U32 i = 0; i < volume->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = volume->getVolumeFace(i); indices += face.mNumIndices; vertices += face.mNumVertices; } return indices*2+vertices*11+sizeof(LLVolume)+sizeof(LLVolumeFace)*volume->getNumVolumeFaces(); } void get_vertex_buffer_from_mesh(LLCDMeshData& mesh, LLModel::PhysicsMesh& res, F32 scale = 1.f) { res.mPositions.clear(); res.mNormals.clear(); const F32* v = mesh.mVertexBase; if (mesh.mIndexType == LLCDMeshData::INT_16) { U16* idx = (U16*) mesh.mIndexBase; for (S32 j = 0; j < mesh.mNumTriangles; ++j) { F32* mp0 = (F32*) ((U8*)v+idx[0]*mesh.mVertexStrideBytes); F32* mp1 = (F32*) ((U8*)v+idx[1]*mesh.mVertexStrideBytes); F32* mp2 = (F32*) ((U8*)v+idx[2]*mesh.mVertexStrideBytes); idx = (U16*) (((U8*)idx)+mesh.mIndexStrideBytes); LLVector3 v0(mp0); LLVector3 v1(mp1); LLVector3 v2(mp2); LLVector3 n = (v1-v0)%(v2-v0); n.normalize(); res.mPositions.push_back(v0*scale); res.mPositions.push_back(v1*scale); res.mPositions.push_back(v2*scale); res.mNormals.push_back(n); res.mNormals.push_back(n); res.mNormals.push_back(n); } } else { U32* idx = (U32*) mesh.mIndexBase; for (S32 j = 0; j < mesh.mNumTriangles; ++j) { F32* mp0 = (F32*) ((U8*)v+idx[0]*mesh.mVertexStrideBytes); F32* mp1 = (F32*) ((U8*)v+idx[1]*mesh.mVertexStrideBytes); F32* mp2 = (F32*) ((U8*)v+idx[2]*mesh.mVertexStrideBytes); idx = (U32*) (((U8*)idx)+mesh.mIndexStrideBytes); LLVector3 v0(mp0); LLVector3 v1(mp1); LLVector3 v2(mp2); LLVector3 n = (v1-v0)%(v2-v0); n.normalize(); res.mPositions.push_back(v0*scale); res.mPositions.push_back(v1*scale); res.mPositions.push_back(v2*scale); res.mNormals.push_back(n); res.mNormals.push_back(n); res.mNormals.push_back(n); } } } S32 LLMeshRepoThread::sActiveHeaderRequests = 0; S32 LLMeshRepoThread::sActiveLODRequests = 0; U32 LLMeshRepoThread::sMaxConcurrentRequests = 1; class LLMeshHeaderResponder : public LLCurl::Responder { public: LLVolumeParams mMeshParams; LLMeshHeaderResponder(const LLVolumeParams& mesh_params) : mMeshParams(mesh_params) { LLMeshRepoThread::sActiveHeaderRequests++; } ~LLMeshHeaderResponder() { LLMeshRepoThread::sActiveHeaderRequests--; } virtual void completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer); }; class LLMeshLODResponder : public LLCurl::Responder { public: LLVolumeParams mMeshParams; S32 mLOD; U32 mRequestedBytes; U32 mOffset; LLMeshLODResponder(const LLVolumeParams& mesh_params, S32 lod, U32 offset, U32 requested_bytes) : mMeshParams(mesh_params), mLOD(lod), mOffset(offset), mRequestedBytes(requested_bytes) { LLMeshRepoThread::sActiveLODRequests++; } ~LLMeshLODResponder() { LLMeshRepoThread::sActiveLODRequests--; } virtual void completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer); }; class LLMeshSkinInfoResponder : public LLCurl::Responder { public: LLUUID mMeshID; U32 mRequestedBytes; U32 mOffset; LLMeshSkinInfoResponder(const LLUUID& id, U32 offset, U32 size) : mMeshID(id), mRequestedBytes(size), mOffset(offset) { } virtual void completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer); }; class LLMeshDecompositionResponder : public LLCurl::Responder { public: LLUUID mMeshID; U32 mRequestedBytes; U32 mOffset; LLMeshDecompositionResponder(const LLUUID& id, U32 offset, U32 size) : mMeshID(id), mRequestedBytes(size), mOffset(offset) { } virtual void completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer); }; class LLMeshPhysicsShapeResponder : public LLCurl::Responder { public: LLUUID mMeshID; U32 mRequestedBytes; U32 mOffset; LLMeshPhysicsShapeResponder(const LLUUID& id, U32 offset, U32 size) : mMeshID(id), mRequestedBytes(size), mOffset(offset) { } virtual void completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer); }; void log_upload_error(S32 status, const LLSD& content, std::string stage, std::string model_name) { // Add notification popup. LLSD args; std::string message = content["error"]["message"]; std::string identifier = content["error"]["identifier"]; args["MESSAGE"] = message; args["IDENTIFIER"] = identifier; args["LABEL"] = model_name; gMeshRepo.uploadError(args); // Log details. llwarns << "stage: " << stage << " http status: " << status << llendl; if (content.has("error")) { const LLSD& err = content["error"]; llwarns << "err: " << err << llendl; llwarns << "mesh upload failed, stage '" << stage << "' error '" << err["error"].asString() << "', message '" << err["message"].asString() << "', id '" << err["identifier"].asString() << "'" << llendl; if (err.has("errors")) { S32 error_num = 0; const LLSD& err_list = err["errors"]; for (LLSD::array_const_iterator it = err_list.beginArray(); it != err_list.endArray(); ++it) { const LLSD& err_entry = *it; llwarns << "error[" << error_num << "]:" << llendl; for (LLSD::map_const_iterator map_it = err_entry.beginMap(); map_it != err_entry.endMap(); ++map_it) { llwarns << "\t" << map_it->first << ": " << map_it->second << llendl; } error_num++; } } } else { llwarns << "bad mesh, no error information available" << llendl; } } class LLWholeModelFeeResponder: public LLCurl::Responder { LLMeshUploadThread* mThread; LLSD mModelData; LLHandle mObserverHandle; public: LLWholeModelFeeResponder(LLMeshUploadThread* thread, LLSD& model_data, LLHandle observer_handle): mThread(thread), mModelData(model_data), mObserverHandle(observer_handle) { } virtual void completed(U32 status, const std::string& reason, const LLSD& content) { LLSD cc = content; if (gSavedSettings.getS32("MeshUploadFakeErrors")&1) { cc = llsd_from_file("fake_upload_error.xml"); } mThread->mPendingUploads--; dump_llsd_to_file(cc,make_dump_name("whole_model_fee_response_",dump_num)); LLWholeModelFeeObserver* observer = mObserverHandle.get(); if (isGoodStatus(status) && cc["state"].asString() == "upload") { mThread->mWholeModelUploadURL = cc["uploader"].asString(); if (observer) { cc["data"]["upload_price"] = cc["upload_price"]; observer->onModelPhysicsFeeReceived(cc["data"], mThread->mWholeModelUploadURL); } } else { llwarns << "fee request failed" << llendl; log_upload_error(status,cc,"fee",mModelData["name"]); mThread->mWholeModelUploadURL = ""; if (observer) { observer->setModelPhysicsFeeErrorStatus(status, reason); } } } }; class LLWholeModelUploadResponder: public LLCurl::Responder { LLMeshUploadThread* mThread; LLSD mModelData; LLHandle mObserverHandle; public: LLWholeModelUploadResponder(LLMeshUploadThread* thread, LLSD& model_data, LLHandle observer_handle): mThread(thread), mModelData(model_data), mObserverHandle(observer_handle) { } virtual void completed(U32 status, const std::string& reason, const LLSD& content) { LLSD cc = content; if (gSavedSettings.getS32("MeshUploadFakeErrors")&2) { cc = llsd_from_file("fake_upload_error.xml"); } mThread->mPendingUploads--; dump_llsd_to_file(cc,make_dump_name("whole_model_upload_response_",dump_num)); LLWholeModelUploadObserver* observer = mObserverHandle.get(); // requested "mesh" asset type isn't actually the type // of the resultant object, fix it up here. if (isGoodStatus(status) && cc["state"].asString() == "complete") { mModelData["asset_type"] = "object"; gMeshRepo.updateInventory(LLMeshRepository::inventory_data(mModelData,cc)); if (observer) { doOnIdleOneTime(boost::bind(&LLWholeModelUploadObserver::onModelUploadSuccess, observer)); } } else { llwarns << "upload failed" << llendl; std::string model_name = mModelData["name"].asString(); log_upload_error(status,cc,"upload",model_name); if (observer) { doOnIdleOneTime(boost::bind(&LLWholeModelUploadObserver::onModelUploadFailure, observer)); } } } }; LLMeshRepoThread::LLMeshRepoThread() : LLThread("mesh repo") { mWaiting = false; mMutex = new LLMutex(NULL); mHeaderMutex = new LLMutex(NULL); mSignal = new LLCondition(NULL); } LLMeshRepoThread::~LLMeshRepoThread() { delete mMutex; mMutex = NULL; delete mHeaderMutex; mHeaderMutex = NULL; delete mSignal; mSignal = NULL; } void LLMeshRepoThread::run() { mCurlRequest = new LLCurlRequest(); LLCDResult res = LLConvexDecomposition::initThread(); if (res != LLCD_OK) { llwarns << "convex decomposition unable to be loaded" << llendl; } while (!LLApp::isQuitting()) { mWaiting = true; mSignal->wait(); mWaiting = false; if (!LLApp::isQuitting()) { static U32 count = 0; static F32 last_hundred = gFrameTimeSeconds; if (gFrameTimeSeconds - last_hundred > 1.f) { //a second has gone by, clear count last_hundred = gFrameTimeSeconds; count = 0; } // NOTE: throttling intentionally favors LOD requests over header requests while (!mLODReqQ.empty() && count < MAX_MESH_REQUESTS_PER_SECOND && sActiveLODRequests < sMaxConcurrentRequests) { { mMutex->lock(); LODRequest req = mLODReqQ.front(); mLODReqQ.pop(); LLMeshRepository::sLODProcessing--; mMutex->unlock(); if (fetchMeshLOD(req.mMeshParams, req.mLOD)) { count++; } } } while (!mHeaderReqQ.empty() && count < MAX_MESH_REQUESTS_PER_SECOND && sActiveHeaderRequests < sMaxConcurrentRequests) { { mMutex->lock(); HeaderRequest req = mHeaderReqQ.front(); mHeaderReqQ.pop(); mMutex->unlock(); if (fetchMeshHeader(req.mMeshParams)) { count++; } } } { //mSkinRequests is protected by mSignal std::set incomplete; for (std::set::iterator iter = mSkinRequests.begin(); iter != mSkinRequests.end(); ++iter) { LLUUID mesh_id = *iter; if (!fetchMeshSkinInfo(mesh_id)) { incomplete.insert(mesh_id); } } mSkinRequests = incomplete; } { //mDecompositionRequests is protected by mSignal std::set incomplete; for (std::set::iterator iter = mDecompositionRequests.begin(); iter != mDecompositionRequests.end(); ++iter) { LLUUID mesh_id = *iter; if (!fetchMeshDecomposition(mesh_id)) { incomplete.insert(mesh_id); } } mDecompositionRequests = incomplete; } { //mPhysicsShapeRequests is protected by mSignal std::set incomplete; for (std::set::iterator iter = mPhysicsShapeRequests.begin(); iter != mPhysicsShapeRequests.end(); ++iter) { LLUUID mesh_id = *iter; if (!fetchMeshPhysicsShape(mesh_id)) { incomplete.insert(mesh_id); } } mPhysicsShapeRequests = incomplete; } mCurlRequest->process(); } } if (mSignal->isLocked()) { //make sure to let go of the mutex associated with the given signal before shutting down mSignal->unlock(); } res = LLConvexDecomposition::quitThread(); if (res != LLCD_OK) { llwarns << "convex decomposition unable to be quit" << llendl; } delete mCurlRequest; mCurlRequest = NULL; } void LLMeshRepoThread::loadMeshSkinInfo(const LLUUID& mesh_id) { //protected by mSignal, no locking needed here mSkinRequests.insert(mesh_id); } void LLMeshRepoThread::loadMeshDecomposition(const LLUUID& mesh_id) { //protected by mSignal, no locking needed here mDecompositionRequests.insert(mesh_id); } void LLMeshRepoThread::loadMeshPhysicsShape(const LLUUID& mesh_id) { //protected by mSignal, no locking needed here mPhysicsShapeRequests.insert(mesh_id); } void LLMeshRepoThread::loadMeshLOD(const LLVolumeParams& mesh_params, S32 lod) { //protected by mSignal, no locking needed here mesh_header_map::iterator iter = mMeshHeader.find(mesh_params.getSculptID()); if (iter != mMeshHeader.end()) { //if we have the header, request LOD byte range LODRequest req(mesh_params, lod); { LLMutexLock lock(mMutex); mLODReqQ.push(req); LLMeshRepository::sLODProcessing++; } } else { HeaderRequest req(mesh_params); pending_lod_map::iterator pending = mPendingLOD.find(mesh_params); if (pending != mPendingLOD.end()) { //append this lod request to existing header request pending->second.push_back(lod); llassert(pending->second.size() <= LLModel::NUM_LODS) } else { //if no header request is pending, fetch header LLMutexLock lock(mMutex); mHeaderReqQ.push(req); mPendingLOD[mesh_params].push_back(lod); } } } //static std::string LLMeshRepoThread::constructUrl(LLUUID mesh_id) { std::string http_url; if (gAgent.getRegion()) { http_url = gMeshRepo.mGetMeshCapability; } if (!http_url.empty()) { http_url += "/?mesh_id="; http_url += mesh_id.asString().c_str(); } else { llwarns << "Current region does not have GetMesh capability! Cannot load " << mesh_id << ".mesh" << llendl; } return http_url; } bool LLMeshRepoThread::fetchMeshSkinInfo(const LLUUID& mesh_id) { //protected by mMutex mHeaderMutex->lock(); if (mMeshHeader.find(mesh_id) == mMeshHeader.end()) { //we have no header info for this mesh, do nothing mHeaderMutex->unlock(); return false; } U32 header_size = mMeshHeaderSize[mesh_id]; if (header_size > 0) { S32 version = mMeshHeader[mesh_id]["version"].asInteger(); S32 offset = header_size + mMeshHeader[mesh_id]["skin"]["offset"].asInteger(); S32 size = mMeshHeader[mesh_id]["skin"]["size"].asInteger(); mHeaderMutex->unlock(); if (version <= MAX_MESH_VERSION && offset >= 0 && size > 0) { //check VFS for mesh skin info LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH); if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesRead += size; file.seek(offset); U8* buffer = new U8[size]; file.read(buffer, size); //make sure buffer isn't all 0's by checking the first 1KB (reserved block but not written) bool zero = true; for (S32 i = 0; i < llmin(size, 1024) && zero; ++i) { zero = buffer[i] > 0 ? false : true; } if (!zero) { //attempt to parse if (skinInfoReceived(mesh_id, buffer, size)) { delete[] buffer; return true; } } delete[] buffer; } //reading from VFS failed for whatever reason, fetch from sim std::vector headers; headers.push_back("Accept: application/octet-stream"); std::string http_url = constructUrl(mesh_id); if (!http_url.empty()) { LLMeshRepository::sHTTPRequestCount++; mCurlRequest->getByteRange(constructUrl(mesh_id), headers, offset, size, new LLMeshSkinInfoResponder(mesh_id, offset, size)); } } } else { mHeaderMutex->unlock(); } //early out was not hit, effectively fetched return true; } bool LLMeshRepoThread::fetchMeshDecomposition(const LLUUID& mesh_id) { //protected by mMutex mHeaderMutex->lock(); if (mMeshHeader.find(mesh_id) == mMeshHeader.end()) { //we have no header info for this mesh, do nothing mHeaderMutex->unlock(); return false; } U32 header_size = mMeshHeaderSize[mesh_id]; if (header_size > 0) { S32 version = mMeshHeader[mesh_id]["version"].asInteger(); S32 offset = header_size + mMeshHeader[mesh_id]["physics_convex"]["offset"].asInteger(); S32 size = mMeshHeader[mesh_id]["physics_convex"]["size"].asInteger(); mHeaderMutex->unlock(); if (version <= MAX_MESH_VERSION && offset >= 0 && size > 0) { //check VFS for mesh skin info LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH); if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesRead += size; file.seek(offset); U8* buffer = new U8[size]; file.read(buffer, size); //make sure buffer isn't all 0's by checking the first 1KB (reserved block but not written) bool zero = true; for (S32 i = 0; i < llmin(size, 1024) && zero; ++i) { zero = buffer[i] > 0 ? false : true; } if (!zero) { //attempt to parse if (decompositionReceived(mesh_id, buffer, size)) { delete[] buffer; return true; } } delete[] buffer; } //reading from VFS failed for whatever reason, fetch from sim std::vector headers; headers.push_back("Accept: application/octet-stream"); std::string http_url = constructUrl(mesh_id); if (!http_url.empty()) { LLMeshRepository::sHTTPRequestCount++; mCurlRequest->getByteRange(http_url, headers, offset, size, new LLMeshDecompositionResponder(mesh_id, offset, size)); } } } else { mHeaderMutex->unlock(); } //early out was not hit, effectively fetched return true; } bool LLMeshRepoThread::fetchMeshPhysicsShape(const LLUUID& mesh_id) { //protected by mMutex mHeaderMutex->lock(); if (mMeshHeader.find(mesh_id) == mMeshHeader.end()) { //we have no header info for this mesh, do nothing mHeaderMutex->unlock(); return false; } U32 header_size = mMeshHeaderSize[mesh_id]; if (header_size > 0) { S32 version = mMeshHeader[mesh_id]["version"].asInteger(); S32 offset = header_size + mMeshHeader[mesh_id]["physics_mesh"]["offset"].asInteger(); S32 size = mMeshHeader[mesh_id]["physics_mesh"]["size"].asInteger(); mHeaderMutex->unlock(); if (version <= MAX_MESH_VERSION && offset >= 0 && size > 0) { //check VFS for mesh physics shape info LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH); if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesRead += size; file.seek(offset); U8* buffer = new U8[size]; file.read(buffer, size); //make sure buffer isn't all 0's by checking the first 1KB (reserved block but not written) bool zero = true; for (S32 i = 0; i < llmin(size, 1024) && zero; ++i) { zero = buffer[i] > 0 ? false : true; } if (!zero) { //attempt to parse if (physicsShapeReceived(mesh_id, buffer, size)) { delete[] buffer; return true; } } delete[] buffer; } //reading from VFS failed for whatever reason, fetch from sim std::vector headers; headers.push_back("Accept: application/octet-stream"); std::string http_url = constructUrl(mesh_id); if (!http_url.empty()) { LLMeshRepository::sHTTPRequestCount++; mCurlRequest->getByteRange(http_url, headers, offset, size, new LLMeshPhysicsShapeResponder(mesh_id, offset, size)); } } else { //no physics shape whatsoever, report back NULL physicsShapeReceived(mesh_id, NULL, 0); } } else { mHeaderMutex->unlock(); } //early out was not hit, effectively fetched return true; } bool LLMeshRepoThread::fetchMeshHeader(const LLVolumeParams& mesh_params) { bool retval = false; { //look for mesh in asset in vfs LLVFile file(gVFS, mesh_params.getSculptID(), LLAssetType::AT_MESH); S32 size = file.getSize(); if (size > 0) { //NOTE -- if the header size is ever more than 4KB, this will break U8 buffer[4096]; S32 bytes = llmin(size, 4096); LLMeshRepository::sCacheBytesRead += bytes; file.read(buffer, bytes); if (headerReceived(mesh_params, buffer, bytes)) { //did not do an HTTP request, return false return false; } } } //either cache entry doesn't exist or is corrupt, request header from simulator std::vector headers; headers.push_back("Accept: application/octet-stream"); std::string http_url = constructUrl(mesh_params.getSculptID()); if (!http_url.empty()) { retval = true; //grab first 4KB if we're going to bother with a fetch. Cache will prevent future fetches if a full mesh fits //within the first 4KB //NOTE -- this will break of headers ever exceed 4KB LLMeshRepository::sHTTPRequestCount++; mCurlRequest->getByteRange(http_url, headers, 0, 4096, new LLMeshHeaderResponder(mesh_params)); } return retval; } bool LLMeshRepoThread::fetchMeshLOD(const LLVolumeParams& mesh_params, S32 lod) { //protected by mMutex mHeaderMutex->lock(); bool retval = false; LLUUID mesh_id = mesh_params.getSculptID(); U32 header_size = mMeshHeaderSize[mesh_id]; if (header_size > 0) { S32 version = mMeshHeader[mesh_id]["version"].asInteger(); S32 offset = header_size + mMeshHeader[mesh_id][header_lod[lod]]["offset"].asInteger(); S32 size = mMeshHeader[mesh_id][header_lod[lod]]["size"].asInteger(); mHeaderMutex->unlock(); if (version <= MAX_MESH_VERSION && offset >= 0 && size > 0) { //check VFS for mesh asset LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH); if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesRead += size; file.seek(offset); U8* buffer = new U8[size]; file.read(buffer, size); //make sure buffer isn't all 0's by checking the first 1KB (reserved block but not written) bool zero = true; for (S32 i = 0; i < llmin(size, 1024) && zero; ++i) { zero = buffer[i] > 0 ? false : true; } if (!zero) { //attempt to parse if (lodReceived(mesh_params, lod, buffer, size)) { delete[] buffer; return false; } } delete[] buffer; } //reading from VFS failed for whatever reason, fetch from sim std::vector headers; headers.push_back("Accept: application/octet-stream"); std::string http_url = constructUrl(mesh_id); if (!http_url.empty()) { retval = true; LLMeshRepository::sHTTPRequestCount++; mCurlRequest->getByteRange(constructUrl(mesh_id), headers, offset, size, new LLMeshLODResponder(mesh_params, lod, offset, size)); } else { mUnavailableQ.push(LODRequest(mesh_params, lod)); } } else { mUnavailableQ.push(LODRequest(mesh_params, lod)); } } else { mHeaderMutex->unlock(); } return retval; } bool LLMeshRepoThread::headerReceived(const LLVolumeParams& mesh_params, U8* data, S32 data_size) { LLSD header; U32 header_size = 0; if (data_size > 0) { std::string res_str((char*) data, data_size); std::string deprecated_header(""); if (res_str.substr(0, deprecated_header.size()) == deprecated_header) { res_str = res_str.substr(deprecated_header.size()+1, data_size); header_size = deprecated_header.size()+1; } data_size = res_str.size(); std::istringstream stream(res_str); if (!LLSDSerialize::fromBinary(header, stream, data_size)) { llwarns << "Mesh header parse error. Not a valid mesh asset!" << llendl; return false; } header_size += stream.tellg(); } else { llinfos << "Marking header as non-existent, will not retry." << llendl; header["404"] = 1; } { LLUUID mesh_id = mesh_params.getSculptID(); mHeaderMutex->lock(); mMeshHeaderSize[mesh_id] = header_size; mMeshHeader[mesh_id] = header; mHeaderMutex->unlock(); //check for pending requests pending_lod_map::iterator iter = mPendingLOD.find(mesh_params); if (iter != mPendingLOD.end()) { LLMutexLock lock(mMutex); for (U32 i = 0; i < iter->second.size(); ++i) { LODRequest req(mesh_params, iter->second[i]); mLODReqQ.push(req); LLMeshRepository::sLODProcessing++; } } mPendingLOD.erase(iter); } return true; } bool LLMeshRepoThread::lodReceived(const LLVolumeParams& mesh_params, S32 lod, U8* data, S32 data_size) { LLVolume* volume = new LLVolume(mesh_params, LLVolumeLODGroup::getVolumeScaleFromDetail(lod)); std::string mesh_string((char*) data, data_size); std::istringstream stream(mesh_string); if (volume->unpackVolumeFaces(stream, data_size)) { LoadedMesh mesh(volume, mesh_params, lod); if (volume->getNumFaces() > 0) { LLMutexLock lock(mMutex); mLoadedQ.push(mesh); return true; } } return false; } bool LLMeshRepoThread::skinInfoReceived(const LLUUID& mesh_id, U8* data, S32 data_size) { LLSD skin; if (data_size > 0) { std::string res_str((char*) data, data_size); std::istringstream stream(res_str); if (!unzip_llsd(skin, stream, data_size)) { llwarns << "Mesh skin info parse error. Not a valid mesh asset!" << llendl; return false; } } { LLMeshSkinInfo info(skin); info.mMeshID = mesh_id; //llinfos<<"info pelvis offset"< 0) { std::string res_str((char*) data, data_size); std::istringstream stream(res_str); if (!unzip_llsd(decomp, stream, data_size)) { llwarns << "Mesh decomposition parse error. Not a valid mesh asset!" << llendl; return false; } } { LLModel::Decomposition* d = new LLModel::Decomposition(decomp); d->mMeshID = mesh_id; mDecompositionQ.push(d); } return true; } bool LLMeshRepoThread::physicsShapeReceived(const LLUUID& mesh_id, U8* data, S32 data_size) { LLSD physics_shape; LLModel::Decomposition* d = new LLModel::Decomposition(); d->mMeshID = mesh_id; if (data == NULL) { //no data, no physics shape exists d->mPhysicsShapeMesh.clear(); } else { LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE); volume_params.setSculptID(mesh_id, LL_SCULPT_TYPE_MESH); LLPointer volume = new LLVolume(volume_params,0); std::string mesh_string((char*) data, data_size); std::istringstream stream(mesh_string); if (volume->unpackVolumeFaces(stream, data_size)) { //load volume faces into decomposition buffer S32 vertex_count = 0; S32 index_count = 0; for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = volume->getVolumeFace(i); vertex_count += face.mNumVertices; index_count += face.mNumIndices; } d->mPhysicsShapeMesh.clear(); std::vector& pos = d->mPhysicsShapeMesh.mPositions; std::vector& norm = d->mPhysicsShapeMesh.mNormals; for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = volume->getVolumeFace(i); for (S32 i = 0; i < face.mNumIndices; ++i) { U16 idx = face.mIndices[i]; pos.push_back(LLVector3(face.mPositions[idx].getF32ptr())); norm.push_back(LLVector3(face.mNormals[idx].getF32ptr())); } } } } mDecompositionQ.push(d); return true; } LLMeshUploadThread::LLMeshUploadThread(LLMeshUploadThread::instance_list& data, LLVector3& scale, bool upload_textures, bool upload_skin, bool upload_joints, std::string upload_url, bool do_upload, LLHandle fee_observer, LLHandle upload_observer) : LLThread("mesh upload"), mDiscarded(FALSE), mDoUpload(do_upload), mWholeModelUploadURL(upload_url), mFeeObserverHandle(fee_observer), mUploadObserverHandle(upload_observer) { mInstanceList = data; mUploadTextures = upload_textures; mUploadSkin = upload_skin; mUploadJoints = upload_joints; mMutex = new LLMutex(NULL); mCurlRequest = NULL; mPendingUploads = 0; mFinished = false; mOrigin = gAgent.getPositionAgent(); mHost = gAgent.getRegionHost(); mWholeModelFeeCapability = gAgent.getRegion()->getCapability("NewFileAgentInventory"); mOrigin += gAgent.getAtAxis() * scale.magVec(); mMeshUploadTimeOut = gSavedSettings.getS32("MeshUploadTimeOut") ; } LLMeshUploadThread::~LLMeshUploadThread() { } LLMeshUploadThread::DecompRequest::DecompRequest(LLModel* mdl, LLModel* base_model, LLMeshUploadThread* thread) { mStage = "single_hull"; mModel = mdl; mDecompID = &mdl->mDecompID; mBaseModel = base_model; mThread = thread; //copy out positions and indices assignData(mdl) ; mThread->mFinalDecomp = this; mThread->mPhysicsComplete = false; } void LLMeshUploadThread::DecompRequest::completed() { if (mThread->mFinalDecomp == this) { mThread->mPhysicsComplete = true; } llassert(mHull.size() == 1); mThread->mHullMap[mBaseModel] = mHull[0]; } //called in the main thread. void LLMeshUploadThread::preStart() { //build map of LLModel refs to instances for callbacks for (instance_list::iterator iter = mInstanceList.begin(); iter != mInstanceList.end(); ++iter) { mInstance[iter->mModel].push_back(*iter); } } void LLMeshUploadThread::discard() { LLMutexLock lock(mMutex) ; mDiscarded = TRUE ; } BOOL LLMeshUploadThread::isDiscarded() { LLMutexLock lock(mMutex) ; return mDiscarded ; } void LLMeshUploadThread::run() { if (mDoUpload) { doWholeModelUpload(); } else { requestWholeModelFee(); } } void dump_llsd_to_file(const LLSD& content, std::string filename) { if (gSavedSettings.getBOOL("MeshUploadLogXML")) { std::ofstream of(filename.c_str()); LLSDSerialize::toPrettyXML(content,of); } } LLSD llsd_from_file(std::string filename) { std::ifstream ifs(filename.c_str()); LLSD result; LLSDSerialize::fromXML(result,ifs); return result; } void LLMeshUploadThread::wholeModelToLLSD(LLSD& dest, bool include_textures) { LLSD result; LLSD res; result["folder_id"] = gInventory.findCategoryUUIDForType(LLFolderType::FT_OBJECT); result["texture_folder_id"] = gInventory.findCategoryUUIDForType(LLFolderType::FT_TEXTURE); result["asset_type"] = "mesh"; result["inventory_type"] = "object"; result["description"] = "(No Description)"; result["next_owner_mask"] = LLSD::Integer(LLFloaterPerms::getNextOwnerPerms()); result["group_mask"] = LLSD::Integer(LLFloaterPerms::getGroupPerms()); result["everyone_mask"] = LLSD::Integer(LLFloaterPerms::getEveryonePerms()); res["mesh_list"] = LLSD::emptyArray(); res["texture_list"] = LLSD::emptyArray(); res["instance_list"] = LLSD::emptyArray(); S32 mesh_num = 0; S32 texture_num = 0; std::set textures; std::map texture_index; std::map mesh_index; std::string model_name; std::string model_metric; S32 instance_num = 0; for (instance_map::iterator iter = mInstance.begin(); iter != mInstance.end(); ++iter) { LLMeshUploadData data; data.mBaseModel = iter->first; LLModelInstance& first_instance = *(iter->second.begin()); for (S32 i = 0; i < 5; i++) { data.mModel[i] = first_instance.mLOD[i]; } if (mesh_index.find(data.mBaseModel) == mesh_index.end()) { // Have not seen this model before - create a new mesh_list entry for it. if (model_name.empty()) { model_name = data.mBaseModel->getName(); } if (model_metric.empty()) { model_metric = data.mBaseModel->getMetric(); } std::stringstream ostr; LLModel::Decomposition& decomp = data.mModel[LLModel::LOD_PHYSICS].notNull() ? data.mModel[LLModel::LOD_PHYSICS]->mPhysics : data.mBaseModel->mPhysics; decomp.mBaseHull = mHullMap[data.mBaseModel]; LLSD mesh_header = LLModel::writeModel( ostr, data.mModel[LLModel::LOD_PHYSICS], data.mModel[LLModel::LOD_HIGH], data.mModel[LLModel::LOD_MEDIUM], data.mModel[LLModel::LOD_LOW], data.mModel[LLModel::LOD_IMPOSTOR], decomp, mUploadSkin, mUploadJoints); data.mAssetData = ostr.str(); std::string str = ostr.str(); res["mesh_list"][mesh_num] = LLSD::Binary(str.begin(),str.end()); mesh_index[data.mBaseModel] = mesh_num; mesh_num++; } // For all instances that use this model for (instance_list::iterator instance_iter = iter->second.begin(); instance_iter != iter->second.end(); ++instance_iter) { LLModelInstance& instance = *instance_iter; LLSD instance_entry; for (S32 i = 0; i < 5; i++) { data.mModel[i] = instance.mLOD[i]; } LLVector3 pos, scale; LLQuaternion rot; LLMatrix4 transformation = instance.mTransform; decomposeMeshMatrix(transformation,pos,rot,scale); instance_entry["position"] = ll_sd_from_vector3(pos); instance_entry["rotation"] = ll_sd_from_quaternion(rot); instance_entry["scale"] = ll_sd_from_vector3(scale); instance_entry["material"] = LL_MCODE_WOOD; instance_entry["physics_shape_type"] = (U8)(LLViewerObject::PHYSICS_SHAPE_CONVEX_HULL); instance_entry["mesh"] = mesh_index[data.mBaseModel]; instance_entry["face_list"] = LLSD::emptyArray(); S32 end = llmin((S32)data.mBaseModel->mMaterialList.size(), data.mBaseModel->getNumVolumeFaces()) ; for (S32 face_num = 0; face_num < end; face_num++) { LLImportMaterial& material = instance.mMaterial[data.mBaseModel->mMaterialList[face_num]]; LLSD face_entry = LLSD::emptyMap(); LLViewerFetchedTexture *texture = material.mDiffuseMap.get(); if ((texture != NULL) && (textures.find(texture) == textures.end())) { textures.insert(texture); } std::stringstream texture_str; if (texture != NULL && include_textures && mUploadTextures) { if(texture->hasSavedRawImage()) { LLPointer upload_file = LLViewerTextureList::convertToUploadFile(texture->getSavedRawImage()); texture_str.write((const char*) upload_file->getData(), upload_file->getDataSize()); } } if (texture != NULL && mUploadTextures && texture_index.find(texture) == texture_index.end()) { texture_index[texture] = texture_num; std::string str = texture_str.str(); res["texture_list"][texture_num] = LLSD::Binary(str.begin(),str.end()); texture_num++; } // Subset of TextureEntry fields. if (texture != NULL && mUploadTextures) { face_entry["image"] = texture_index[texture]; face_entry["scales"] = 1.0; face_entry["scalet"] = 1.0; face_entry["offsets"] = 0.0; face_entry["offsett"] = 0.0; face_entry["imagerot"] = 0.0; } face_entry["diffuse_color"] = ll_sd_from_color4(material.mDiffuseColor); face_entry["fullbright"] = material.mFullbright; instance_entry["face_list"][face_num] = face_entry; } res["instance_list"][instance_num] = instance_entry; instance_num++; } } if (model_name.empty()) model_name = "mesh model"; result["name"] = model_name; if (model_metric.empty()) model_metric = "MUT_Unspecified"; res["metric"] = model_metric; result["asset_resources"] = res; dump_llsd_to_file(result,make_dump_name("whole_model_",dump_num)); dest = result; } void LLMeshUploadThread::generateHulls() { bool has_valid_requests = false ; for (instance_map::iterator iter = mInstance.begin(); iter != mInstance.end(); ++iter) { LLMeshUploadData data; data.mBaseModel = iter->first; LLModelInstance& instance = *(iter->second.begin()); for (S32 i = 0; i < 5; i++) { data.mModel[i] = instance.mLOD[i]; } //queue up models for hull generation LLModel* physics = NULL; if (data.mModel[LLModel::LOD_PHYSICS].notNull()) { physics = data.mModel[LLModel::LOD_PHYSICS]; } else if (data.mModel[LLModel::LOD_LOW].notNull()) { physics = data.mModel[LLModel::LOD_LOW]; } else if (data.mModel[LLModel::LOD_MEDIUM].notNull()) { physics = data.mModel[LLModel::LOD_MEDIUM]; } else { physics = data.mModel[LLModel::LOD_HIGH]; } llassert(physics != NULL); DecompRequest* request = new DecompRequest(physics, data.mBaseModel, this); if(request->isValid()) { gMeshRepo.mDecompThread->submitRequest(request); has_valid_requests = true ; } } if(has_valid_requests) { while (!mPhysicsComplete) { apr_sleep(100); } } } void LLMeshUploadThread::doWholeModelUpload() { mCurlRequest = new LLCurlRequest(); if (mWholeModelUploadURL.empty()) { llinfos << "unable to upload, fee request failed" << llendl; } else { generateHulls(); LLSD full_model_data; wholeModelToLLSD(full_model_data, true); LLSD body = full_model_data["asset_resources"]; dump_llsd_to_file(body,make_dump_name("whole_model_body_",dump_num)); LLCurlRequest::headers_t headers; mCurlRequest->post(mWholeModelUploadURL, headers, body, new LLWholeModelUploadResponder(this, full_model_data, mUploadObserverHandle), mMeshUploadTimeOut); do { mCurlRequest->process(); //sleep for 10ms to prevent eating a whole core apr_sleep(10000); } while (mCurlRequest->getQueued() > 0); } delete mCurlRequest; mCurlRequest = NULL; // Currently a no-op. mFinished = true; } void LLMeshUploadThread::requestWholeModelFee() { dump_num++; mCurlRequest = new LLCurlRequest(); generateHulls(); LLSD model_data; wholeModelToLLSD(model_data,false); dump_llsd_to_file(model_data,make_dump_name("whole_model_fee_request_",dump_num)); mPendingUploads++; LLCurlRequest::headers_t headers; mCurlRequest->post(mWholeModelFeeCapability, headers, model_data, new LLWholeModelFeeResponder(this,model_data, mFeeObserverHandle), mMeshUploadTimeOut); do { mCurlRequest->process(); //sleep for 10ms to prevent eating a whole core apr_sleep(10000); } while (mCurlRequest->getQueued() > 0); delete mCurlRequest; mCurlRequest = NULL; // Currently a no-op. mFinished = true; } void LLMeshRepoThread::notifyLoadedMeshes() { while (!mLoadedQ.empty()) { mMutex->lock(); LoadedMesh mesh = mLoadedQ.front(); mLoadedQ.pop(); mMutex->unlock(); if (mesh.mVolume && mesh.mVolume->getNumVolumeFaces() > 0) { gMeshRepo.notifyMeshLoaded(mesh.mMeshParams, mesh.mVolume); } else { gMeshRepo.notifyMeshUnavailable(mesh.mMeshParams, LLVolumeLODGroup::getVolumeDetailFromScale(mesh.mVolume->getDetail())); } } while (!mUnavailableQ.empty()) { mMutex->lock(); LODRequest req = mUnavailableQ.front(); mUnavailableQ.pop(); mMutex->unlock(); gMeshRepo.notifyMeshUnavailable(req.mMeshParams, req.mLOD); } while (!mSkinInfoQ.empty()) { gMeshRepo.notifySkinInfoReceived(mSkinInfoQ.front()); mSkinInfoQ.pop(); } while (!mDecompositionQ.empty()) { gMeshRepo.notifyDecompositionReceived(mDecompositionQ.front()); mDecompositionQ.pop(); } } S32 LLMeshRepoThread::getActualMeshLOD(const LLVolumeParams& mesh_params, S32 lod) { //only ever called from main thread LLMutexLock lock(mHeaderMutex); mesh_header_map::iterator iter = mMeshHeader.find(mesh_params.getSculptID()); if (iter != mMeshHeader.end()) { LLSD& header = iter->second; return LLMeshRepository::getActualMeshLOD(header, lod); } return lod; } //static S32 LLMeshRepository::getActualMeshLOD(LLSD& header, S32 lod) { lod = llclamp(lod, 0, 3); S32 version = header["version"]; if (header.has("404") || version > MAX_MESH_VERSION) { return -1; } if (header[header_lod[lod]]["size"].asInteger() > 0) { return lod; } //search down to find the next available lower lod for (S32 i = lod-1; i >= 0; --i) { if (header[header_lod[i]]["size"].asInteger() > 0) { return i; } } //search up to find then ext available higher lod for (S32 i = lod+1; i < 4; ++i) { if (header[header_lod[i]]["size"].asInteger() > 0) { return i; } } //header exists and no good lod found, treat as 404 header["404"] = 1; return -1; } void LLMeshRepository::cacheOutgoingMesh(LLMeshUploadData& data, LLSD& header) { mThread->mMeshHeader[data.mUUID] = header; // we cache the mesh for default parameters LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE); volume_params.setSculptID(data.mUUID, LL_SCULPT_TYPE_MESH); for (U32 i = 0; i < 4; i++) { if (data.mModel[i].notNull()) { LLPointer volume = new LLVolume(volume_params, LLVolumeLODGroup::getVolumeScaleFromDetail(i)); volume->copyVolumeFaces(data.mModel[i]); volume->setMeshAssetLoaded(TRUE); } } } void LLMeshLODResponder::completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer) { S32 data_size = buffer->countAfter(channels.in(), NULL); if (status < 200 || status > 400) { llwarns << status << ": " << reason << llendl; } if (data_size < mRequestedBytes) { if (status == 499 || status == 503) { //timeout or service unavailable, try again LLMeshRepository::sHTTPRetryCount++; gMeshRepo.mThread->loadMeshLOD(mMeshParams, mLOD); } else { llwarns << "Unhandled status " << status << llendl; } return; } LLMeshRepository::sBytesReceived += mRequestedBytes; U8* data = NULL; if (data_size > 0) { data = new U8[data_size]; buffer->readAfter(channels.in(), NULL, data, data_size); } if (gMeshRepo.mThread->lodReceived(mMeshParams, mLOD, data, data_size)) { //good fetch from sim, write to VFS for caching LLVFile file(gVFS, mMeshParams.getSculptID(), LLAssetType::AT_MESH, LLVFile::WRITE); S32 offset = mOffset; S32 size = mRequestedBytes; if (file.getSize() >= offset+size) { file.seek(offset); file.write(data, size); LLMeshRepository::sCacheBytesWritten += size; } } delete [] data; } void LLMeshSkinInfoResponder::completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer) { S32 data_size = buffer->countAfter(channels.in(), NULL); if (status < 200 || status > 400) { llwarns << status << ": " << reason << llendl; } if (data_size < mRequestedBytes) { if (status == 499 || status == 503) { //timeout or service unavailable, try again LLMeshRepository::sHTTPRetryCount++; gMeshRepo.mThread->loadMeshSkinInfo(mMeshID); } else { llwarns << "Unhandled status " << status << llendl; } return; } LLMeshRepository::sBytesReceived += mRequestedBytes; U8* data = NULL; if (data_size > 0) { data = new U8[data_size]; buffer->readAfter(channels.in(), NULL, data, data_size); } if (gMeshRepo.mThread->skinInfoReceived(mMeshID, data, data_size)) { //good fetch from sim, write to VFS for caching LLVFile file(gVFS, mMeshID, LLAssetType::AT_MESH, LLVFile::WRITE); S32 offset = mOffset; S32 size = mRequestedBytes; if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesWritten += size; file.seek(offset); file.write(data, size); } } delete [] data; } void LLMeshDecompositionResponder::completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer) { S32 data_size = buffer->countAfter(channels.in(), NULL); if (status < 200 || status > 400) { llwarns << status << ": " << reason << llendl; } if (data_size < mRequestedBytes) { if (status == 499 || status == 503) { //timeout or service unavailable, try again LLMeshRepository::sHTTPRetryCount++; gMeshRepo.mThread->loadMeshDecomposition(mMeshID); } else { llwarns << "Unhandled status " << status << llendl; } return; } LLMeshRepository::sBytesReceived += mRequestedBytes; U8* data = NULL; if (data_size > 0) { data = new U8[data_size]; buffer->readAfter(channels.in(), NULL, data, data_size); } if (gMeshRepo.mThread->decompositionReceived(mMeshID, data, data_size)) { //good fetch from sim, write to VFS for caching LLVFile file(gVFS, mMeshID, LLAssetType::AT_MESH, LLVFile::WRITE); S32 offset = mOffset; S32 size = mRequestedBytes; if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesWritten += size; file.seek(offset); file.write(data, size); } } delete [] data; } void LLMeshPhysicsShapeResponder::completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer) { S32 data_size = buffer->countAfter(channels.in(), NULL); if (status < 200 || status > 400) { llwarns << status << ": " << reason << llendl; } if (data_size < mRequestedBytes) { if (status == 499 || status == 503) { //timeout or service unavailable, try again LLMeshRepository::sHTTPRetryCount++; gMeshRepo.mThread->loadMeshPhysicsShape(mMeshID); } else { llwarns << "Unhandled status " << status << llendl; } return; } LLMeshRepository::sBytesReceived += mRequestedBytes; U8* data = NULL; if (data_size > 0) { data = new U8[data_size]; buffer->readAfter(channels.in(), NULL, data, data_size); } if (gMeshRepo.mThread->physicsShapeReceived(mMeshID, data, data_size)) { //good fetch from sim, write to VFS for caching LLVFile file(gVFS, mMeshID, LLAssetType::AT_MESH, LLVFile::WRITE); S32 offset = mOffset; S32 size = mRequestedBytes; if (file.getSize() >= offset+size) { LLMeshRepository::sCacheBytesWritten += size; file.seek(offset); file.write(data, size); } } delete [] data; } void LLMeshHeaderResponder::completedRaw(U32 status, const std::string& reason, const LLChannelDescriptors& channels, const LLIOPipe::buffer_ptr_t& buffer) { if (status < 200 || status > 400) { //llwarns // << "Header responder failed with status: " // << status << ": " << reason << llendl; // 503 (service unavailable) or 499 (timeout) // can be due to server load and can be retried // TODO*: Add maximum retry logic, exponential backoff // and (somewhat more optional than the others) retries // again after some set period of time if (status == 503 || status == 499) { //retry LLMeshRepository::sHTTPRetryCount++; LLMeshRepoThread::HeaderRequest req(mMeshParams); LLMutexLock lock(gMeshRepo.mThread->mMutex); gMeshRepo.mThread->mHeaderReqQ.push(req); return; } } S32 data_size = buffer->countAfter(channels.in(), NULL); U8* data = NULL; if (data_size > 0) { data = new U8[data_size]; buffer->readAfter(channels.in(), NULL, data, data_size); } LLMeshRepository::sBytesReceived += llmin(data_size, 4096); if (!gMeshRepo.mThread->headerReceived(mMeshParams, data, data_size)) { llwarns << "Unable to parse mesh header: " << status << ": " << reason << llendl; } else if (data && data_size > 0) { //header was successfully retrieved from sim, cache in vfs LLUUID mesh_id = mMeshParams.getSculptID(); LLSD header = gMeshRepo.mThread->mMeshHeader[mesh_id]; S32 version = header["version"].asInteger(); if (version <= MAX_MESH_VERSION) { std::stringstream str; S32 lod_bytes = 0; for (U32 i = 0; i < LLModel::LOD_PHYSICS; ++i) { //figure out how many bytes we'll need to reserve in the file std::string lod_name = header_lod[i]; lod_bytes = llmax(lod_bytes, header[lod_name]["offset"].asInteger()+header[lod_name]["size"].asInteger()); } //just in case skin info or decomposition is at the end of the file (which it shouldn't be) lod_bytes = llmax(lod_bytes, header["skin"]["offset"].asInteger() + header["skin"]["size"].asInteger()); lod_bytes = llmax(lod_bytes, header["physics_convex"]["offset"].asInteger() + header["physics_convex"]["size"].asInteger()); S32 header_bytes = (S32) gMeshRepo.mThread->mMeshHeaderSize[mesh_id]; S32 bytes = lod_bytes + header_bytes; //it's possible for the remote asset to have more data than is needed for the local cache //only allocate as much space in the VFS as is needed for the local cache data_size = llmin(data_size, bytes); LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH, LLVFile::WRITE); if (file.getMaxSize() >= bytes || file.setMaxSize(bytes)) { LLMeshRepository::sCacheBytesWritten += data_size; file.write((const U8*) data, data_size); //zero out the rest of the file U8 block[4096]; memset(block, 0, 4096); while (bytes-file.tell() > 4096) { file.write(block, 4096); } S32 remaining = bytes-file.tell(); if (remaining > 0) { file.write(block, remaining); } } } } delete [] data; } LLMeshRepository::LLMeshRepository() : mMeshMutex(NULL), mMeshThreadCount(0), mThread(NULL) { } void LLMeshRepository::init() { mMeshMutex = new LLMutex(NULL); LLConvexDecomposition::getInstance()->initSystem(); mDecompThread = new LLPhysicsDecomp(); mDecompThread->start(); while (!mDecompThread->mInited) { //wait for physics decomp thread to init apr_sleep(100); } mThread = new LLMeshRepoThread(); mThread->start(); } void LLMeshRepository::shutdown() { llinfos << "Shutting down mesh repository." << llendl; for (U32 i = 0; i < mUploads.size(); ++i) { llinfos << "Discard the pending mesh uploads " << llendl; mUploads[i]->discard() ; //discard the uploading requests. } mThread->mSignal->signal(); while (!mThread->isStopped()) { apr_sleep(10); } delete mThread; mThread = NULL; for (U32 i = 0; i < mUploads.size(); ++i) { llinfos << "Waiting for pending mesh upload " << i << "/" << mUploads.size() << llendl; while (!mUploads[i]->isStopped()) { apr_sleep(10); } delete mUploads[i]; } mUploads.clear(); delete mMeshMutex; mMeshMutex = NULL; llinfos << "Shutting down decomposition system." << llendl; if (mDecompThread) { mDecompThread->shutdown(); delete mDecompThread; mDecompThread = NULL; } LLConvexDecomposition::quitSystem(); } //called in the main thread. S32 LLMeshRepository::update() { if(mUploadWaitList.empty()) { return 0 ; } S32 size = mUploadWaitList.size() ; for (S32 i = 0; i < size; ++i) { mUploads.push_back(mUploadWaitList[i]); mUploadWaitList[i]->preStart() ; mUploadWaitList[i]->start() ; } mUploadWaitList.clear() ; return size ; } S32 LLMeshRepository::loadMesh(LLVOVolume* vobj, const LLVolumeParams& mesh_params, S32 detail, S32 last_lod) { if (detail < 0 || detail > 4) { return detail; } { LLMutexLock lock(mMeshMutex); //add volume to list of loading meshes mesh_load_map::iterator iter = mLoadingMeshes[detail].find(mesh_params); if (iter != mLoadingMeshes[detail].end()) { //request pending for this mesh, append volume id to list iter->second.insert(vobj->getID()); } else { //first request for this mesh mLoadingMeshes[detail][mesh_params].insert(vobj->getID()); mPendingRequests.push_back(LLMeshRepoThread::LODRequest(mesh_params, detail)); LLMeshRepository::sLODPending++; } } //do a quick search to see if we can't display something while we wait for this mesh to load LLVolume* volume = vobj->getVolume(); if (volume) { LLVolumeParams params = volume->getParams(); LLVolumeLODGroup* group = LLPrimitive::getVolumeManager()->getGroup(params); if (group) { //first, see if last_lod is available (don't transition down to avoid funny popping a la SH-641) if (last_lod >= 0) { LLVolume* lod = group->refLOD(last_lod); if (lod && lod->isMeshAssetLoaded() && lod->getNumVolumeFaces() > 0) { group->derefLOD(lod); return last_lod; } group->derefLOD(lod); } //next, see what the next lowest LOD available might be for (S32 i = detail-1; i >= 0; --i) { LLVolume* lod = group->refLOD(i); if (lod && lod->isMeshAssetLoaded() && lod->getNumVolumeFaces() > 0) { group->derefLOD(lod); return i; } group->derefLOD(lod); } //no lower LOD is a available, is a higher lod available? for (S32 i = detail+1; i < 4; ++i) { LLVolume* lod = group->refLOD(i); if (lod && lod->isMeshAssetLoaded() && lod->getNumVolumeFaces() > 0) { group->derefLOD(lod); return i; } group->derefLOD(lod); } } } return detail; } void LLMeshRepository::notifyLoadedMeshes() { //called from main thread LLMeshRepoThread::sMaxConcurrentRequests = gSavedSettings.getU32("MeshMaxConcurrentRequests"); //clean up completed upload threads for (std::vector::iterator iter = mUploads.begin(); iter != mUploads.end(); ) { LLMeshUploadThread* thread = *iter; if (thread->isStopped() && thread->finished()) { iter = mUploads.erase(iter); delete thread; } else { ++iter; } } //update inventory if (!mInventoryQ.empty()) { LLMutexLock lock(mMeshMutex); while (!mInventoryQ.empty()) { inventory_data& data = mInventoryQ.front(); LLAssetType::EType asset_type = LLAssetType::lookup(data.mPostData["asset_type"].asString()); LLInventoryType::EType inventory_type = LLInventoryType::lookup(data.mPostData["inventory_type"].asString()); // Handle addition of texture, if any. if ( data.mResponse.has("new_texture_folder_id") ) { const LLUUID& folder_id = data.mResponse["new_texture_folder_id"].asUUID(); if ( folder_id.notNull() ) { LLUUID parent_id = gInventory.findCategoryUUIDForType(LLFolderType::FT_TEXTURE); std::string name; // Check if the server built a different name for the texture folder if ( data.mResponse.has("new_texture_folder_name") ) { name = data.mResponse["new_texture_folder_name"].asString(); } else { name = data.mPostData["name"].asString(); } // Add the category to the internal representation LLPointer cat = new LLViewerInventoryCategory(folder_id, parent_id, LLFolderType::FT_NONE, name, gAgent.getID()); cat->setVersion(LLViewerInventoryCategory::VERSION_UNKNOWN); LLInventoryModel::LLCategoryUpdate update(cat->getParentUUID(), 1); gInventory.accountForUpdate(update); gInventory.updateCategory(cat); } } on_new_single_inventory_upload_complete( asset_type, inventory_type, data.mPostData["asset_type"].asString(), data.mPostData["folder_id"].asUUID(), data.mPostData["name"], data.mPostData["description"], data.mResponse, data.mResponse["upload_price"]); //} mInventoryQ.pop(); } } //call completed callbacks on finished decompositions mDecompThread->notifyCompleted(); if (!mThread->mWaiting) { //curl thread is churning, wait for it to go idle return; } static std::string region_name("never name a region this"); if (gAgent.getRegion()) { //update capability url if (gAgent.getRegion()->getName() != region_name && gAgent.getRegion()->capabilitiesReceived()) { region_name = gAgent.getRegion()->getName(); mGetMeshCapability = gAgent.getRegion()->getCapability("GetMesh"); } } mMeshMutex->lock(); mThread->mMutex->lock(); //popup queued error messages from background threads while (!mUploadErrorQ.empty()) { LLNotificationsUtil::add("MeshUploadError", mUploadErrorQ.front()); mUploadErrorQ.pop(); } S32 push_count = LLMeshRepoThread::sMaxConcurrentRequests-(LLMeshRepoThread::sActiveHeaderRequests+LLMeshRepoThread::sActiveLODRequests); if (push_count > 0) { //calculate "score" for pending requests //create score map std::map score_map; for (U32 i = 0; i < 4; ++i) { for (mesh_load_map::iterator iter = mLoadingMeshes[i].begin(); iter != mLoadingMeshes[i].end(); ++iter) { F32 max_score = 0.f; for (std::set::iterator obj_iter = iter->second.begin(); obj_iter != iter->second.end(); ++obj_iter) { LLViewerObject* object = gObjectList.findObject(*obj_iter); if (object) { LLDrawable* drawable = object->mDrawable; if (drawable) { F32 cur_score = drawable->getRadius()/llmax(drawable->mDistanceWRTCamera, 1.f); max_score = llmax(max_score, cur_score); } } } score_map[iter->first.getSculptID()] = max_score; } } //set "score" for pending requests for (std::vector::iterator iter = mPendingRequests.begin(); iter != mPendingRequests.end(); ++iter) { iter->mScore = score_map[iter->mMeshParams.getSculptID()]; } //sort by "score" std::sort(mPendingRequests.begin(), mPendingRequests.end(), LLMeshRepoThread::CompareScoreGreater()); while (!mPendingRequests.empty() && push_count > 0) { LLMeshRepoThread::LODRequest& request = mPendingRequests.front(); mThread->loadMeshLOD(request.mMeshParams, request.mLOD); mPendingRequests.erase(mPendingRequests.begin()); LLMeshRepository::sLODPending--; push_count--; } } //send skin info requests while (!mPendingSkinRequests.empty()) { mThread->loadMeshSkinInfo(mPendingSkinRequests.front()); mPendingSkinRequests.pop(); } //send decomposition requests while (!mPendingDecompositionRequests.empty()) { mThread->loadMeshDecomposition(mPendingDecompositionRequests.front()); mPendingDecompositionRequests.pop(); } //send physics shapes decomposition requests while (!mPendingPhysicsShapeRequests.empty()) { mThread->loadMeshPhysicsShape(mPendingPhysicsShapeRequests.front()); mPendingPhysicsShapeRequests.pop(); } mThread->notifyLoadedMeshes(); mThread->mMutex->unlock(); mMeshMutex->unlock(); mThread->mSignal->signal(); } void LLMeshRepository::notifySkinInfoReceived(LLMeshSkinInfo& info) { mSkinMap[info.mMeshID] = info; skin_load_map::iterator iter = mLoadingSkins.find(info.mMeshID); if (iter != mLoadingSkins.end()) { for (std::set::iterator obj_id = iter->second.begin(); obj_id != iter->second.end(); ++obj_id) { LLVOVolume* vobj = (LLVOVolume*) gObjectList.findObject(*obj_id); if (vobj) { vobj->notifyMeshLoaded(); } } } mLoadingSkins.erase(info.mMeshID); } void LLMeshRepository::notifyDecompositionReceived(LLModel::Decomposition* decomp) { decomposition_map::iterator iter = mDecompositionMap.find(decomp->mMeshID); if (iter == mDecompositionMap.end()) { //just insert decomp into map mDecompositionMap[decomp->mMeshID] = decomp; } else { //merge decomp with existing entry iter->second->merge(decomp); delete decomp; } mLoadingDecompositions.erase(decomp->mMeshID); } void LLMeshRepository::notifyMeshLoaded(const LLVolumeParams& mesh_params, LLVolume* volume) { //called from main thread S32 detail = LLVolumeLODGroup::getVolumeDetailFromScale(volume->getDetail()); //get list of objects waiting to be notified this mesh is loaded mesh_load_map::iterator obj_iter = mLoadingMeshes[detail].find(mesh_params); if (volume && obj_iter != mLoadingMeshes[detail].end()) { //make sure target volume is still valid if (volume->getNumVolumeFaces() <= 0) { llwarns << "Mesh loading returned empty volume." << llendl; } { //update system volume LLVolume* sys_volume = LLPrimitive::getVolumeManager()->refVolume(mesh_params, detail); if (sys_volume) { sys_volume->copyVolumeFaces(volume); sys_volume->setMeshAssetLoaded(TRUE); LLPrimitive::getVolumeManager()->unrefVolume(sys_volume); } else { llwarns << "Couldn't find system volume for given mesh." << llendl; } } //notify waiting LLVOVolume instances that their requested mesh is available for (std::set::iterator vobj_iter = obj_iter->second.begin(); vobj_iter != obj_iter->second.end(); ++vobj_iter) { LLVOVolume* vobj = (LLVOVolume*) gObjectList.findObject(*vobj_iter); if (vobj) { vobj->notifyMeshLoaded(); } } mLoadingMeshes[detail].erase(mesh_params); } } void LLMeshRepository::notifyMeshUnavailable(const LLVolumeParams& mesh_params, S32 lod) { //called from main thread //get list of objects waiting to be notified this mesh is loaded mesh_load_map::iterator obj_iter = mLoadingMeshes[lod].find(mesh_params); F32 detail = LLVolumeLODGroup::getVolumeScaleFromDetail(lod); if (obj_iter != mLoadingMeshes[lod].end()) { for (std::set::iterator vobj_iter = obj_iter->second.begin(); vobj_iter != obj_iter->second.end(); ++vobj_iter) { LLVOVolume* vobj = (LLVOVolume*) gObjectList.findObject(*vobj_iter); if (vobj) { LLVolume* obj_volume = vobj->getVolume(); if (obj_volume && obj_volume->getDetail() == detail && obj_volume->getParams() == mesh_params) { //should force volume to find most appropriate LOD vobj->setVolume(obj_volume->getParams(), lod); } } } mLoadingMeshes[lod].erase(mesh_params); } } S32 LLMeshRepository::getActualMeshLOD(const LLVolumeParams& mesh_params, S32 lod) { return mThread->getActualMeshLOD(mesh_params, lod); } const LLMeshSkinInfo* LLMeshRepository::getSkinInfo(const LLUUID& mesh_id, const LLVOVolume* requesting_obj) { if (mesh_id.notNull()) { skin_map::iterator iter = mSkinMap.find(mesh_id); if (iter != mSkinMap.end()) { return &(iter->second); } //no skin info known about given mesh, try to fetch it { LLMutexLock lock(mMeshMutex); //add volume to list of loading meshes skin_load_map::iterator iter = mLoadingSkins.find(mesh_id); if (iter == mLoadingSkins.end()) { //no request pending for this skin info mPendingSkinRequests.push(mesh_id); } mLoadingSkins[mesh_id].insert(requesting_obj->getID()); } } return NULL; } void LLMeshRepository::fetchPhysicsShape(const LLUUID& mesh_id) { if (mesh_id.notNull()) { LLModel::Decomposition* decomp = NULL; decomposition_map::iterator iter = mDecompositionMap.find(mesh_id); if (iter != mDecompositionMap.end()) { decomp = iter->second; } //decomposition block hasn't been fetched yet if (!decomp || decomp->mPhysicsShapeMesh.empty()) { LLMutexLock lock(mMeshMutex); //add volume to list of loading meshes std::set::iterator iter = mLoadingPhysicsShapes.find(mesh_id); if (iter == mLoadingPhysicsShapes.end()) { //no request pending for this skin info mLoadingPhysicsShapes.insert(mesh_id); mPendingPhysicsShapeRequests.push(mesh_id); } } } } LLModel::Decomposition* LLMeshRepository::getDecomposition(const LLUUID& mesh_id) { LLModel::Decomposition* ret = NULL; if (mesh_id.notNull()) { decomposition_map::iterator iter = mDecompositionMap.find(mesh_id); if (iter != mDecompositionMap.end()) { ret = iter->second; } //decomposition block hasn't been fetched yet if (!ret || ret->mBaseHullMesh.empty()) { LLMutexLock lock(mMeshMutex); //add volume to list of loading meshes std::set::iterator iter = mLoadingDecompositions.find(mesh_id); if (iter == mLoadingDecompositions.end()) { //no request pending for this skin info mLoadingDecompositions.insert(mesh_id); mPendingDecompositionRequests.push(mesh_id); } } } return ret; } void LLMeshRepository::buildHull(const LLVolumeParams& params, S32 detail) { LLVolume* volume = LLPrimitive::sVolumeManager->refVolume(params, detail); if (!volume->mHullPoints) { //all default params //execute first stage //set simplify mode to retain //set retain percentage to zero //run second stage } LLPrimitive::sVolumeManager->unrefVolume(volume); } bool LLMeshRepository::hasPhysicsShape(const LLUUID& mesh_id) { LLSD mesh = mThread->getMeshHeader(mesh_id); if (mesh.has("physics_mesh") && mesh["physics_mesh"].has("size") && (mesh["physics_mesh"]["size"].asInteger() > 0)) { return true; } LLModel::Decomposition* decomp = getDecomposition(mesh_id); if (decomp && !decomp->mHull.empty()) { return true; } return false; } LLSD& LLMeshRepository::getMeshHeader(const LLUUID& mesh_id) { return mThread->getMeshHeader(mesh_id); } LLSD& LLMeshRepoThread::getMeshHeader(const LLUUID& mesh_id) { static LLSD dummy_ret; if (mesh_id.notNull()) { LLMutexLock lock(mHeaderMutex); mesh_header_map::iterator iter = mMeshHeader.find(mesh_id); if (iter != mMeshHeader.end()) { return iter->second; } } return dummy_ret; } void LLMeshRepository::uploadModel(std::vector& data, LLVector3& scale, bool upload_textures, bool upload_skin, bool upload_joints, std::string upload_url, bool do_upload, LLHandle fee_observer, LLHandle upload_observer) { LLMeshUploadThread* thread = new LLMeshUploadThread(data, scale, upload_textures, upload_skin, upload_joints, upload_url, do_upload, fee_observer, upload_observer); mUploadWaitList.push_back(thread); } S32 LLMeshRepository::getMeshSize(const LLUUID& mesh_id, S32 lod) { if (mThread) { LLMeshRepoThread::mesh_header_map::iterator iter = mThread->mMeshHeader.find(mesh_id); if (iter != mThread->mMeshHeader.end()) { LLSD& header = iter->second; if (header.has("404")) { return -1; } S32 size = header[header_lod[lod]]["size"].asInteger(); return size; } } return -1; } void LLMeshUploadThread::decomposeMeshMatrix(LLMatrix4& transformation, LLVector3& result_pos, LLQuaternion& result_rot, LLVector3& result_scale) { // check for reflection BOOL reflected = (transformation.determinant() < 0); // compute position LLVector3 position = LLVector3(0, 0, 0) * transformation; // compute scale LLVector3 x_transformed = LLVector3(1, 0, 0) * transformation - position; LLVector3 y_transformed = LLVector3(0, 1, 0) * transformation - position; LLVector3 z_transformed = LLVector3(0, 0, 1) * transformation - position; F32 x_length = x_transformed.normalize(); F32 y_length = y_transformed.normalize(); F32 z_length = z_transformed.normalize(); LLVector3 scale = LLVector3(x_length, y_length, z_length); // adjust for "reflected" geometry LLVector3 x_transformed_reflected = x_transformed; if (reflected) { x_transformed_reflected *= -1.0; } // compute rotation LLMatrix3 rotation_matrix; rotation_matrix.setRows(x_transformed_reflected, y_transformed, z_transformed); LLQuaternion quat_rotation = rotation_matrix.quaternion(); quat_rotation.normalize(); // the rotation_matrix might not have been orthoginal. make it so here. LLVector3 euler_rotation; quat_rotation.getEulerAngles(&euler_rotation.mV[VX], &euler_rotation.mV[VY], &euler_rotation.mV[VZ]); result_pos = position + mOrigin; result_scale = scale; result_rot = quat_rotation; } bool LLImportMaterial::operator<(const LLImportMaterial &rhs) const { if (mDiffuseMap != rhs.mDiffuseMap) { return mDiffuseMap < rhs.mDiffuseMap; } if (mDiffuseMapFilename != rhs.mDiffuseMapFilename) { return mDiffuseMapFilename < rhs.mDiffuseMapFilename; } if (mDiffuseMapLabel != rhs.mDiffuseMapLabel) { return mDiffuseMapLabel < rhs.mDiffuseMapLabel; } if (mDiffuseColor != rhs.mDiffuseColor) { return mDiffuseColor < rhs.mDiffuseColor; } if (mBinding != rhs.mBinding) { return mBinding < rhs.mBinding; } return mFullbright < rhs.mFullbright; } void LLMeshRepository::updateInventory(inventory_data data) { LLMutexLock lock(mMeshMutex); dump_llsd_to_file(data.mPostData,make_dump_name("update_inventory_post_data_",dump_num)); dump_llsd_to_file(data.mResponse,make_dump_name("update_inventory_response_",dump_num)); mInventoryQ.push(data); } void LLMeshRepository::uploadError(LLSD& args) { LLMutexLock lock(mMeshMutex); mUploadErrorQ.push(args); } //static F32 LLMeshRepository::getStreamingCost(LLSD& header, F32 radius, S32* bytes, S32* bytes_visible, S32 lod, F32 *unscaled_value) { F32 max_distance = 512.f; F32 dlowest = llmin(radius/0.03f, max_distance); F32 dlow = llmin(radius/0.06f, max_distance); F32 dmid = llmin(radius/0.24f, max_distance); F32 METADATA_DISCOUNT = (F32) gSavedSettings.getU32("MeshMetaDataDiscount"); //discount 128 bytes to cover the cost of LLSD tags and compression domain overhead F32 MINIMUM_SIZE = (F32) gSavedSettings.getU32("MeshMinimumByteSize"); //make sure nothing is "free" F32 bytes_per_triangle = (F32) gSavedSettings.getU32("MeshBytesPerTriangle"); S32 bytes_lowest = header["lowest_lod"]["size"].asInteger(); S32 bytes_low = header["low_lod"]["size"].asInteger(); S32 bytes_mid = header["medium_lod"]["size"].asInteger(); S32 bytes_high = header["high_lod"]["size"].asInteger(); if (bytes_high == 0) { return 0.f; } if (bytes_mid == 0) { bytes_mid = bytes_high; } if (bytes_low == 0) { bytes_low = bytes_mid; } if (bytes_lowest == 0) { bytes_lowest = bytes_low; } F32 triangles_lowest = llmax((F32) bytes_lowest-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle; F32 triangles_low = llmax((F32) bytes_low-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle; F32 triangles_mid = llmax((F32) bytes_mid-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle; F32 triangles_high = llmax((F32) bytes_high-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle; if (bytes) { *bytes = 0; *bytes += header["lowest_lod"]["size"].asInteger(); *bytes += header["low_lod"]["size"].asInteger(); *bytes += header["medium_lod"]["size"].asInteger(); *bytes += header["high_lod"]["size"].asInteger(); } if (bytes_visible) { lod = LLMeshRepository::getActualMeshLOD(header, lod); if (lod >= 0 && lod <= 3) { *bytes_visible = header[header_lod[lod]]["size"].asInteger(); } } F32 max_area = 102932.f; //area of circle that encompasses region F32 min_area = 1.f; F32 high_area = llmin(F_PI*dmid*dmid, max_area); F32 mid_area = llmin(F_PI*dlow*dlow, max_area); F32 low_area = llmin(F_PI*dlowest*dlowest, max_area); F32 lowest_area = max_area; lowest_area -= low_area; low_area -= mid_area; mid_area -= high_area; high_area = llclamp(high_area, min_area, max_area); mid_area = llclamp(mid_area, min_area, max_area); low_area = llclamp(low_area, min_area, max_area); lowest_area = llclamp(lowest_area, min_area, max_area); F32 total_area = high_area + mid_area + low_area + lowest_area; high_area /= total_area; mid_area /= total_area; low_area /= total_area; lowest_area /= total_area; F32 weighted_avg = triangles_high*high_area + triangles_mid*mid_area + triangles_low*low_area + triangles_lowest*lowest_area; if (unscaled_value) { *unscaled_value = weighted_avg; } return weighted_avg/gSavedSettings.getU32("MeshTriangleBudget")*15000.f; } LLPhysicsDecomp::LLPhysicsDecomp() : LLThread("Physics Decomp") { mInited = false; mQuitting = false; mDone = false; mSignal = new LLCondition(NULL); mMutex = new LLMutex(NULL); } LLPhysicsDecomp::~LLPhysicsDecomp() { shutdown(); delete mSignal; mSignal = NULL; delete mMutex; mMutex = NULL; } void LLPhysicsDecomp::shutdown() { if (mSignal) { mQuitting = true; mSignal->signal(); while (!isStopped()) { apr_sleep(10); } } } void LLPhysicsDecomp::submitRequest(LLPhysicsDecomp::Request* request) { LLMutexLock lock(mMutex); mRequestQ.push(request); mSignal->signal(); } //static S32 LLPhysicsDecomp::llcdCallback(const char* status, S32 p1, S32 p2) { if (gMeshRepo.mDecompThread && gMeshRepo.mDecompThread->mCurRequest.notNull()) { return gMeshRepo.mDecompThread->mCurRequest->statusCallback(status, p1, p2); } return 1; } void LLPhysicsDecomp::setMeshData(LLCDMeshData& mesh, bool vertex_based) { mesh.mVertexBase = mCurRequest->mPositions[0].mV; mesh.mVertexStrideBytes = 12; mesh.mNumVertices = mCurRequest->mPositions.size(); if(!vertex_based) { mesh.mIndexType = LLCDMeshData::INT_16; mesh.mIndexBase = &(mCurRequest->mIndices[0]); mesh.mIndexStrideBytes = 6; mesh.mNumTriangles = mCurRequest->mIndices.size()/3; } if ((vertex_based || mesh.mNumTriangles > 0) && mesh.mNumVertices > 2) { LLCDResult ret = LLCD_OK; if (LLConvexDecomposition::getInstance() != NULL) { ret = LLConvexDecomposition::getInstance()->setMeshData(&mesh, vertex_based); } if (ret) { llerrs << "Convex Decomposition thread valid but could not set mesh data" << llendl; } } } void LLPhysicsDecomp::doDecomposition() { LLCDMeshData mesh; S32 stage = mStageID[mCurRequest->mStage]; if (LLConvexDecomposition::getInstance() == NULL) { // stub library. do nothing. return; } //load data intoLLCD if (stage == 0) { setMeshData(mesh, false); } //build parameter map std::map param_map; static const LLCDParam* params = NULL; static S32 param_count = 0; if (!params) { param_count = LLConvexDecomposition::getInstance()->getParameters(¶ms); } for (S32 i = 0; i < param_count; ++i) { param_map[params[i].mName] = params+i; } //set parameter values for (decomp_params::iterator iter = mCurRequest->mParams.begin(); iter != mCurRequest->mParams.end(); ++iter) { const std::string& name = iter->first; const LLSD& value = iter->second; const LLCDParam* param = param_map[name]; if (param == NULL) { //couldn't find valid parameter continue; } U32 ret = LLCD_OK; if (param->mType == LLCDParam::LLCD_FLOAT) { ret = LLConvexDecomposition::getInstance()->setParam(param->mName, (F32) value.asReal()); } else if (param->mType == LLCDParam::LLCD_INTEGER || param->mType == LLCDParam::LLCD_ENUM) { ret = LLConvexDecomposition::getInstance()->setParam(param->mName, value.asInteger()); } else if (param->mType == LLCDParam::LLCD_BOOLEAN) { ret = LLConvexDecomposition::getInstance()->setParam(param->mName, value.asBoolean()); } } mCurRequest->setStatusMessage("Executing."); LLCDResult ret = LLCD_OK; if (LLConvexDecomposition::getInstance() != NULL) { ret = LLConvexDecomposition::getInstance()->executeStage(stage); } if (ret) { llwarns << "Convex Decomposition thread valid but could not execute stage " << stage << llendl; LLMutexLock lock(mMutex); mCurRequest->mHull.clear(); mCurRequest->mHullMesh.clear(); mCurRequest->setStatusMessage("FAIL"); completeCurrent(); } else { mCurRequest->setStatusMessage("Reading results"); S32 num_hulls =0; if (LLConvexDecomposition::getInstance() != NULL) { num_hulls = LLConvexDecomposition::getInstance()->getNumHullsFromStage(stage); } mMutex->lock(); mCurRequest->mHull.clear(); mCurRequest->mHull.resize(num_hulls); mCurRequest->mHullMesh.clear(); mCurRequest->mHullMesh.resize(num_hulls); mMutex->unlock(); for (S32 i = 0; i < num_hulls; ++i) { std::vector p; LLCDHull hull; // if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code LLConvexDecomposition::getInstance()->getHullFromStage(stage, i, &hull); const F32* v = hull.mVertexBase; for (S32 j = 0; j < hull.mNumVertices; ++j) { LLVector3 vert(v[0], v[1], v[2]); p.push_back(vert); v = (F32*) (((U8*) v) + hull.mVertexStrideBytes); } LLCDMeshData mesh; // if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code LLConvexDecomposition::getInstance()->getMeshFromStage(stage, i, &mesh); get_vertex_buffer_from_mesh(mesh, mCurRequest->mHullMesh[i]); mMutex->lock(); mCurRequest->mHull[i] = p; mMutex->unlock(); } { LLMutexLock lock(mMutex); mCurRequest->setStatusMessage("FAIL"); completeCurrent(); } } } void LLPhysicsDecomp::completeCurrent() { LLMutexLock lock(mMutex); mCompletedQ.push(mCurRequest); mCurRequest = NULL; } void LLPhysicsDecomp::notifyCompleted() { if (!mCompletedQ.empty()) { LLMutexLock lock(mMutex); while (!mCompletedQ.empty()) { Request* req = mCompletedQ.front(); req->completed(); mCompletedQ.pop(); } } } void make_box(LLPhysicsDecomp::Request * request) { LLVector3 min,max; min = request->mPositions[0]; max = min; for (U32 i = 0; i < request->mPositions.size(); ++i) { update_min_max(min, max, request->mPositions[i]); } request->mHull.clear(); LLModel::hull box; box.push_back(LLVector3(min[0],min[1],min[2])); box.push_back(LLVector3(max[0],min[1],min[2])); box.push_back(LLVector3(min[0],max[1],min[2])); box.push_back(LLVector3(max[0],max[1],min[2])); box.push_back(LLVector3(min[0],min[1],max[2])); box.push_back(LLVector3(max[0],min[1],max[2])); box.push_back(LLVector3(min[0],max[1],max[2])); box.push_back(LLVector3(max[0],max[1],max[2])); request->mHull.push_back(box); } void LLPhysicsDecomp::doDecompositionSingleHull() { LLConvexDecomposition* decomp = LLConvexDecomposition::getInstance(); if (decomp == NULL) { //stub. do nothing. return; } LLCDMeshData mesh; #if 1 setMeshData(mesh, true); LLCDResult ret = decomp->buildSingleHull() ; if(ret) { llwarns << "Could not execute decomposition stage when attempting to create single hull." << llendl; make_box(mCurRequest); } else { mMutex->lock(); mCurRequest->mHull.clear(); mCurRequest->mHull.resize(1); mCurRequest->mHullMesh.clear(); mMutex->unlock(); std::vector p; LLCDHull hull; // if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code decomp->getSingleHull(&hull); const F32* v = hull.mVertexBase; for (S32 j = 0; j < hull.mNumVertices; ++j) { LLVector3 vert(v[0], v[1], v[2]); p.push_back(vert); v = (F32*) (((U8*) v) + hull.mVertexStrideBytes); } mMutex->lock(); mCurRequest->mHull[0] = p; mMutex->unlock(); } #else setMeshData(mesh, false); //set all parameters to default std::map param_map; static const LLCDParam* params = NULL; static S32 param_count = 0; if (!params) { param_count = decomp->getParameters(¶ms); } for (S32 i = 0; i < param_count; ++i) { decomp->setParam(params[i].mName, params[i].mDefault.mIntOrEnumValue); } const S32 STAGE_DECOMPOSE = mStageID["Decompose"]; const S32 STAGE_SIMPLIFY = mStageID["Simplify"]; const S32 DECOMP_PREVIEW = 0; const S32 SIMPLIFY_RETAIN = 0; decomp->setParam("Decompose Quality", DECOMP_PREVIEW); decomp->setParam("Simplify Method", SIMPLIFY_RETAIN); decomp->setParam("Retain%", 0.f); LLCDResult ret = LLCD_OK; ret = decomp->executeStage(STAGE_DECOMPOSE); if (ret) { llwarns << "Could not execute decomposition stage when attempting to create single hull." << llendl; make_box(mCurRequest); } else { ret = decomp->executeStage(STAGE_SIMPLIFY); if (ret) { llwarns << "Could not execute simiplification stage when attempting to create single hull." << llendl; make_box(mCurRequest); } else { S32 num_hulls =0; if (LLConvexDecomposition::getInstance() != NULL) { num_hulls = LLConvexDecomposition::getInstance()->getNumHullsFromStage(STAGE_SIMPLIFY); } mMutex->lock(); mCurRequest->mHull.clear(); mCurRequest->mHull.resize(num_hulls); mCurRequest->mHullMesh.clear(); mMutex->unlock(); for (S32 i = 0; i < num_hulls; ++i) { std::vector p; LLCDHull hull; // if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code LLConvexDecomposition::getInstance()->getHullFromStage(STAGE_SIMPLIFY, i, &hull); const F32* v = hull.mVertexBase; for (S32 j = 0; j < hull.mNumVertices; ++j) { LLVector3 vert(v[0], v[1], v[2]); p.push_back(vert); v = (F32*) (((U8*) v) + hull.mVertexStrideBytes); } mMutex->lock(); mCurRequest->mHull[i] = p; mMutex->unlock(); } } } #endif { completeCurrent(); } } void LLPhysicsDecomp::run() { LLConvexDecomposition* decomp = LLConvexDecomposition::getInstance(); if (decomp == NULL) { // stub library. Set init to true so the main thread // doesn't wait for this to finish. mInited = true; return; } decomp->initThread(); mInited = true; static const LLCDStageData* stages = NULL; static S32 num_stages = 0; if (!stages) { num_stages = decomp->getStages(&stages); } for (S32 i = 0; i < num_stages; i++) { mStageID[stages[i].mName] = i; } while (!mQuitting) { mSignal->wait(); while (!mQuitting && !mRequestQ.empty()) { { LLMutexLock lock(mMutex); mCurRequest = mRequestQ.front(); mRequestQ.pop(); } S32& id = *(mCurRequest->mDecompID); if (id == -1) { decomp->genDecomposition(id); } decomp->bindDecomposition(id); if (mCurRequest->mStage == "single_hull") { doDecompositionSingleHull(); } else { doDecomposition(); } } } decomp->quitThread(); if (mSignal->isLocked()) { //let go of mSignal's associated mutex mSignal->unlock(); } mDone = true; } void LLPhysicsDecomp::Request::assignData(LLModel* mdl) { if (!mdl) { return ; } U16 index_offset = 0; U16 tri[3] ; mPositions.clear(); mIndices.clear(); mBBox[1] = LLVector3(F32_MIN, F32_MIN, F32_MIN) ; mBBox[0] = LLVector3(F32_MAX, F32_MAX, F32_MAX) ; //queue up vertex positions and indices for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = mdl->getVolumeFace(i); if (mPositions.size() + face.mNumVertices > 65535) { continue; } for (U32 j = 0; j < face.mNumVertices; ++j) { mPositions.push_back(LLVector3(face.mPositions[j].getF32ptr())); for(U32 k = 0 ; k < 3 ; k++) { mBBox[0].mV[k] = llmin(mBBox[0].mV[k], mPositions[j].mV[k]) ; mBBox[1].mV[k] = llmax(mBBox[1].mV[k], mPositions[j].mV[k]) ; } } updateTriangleAreaThreshold() ; for (U32 j = 0; j+2 < face.mNumIndices; j += 3) { tri[0] = face.mIndices[j] + index_offset ; tri[1] = face.mIndices[j + 1] + index_offset ; tri[2] = face.mIndices[j + 2] + index_offset ; if(isValidTriangle(tri[0], tri[1], tri[2])) { mIndices.push_back(tri[0]); mIndices.push_back(tri[1]); mIndices.push_back(tri[2]); } } index_offset += face.mNumVertices; } return ; } void LLPhysicsDecomp::Request::updateTriangleAreaThreshold() { F32 range = mBBox[1].mV[0] - mBBox[0].mV[0] ; range = llmin(range, mBBox[1].mV[1] - mBBox[0].mV[1]) ; range = llmin(range, mBBox[1].mV[2] - mBBox[0].mV[2]) ; mTriangleAreaThreshold = llmin(0.0002f, range * 0.000002f) ; } //check if the triangle area is large enough to qualify for a valid triangle bool LLPhysicsDecomp::Request::isValidTriangle(U16 idx1, U16 idx2, U16 idx3) { LLVector3 a = mPositions[idx2] - mPositions[idx1] ; LLVector3 b = mPositions[idx3] - mPositions[idx1] ; F32 c = a * b ; return ((a*a) * (b*b) - c * c) > mTriangleAreaThreshold ; } void LLPhysicsDecomp::Request::setStatusMessage(const std::string& msg) { mStatusMessage = msg; } LLModelInstance::LLModelInstance(LLSD& data) { mLocalMeshID = data["mesh_id"].asInteger(); mLabel = data["label"].asString(); mTransform.setValue(data["transform"]); for (U32 i = 0; i < data["material"].size(); ++i) { LLImportMaterial mat(data["material"][i]); mMaterial[mat.mBinding] = mat; } } LLSD LLModelInstance::asLLSD() { LLSD ret; ret["mesh_id"] = mModel->mLocalID; ret["label"] = mLabel; ret["transform"] = mTransform.getValue(); U32 i = 0; for (std::map::iterator iter = mMaterial.begin(); iter != mMaterial.end(); ++iter) { ret["material"][i++] = iter->second.asLLSD(); } return ret; } LLImportMaterial::LLImportMaterial(LLSD& data) { mDiffuseMapFilename = data["diffuse"]["filename"].asString(); mDiffuseMapLabel = data["diffuse"]["label"].asString(); mDiffuseColor.setValue(data["diffuse"]["color"]); mFullbright = data["fullbright"].asBoolean(); mBinding = data["binding"].asString(); } LLSD LLImportMaterial::asLLSD() { LLSD ret; ret["diffuse"]["filename"] = mDiffuseMapFilename; ret["diffuse"]["label"] = mDiffuseMapLabel; ret["diffuse"]["color"] = mDiffuseColor.getValue(); ret["fullbright"] = mFullbright; ret["binding"] = mBinding; return ret; } void LLMeshRepository::buildPhysicsMesh(LLModel::Decomposition& decomp) { decomp.mMesh.resize(decomp.mHull.size()); for (U32 i = 0; i < decomp.mHull.size(); ++i) { LLCDHull hull; hull.mNumVertices = decomp.mHull[i].size(); hull.mVertexBase = decomp.mHull[i][0].mV; hull.mVertexStrideBytes = 12; LLCDMeshData mesh; LLCDResult res = LLCD_OK; if (LLConvexDecomposition::getInstance() != NULL) { res = LLConvexDecomposition::getInstance()->getMeshFromHull(&hull, &mesh); } if (res == LLCD_OK) { get_vertex_buffer_from_mesh(mesh, decomp.mMesh[i]); } } if (!decomp.mBaseHull.empty() && decomp.mBaseHullMesh.empty()) { //get mesh for base hull LLCDHull hull; hull.mNumVertices = decomp.mBaseHull.size(); hull.mVertexBase = decomp.mBaseHull[0].mV; hull.mVertexStrideBytes = 12; LLCDMeshData mesh; LLCDResult res = LLCD_OK; if (LLConvexDecomposition::getInstance() != NULL) { res = LLConvexDecomposition::getInstance()->getMeshFromHull(&hull, &mesh); } if (res == LLCD_OK) { get_vertex_buffer_from_mesh(mesh, decomp.mBaseHullMesh); } } } bool LLMeshRepository::meshUploadEnabled() { LLViewerRegion *region = gAgent.getRegion(); if(gSavedSettings.getBOOL("MeshEnabled") && region) { return region->meshUploadEnabled(); } return false; } bool LLMeshRepository::meshRezEnabled() { LLViewerRegion *region = gAgent.getRegion(); if(gSavedSettings.getBOOL("MeshEnabled") && region) { return region->meshRezEnabled(); } return false; }