/** * @file lllegacyatmospherics.cpp * @brief LLAtmospherics class implementation * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "lllegacyatmospherics.h" #include "llfeaturemanager.h" #include "llviewercontrol.h" #include "llframetimer.h" #include "llagent.h" #include "llagentcamera.h" #include "lldrawable.h" #include "llface.h" #include "llglheaders.h" #include "llsky.h" #include "llviewercamera.h" #include "llviewertexturelist.h" #include "llviewerobjectlist.h" #include "llviewerregion.h" #include "llworld.h" #include "pipeline.h" #include "v3colorutil.h" #include "llsettingssky.h" #include "llenvironment.h" #include "lldrawpoolwater.h" class LLFastLn { public: LLFastLn() { mTable[0] = 0; for( S32 i = 1; i < 257; i++ ) { mTable[i] = log((F32)i); } } F32 ln( F32 x ) { const F32 OO_255 = 0.003921568627450980392156862745098f; const F32 LN_255 = 5.5412635451584261462455391880218f; if( x < OO_255 ) { return log(x); } else if( x < 1 ) { x *= 255.f; S32 index = llfloor(x); F32 t = x - index; F32 low = mTable[index]; F32 high = mTable[index + 1]; return low + t * (high - low) - LN_255; } else if( x <= 255 ) { S32 index = llfloor(x); F32 t = x - index; F32 low = mTable[index]; F32 high = mTable[index + 1]; return low + t * (high - low); } else { return log( x ); } } F32 pow( F32 x, F32 y ) { return (F32)LL_FAST_EXP(y * ln(x)); } private: F32 mTable[257]; // index 0 is unused }; static LLFastLn gFastLn; // Functions used a lot. inline F32 LLHaze::calcPhase(const F32 cos_theta) const { const F32 g2 = mG * mG; const F32 den = 1 + g2 - 2 * mG * cos_theta; return (1 - g2) * gFastLn.pow(den, -1.5); } inline void color_pow(LLColor3 &col, const F32 e) { col.mV[0] = gFastLn.pow(col.mV[0], e); col.mV[1] = gFastLn.pow(col.mV[1], e); col.mV[2] = gFastLn.pow(col.mV[2], e); } inline LLColor3 color_norm(const LLColor3 &col) { const F32 m = color_max(col); if (m > 1.f) { return 1.f/m * col; } else return col; } inline void color_gamma_correct(LLColor3 &col) { const F32 gamma_inv = 1.f/1.2f; if (col.mV[0] != 0.f) { col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv); } if (col.mV[1] != 0.f) { col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv); } if (col.mV[2] != 0.f) { col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv); } } static LLColor3 calc_air_sca_sea_level() { static LLColor3 WAVE_LEN(675, 520, 445); static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN); static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1); static LLColor3 n4 = n21 * n21; static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f; static LLColor3 wl4 = wl2 * wl2; static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4; static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2); return dens_div_N * mult_const.divide(wl4); } // static constants. LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level(); F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel); F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f; /*************************************** Atmospherics ***************************************/ LLAtmospherics::LLAtmospherics() : mCloudDensity(0.2f), mWind(0.f), mWorldScale(1.f) { /// WL PARAMS mInitialized = false; mAmbientScale = gSavedSettings.getF32("SkyAmbientScale"); mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift"); mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f; mFogColor.mV[VALPHA] = 0.0f; mFogRatio = 1.2f; mHazeConcentration = 0.f; mInterpVal = 0.f; } LLAtmospherics::~LLAtmospherics() { } void LLAtmospherics::init() { const F32 haze_int = color_intens(mHaze.calcSigSca(0)); mHazeConcentration = haze_int / (color_intens(mHaze.calcAirSca(0)) + haze_int); mInitialized = true; } // This cubemap is used as "environmentMap" in indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl LLColor4 LLAtmospherics::calcSkyColorInDir(const LLSettingsSky::ptr_t &psky, AtmosphericsVars& vars, const LLVector3 &dir, bool isShiny, bool low_end) { const F32 sky_saturation = 0.25f; const F32 land_saturation = 0.1f; if (isShiny && dir.mV[VZ] < -0.02f) { LLColor4 col; LLColor3 desat_fog = LLColor3(mFogColor); F32 brightness = desat_fog.brightness();// NOTE: Linear brightness! // So that shiny somewhat shows up at night. if (brightness < 0.15f) { brightness = 0.15f; desat_fog = smear(0.15f); } F32 greyscale_sat = brightness * (1.0f - land_saturation); desat_fog = desat_fog * land_saturation + smear(greyscale_sat); if (low_end) { col = LLColor4(desat_fog, 0.f); } else { col = LLColor4(desat_fog * 0.5f, 0.f); } float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]); x *= x; col.mV[0] *= x*x; col.mV[1] *= powf(x, 2.5f); col.mV[2] *= x*x*x; return col; } // undo OGL_TO_CFR_ROTATION and negate vertical direction. LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]); //calculates hazeColor calcSkyColorWLVert(psky, Pn, vars); if (isShiny) { F32 brightness = vars.hazeColor.brightness(); F32 greyscale_sat = brightness * (1.0f - sky_saturation); LLColor3 sky_color = vars.hazeColor * sky_saturation + smear(greyscale_sat); //sky_color *= (0.5f + 0.5f * brightness); // SL-12574 EEP sky is being attenuated too much return LLColor4(sky_color, 0.0f); } LLColor3 sky_color = low_end ? vars.hazeColor * 2.0f : psky->gammaCorrect(vars.hazeColor * 2.0f, vars.gamma); return LLColor4(sky_color, 0.0f); } // NOTE: Keep these in sync! // indra\newview\app_settings\shaders\class1\deferred\skyV.glsl // indra\newview\app_settings\shaders\class1\deferred\cloudsV.glsl // indra\newview\lllegacyatmospherics.cpp void LLAtmospherics::calcSkyColorWLVert(const LLSettingsSky::ptr_t &psky, LLVector3 & Pn, AtmosphericsVars& vars) { const LLColor3 blue_density = vars.blue_density; const LLColor3 blue_horizon = vars.blue_horizon; const F32 haze_horizon = vars.haze_horizon; const F32 haze_density = vars.haze_density; const F32 density_multiplier = vars.density_multiplier; F32 max_y = vars.max_y; LLVector4 sun_norm = vars.sun_norm; // project the direction ray onto the sky dome. F32 phi = acos(Pn[1]); F32 sinA = sin(F_PI - phi); if (fabsf(sinA) < 0.01f) { //avoid division by zero sinA = 0.01f; } F32 Plen = vars.dome_radius * sin(F_PI + phi + asin(vars.dome_offset * sinA)) / sinA; Pn *= Plen; // Set altitude if (Pn[1] > 0.f) { Pn *= (max_y / Pn[1]); } else { Pn *= (-32000.f / Pn[1]); } Plen = Pn.length(); Pn /= Plen; // Initialize temp variables LLColor3 sunlight = vars.sunlight; LLColor3 ambient = vars.ambient; LLColor3 glow = vars.glow; F32 cloud_shadow = vars.cloud_shadow; // Sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes LLColor3 light_atten = vars.light_atten; LLColor3 light_transmittance = psky->getLightTransmittanceFast(vars.total_density, vars.density_multiplier, Plen); (void)light_transmittance; // silence Clang warn-error // Calculate relative weights LLColor3 temp2(0.f, 0.f, 0.f); LLColor3 temp1 = vars.total_density; LLColor3 blue_weight = componentDiv(blue_density, temp1); LLColor3 blue_factor = blue_horizon * blue_weight; LLColor3 haze_weight = componentDiv(smear(haze_density), temp1); LLColor3 haze_factor = haze_horizon * haze_weight; // Compute sunlight from P & lightnorm (for long rays like sky) temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + sun_norm.mV[1] ); temp2.mV[1] = 1.f / temp2.mV[1]; componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1])); componentMultBy(sunlight, light_transmittance); // Distance temp2.mV[2] = Plen * density_multiplier; // Transparency (-> temp1) temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]); // Compute haze glow temp2.mV[0] = Pn * LLVector3(sun_norm); temp2.mV[0] = 1.f - temp2.mV[0]; // temp2.x is 0 at the sun and increases away from sun temp2.mV[0] = llmax(temp2.mV[0], .001f); // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) // Higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.mV[0] *= glow.mV[0]; temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]); // glow.z should be negative, so we're doing a sort of (1 / "angle") function // Add "minimum anti-solar illumination" temp2.mV[0] += .25f; // Haze color above cloud vars.hazeColor = (blue_factor * (sunlight + ambient) + componentMult(haze_factor, sunlight * temp2.mV[0] + ambient)); // Increase ambient when there are more clouds LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f; // Dim sunlight by cloud shadow percentage sunlight *= (1.f - cloud_shadow); // Haze color below cloud vars.hazeColorBelowCloud = (blue_factor * (sunlight + tmpAmbient) + componentMult(haze_factor, sunlight * temp2.mV[0] + tmpAmbient)); // Final atmosphere additive componentMultBy(vars.hazeColor, LLColor3::white - temp1); /* // SL-12574 // Attenuate cloud color by atmosphere temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds // At horizon, blend high altitude sky color towards the darker color below the clouds vars.hazeColor += componentMult(vars.hazeColorBelowCloud - vars.hazeColor, LLColor3::white - componentSqrt(temp1)); */ } void LLAtmospherics::updateFog(const F32 distance, const LLVector3& tosun_in) { LLVector3 tosun = tosun_in; if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG)) { return; } LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f); const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f; // LLWorld::getInstance()->getWaterHeight(); F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2]; F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear(); camera_height += near_clip_height; F32 fog_distance = 0.f; LLColor3 res_color[3]; LLColor3 sky_fog_color = LLColor3::white; LLColor3 render_fog_color = LLColor3::white; const F32 tosun_z = tosun.mV[VZ]; tosun.mV[VZ] = 0.f; tosun.normalize(); LLVector3 perp_tosun; perp_tosun.mV[VX] = -tosun.mV[VY]; perp_tosun.mV[VY] = tosun.mV[VX]; LLVector3 tosun_45 = tosun + perp_tosun; tosun_45.normalize(); F32 delta = 0.06f; tosun.mV[VZ] = delta; perp_tosun.mV[VZ] = delta; tosun_45.mV[VZ] = delta; tosun.normalize(); perp_tosun.normalize(); tosun_45.normalize(); // Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun. AtmosphericsVars vars; LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky(); // NOTE: This is very similar to LLVOSky::cacheEnvironment() // Differences: // vars.sun_norm // vars.sunlight // invariants across whole sky tex process... vars.blue_density = psky->getBlueDensity(); vars.blue_horizon = psky->getBlueHorizon(); vars.haze_density = psky->getHazeDensity(); vars.haze_horizon = psky->getHazeHorizon(); vars.density_multiplier = psky->getDensityMultiplier(); vars.distance_multiplier = psky->getDistanceMultiplier(); vars.max_y = psky->getMaxY(); vars.sun_norm = LLEnvironment::instance().getSunDirectionCFR(); vars.sunlight = psky->getSunlightColor(); vars.ambient = psky->getAmbientColor(); vars.glow = psky->getGlow(); vars.cloud_shadow = psky->getCloudShadow(); vars.dome_radius = psky->getDomeRadius(); vars.dome_offset = psky->getDomeOffset(); vars.light_atten = psky->getLightAttenuation(vars.max_y); vars.light_transmittance = psky->getLightTransmittance(vars.max_y); vars.total_density = psky->getTotalDensity(); vars.gamma = psky->getGamma(); res_color[0] = calcSkyColorInDir(psky, vars, tosun); res_color[1] = calcSkyColorInDir(psky, vars, perp_tosun); res_color[2] = calcSkyColorInDir(psky, vars, tosun_45); sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]); F32 full_off = -0.25f; F32 full_on = 0.00f; F32 on = (tosun_z - full_off) / (full_on - full_off); on = llclamp(on, 0.01f, 1.f); sky_fog_color *= 0.5f * on; // We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ??? S32 i; for (i = 0; i < 3; i++) { sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]); } color_gamma_correct(sky_fog_color); render_fog_color = sky_fog_color; fog_distance = mFogRatio * distance; if (camera_height > water_height) { LLColor4 fog(render_fog_color); mGLFogCol = fog; } else { LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater(); F32 depth = water_height - camera_height; LLColor4 water_fog_color(pwater->getWaterFogColor()); // adjust the color based on depth. We're doing linear approximations float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale"); float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f), gSavedSettings.getF32("WaterGLFogDepthFloor")); LLColor4 fogCol = water_fog_color * depth_modifier; fogCol.setAlpha(1); // set the gl fog color mGLFogCol = fogCol; } mFogColor = sky_fog_color; mFogColor.setAlpha(1); LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f; stop_glerror(); } // Functions used a lot. F32 color_norm_pow(LLColor3& col, F32 e, bool postmultiply) { F32 mv = color_max(col); if (0 == mv) { return 0; } col *= 1.f / mv; color_pow(col, e); if (postmultiply) { col *= mv; } return mv; } // Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis. // Range of output is 0.0f to 2pi //359.99999...f // Returns 0.0f when "v" = +/- z_axis. F32 azimuth(const LLVector3 &v) { F32 azimuth = 0.0f; if (v.mV[VX] == 0.0f) { if (v.mV[VY] > 0.0f) { azimuth = F_PI * 0.5f; } else if (v.mV[VY] < 0.0f) { azimuth = F_PI * 1.5f;// 270.f; } } else { azimuth = (F32) atan(v.mV[VY] / v.mV[VX]); if (v.mV[VX] < 0.0f) { azimuth += F_PI; } else if (v.mV[VY] < 0.0f) { azimuth += F_PI * 2; } } return azimuth; } bool operator==(const AtmosphericsVars& a, const AtmosphericsVars& b) { if (a.hazeColor != b.hazeColor) { return false; } if (a.hazeColorBelowCloud != b.hazeColorBelowCloud) { return false; } if (a.cloudColorSun != b.cloudColorSun) { return false; } if (a.cloudColorAmbient != b.cloudColorAmbient) { return false; } if (a.cloudDensity != b.cloudDensity) { return false; } if (a.density_multiplier != b.density_multiplier) { return false; } if (a.haze_horizon != b.haze_horizon) { return false; } if (a.haze_density != b.haze_density) { return false; } if (a.blue_horizon != b.blue_horizon) { return false; } if (a.blue_density != b.blue_density) { return false; } if (a.dome_offset != b.dome_offset) { return false; } if (a.dome_radius != b.dome_radius) { return false; } if (a.cloud_shadow != b.cloud_shadow) { return false; } if (a.glow != b.glow) { return false; } if (a.ambient != b.ambient) { return false; } if (a.sunlight != b.sunlight) { return false; } if (a.sun_norm != b.sun_norm) { return false; } if (a.gamma != b.gamma) { return false; } if (a.max_y != b.max_y) { return false; } if (a.distance_multiplier != b.distance_multiplier) { return false; } // light_atten, light_transmittance, total_density // are ignored as they always change when the values above do // they're just shared calc across the sky map generation to save cycles return true; } bool approximatelyEqual(const F32 &a, const F32 &b, const F32 &fraction_treshold) { F32 diff = fabs(a - b); if (diff < F_APPROXIMATELY_ZERO || diff < llmax(fabs(a), fabs(b)) * fraction_treshold) { return true; } return false; } bool approximatelyEqual(const LLColor3 &a, const LLColor3 &b, const F32 &fraction_treshold) { return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold) && approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold) && approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold); } bool approximatelyEqual(const LLVector4 &a, const LLVector4 &b, const F32 &fraction_treshold) { return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold) && approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold) && approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold) && approximatelyEqual(a.mV[3], b.mV[3], fraction_treshold); } bool approximatelyEqual(const AtmosphericsVars& a, const AtmosphericsVars& b, const F32 fraction_treshold) { if (!approximatelyEqual(a.hazeColor, b.hazeColor, fraction_treshold)) { return false; } if (!approximatelyEqual(a.hazeColorBelowCloud, b.hazeColorBelowCloud, fraction_treshold)) { return false; } if (!approximatelyEqual(a.cloudColorSun, b.cloudColorSun, fraction_treshold)) { return false; } if (!approximatelyEqual(a.cloudColorAmbient, b.cloudColorAmbient, fraction_treshold)) { return false; } if (!approximatelyEqual(a.cloudDensity, b.cloudDensity, fraction_treshold)) { return false; } if (!approximatelyEqual(a.density_multiplier, b.density_multiplier, fraction_treshold)) { return false; } if (!approximatelyEqual(a.haze_horizon, b.haze_horizon, fraction_treshold)) { return false; } if (!approximatelyEqual(a.haze_density, b.haze_density, fraction_treshold)) { return false; } if (!approximatelyEqual(a.blue_horizon, b.blue_horizon, fraction_treshold)) { return false; } if (!approximatelyEqual(a.blue_density, b.blue_density, fraction_treshold)) { return false; } if (!approximatelyEqual(a.dome_offset, b.dome_offset, fraction_treshold)) { return false; } if (!approximatelyEqual(a.dome_radius, b.dome_radius, fraction_treshold)) { return false; } if (!approximatelyEqual(a.cloud_shadow, b.cloud_shadow, fraction_treshold)) { return false; } if (!approximatelyEqual(a.glow, b.glow, fraction_treshold)) { return false; } if (!approximatelyEqual(a.ambient, b.ambient, fraction_treshold)) { return false; } if (!approximatelyEqual(a.sunlight, b.sunlight, fraction_treshold)) { return false; } if (!approximatelyEqual(a.sun_norm, b.sun_norm, fraction_treshold)) { return false; } if (!approximatelyEqual(a.gamma, b.gamma, fraction_treshold)) { return false; } if (!approximatelyEqual(a.max_y, b.max_y, fraction_treshold)) { return false; } if (!approximatelyEqual(a.distance_multiplier, b.distance_multiplier, fraction_treshold)) { return false; } // light_atten, light_transmittance, total_density // are ignored as they always change when the values above do // they're just shared calc across the sky map generation to save cycles return true; }