/** * @file llfloatermodelpreview.cpp * @brief LLFloaterModelPreview class implementation * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "dae.h" //#include "dom.h" #include "dom/domAsset.h" #include "dom/domBind_material.h" #include "dom/domCOLLADA.h" #include "dom/domConstants.h" #include "dom/domController.h" #include "dom/domEffect.h" #include "dom/domGeometry.h" #include "dom/domInstance_geometry.h" #include "dom/domInstance_material.h" #include "dom/domInstance_node.h" #include "dom/domInstance_effect.h" #include "dom/domMaterial.h" #include "dom/domMatrix.h" #include "dom/domNode.h" #include "dom/domProfile_COMMON.h" #include "dom/domRotate.h" #include "dom/domScale.h" #include "dom/domTranslate.h" #include "dom/domVisual_scene.h" #include "llfloatermodelpreview.h" #include "llfilepicker.h" #include "llimagebmp.h" #include "llimagetga.h" #include "llimagejpeg.h" #include "llimagepng.h" #include "llagent.h" #include "llbutton.h" #include "llcombobox.h" #include "lldatapacker.h" #include "lldrawable.h" #include "lldrawpoolavatar.h" #include "llrender.h" #include "llface.h" #include "lleconomy.h" #include "llfocusmgr.h" #include "llfloaterperms.h" #include "lliconctrl.h" #include "llmatrix4a.h" #include "llmenubutton.h" #include "llmeshrepository.h" #include "llsdutil_math.h" #include "lltextbox.h" #include "lltoolmgr.h" #include "llui.h" #include "llvector4a.h" #include "llviewercamera.h" #include "llviewerwindow.h" #include "llvoavatar.h" #include "llvoavatarself.h" #include "pipeline.h" #include "lluictrlfactory.h" #include "llviewercontrol.h" #include "llviewermenu.h" #include "llviewermenufile.h" #include "llviewerregion.h" #include "llviewertexturelist.h" #include "llstring.h" #include "llbutton.h" #include "llcheckboxctrl.h" #include "llradiogroup.h" #include "llsdserialize.h" #include "llsliderctrl.h" #include "llspinctrl.h" #include "lltoggleablemenu.h" #include "llvfile.h" #include "llvfs.h" #include "llcallbacklist.h" #include "glod/glod.h" //static S32 LLFloaterModelPreview::sUploadAmount = 10; LLFloaterModelPreview* LLFloaterModelPreview::sInstance = NULL; const S32 PREVIEW_BORDER_WIDTH = 2; const S32 PREVIEW_RESIZE_HANDLE_SIZE = S32(RESIZE_HANDLE_WIDTH * OO_SQRT2) + PREVIEW_BORDER_WIDTH; const S32 PREVIEW_HPAD = PREVIEW_RESIZE_HANDLE_SIZE; const S32 PREF_BUTTON_HEIGHT = 16 + 7 + 16; const S32 PREVIEW_TEXTURE_HEIGHT = 300; void drawBoxOutline(const LLVector3& pos, const LLVector3& size); std::string lod_name[NUM_LOD+1] = { "lowest", "low", "medium", "high", "I went off the end of the lod_name array. Me so smart." }; std::string lod_triangles_name[NUM_LOD+1] = { "lowest_triangles", "low_triangles", "medium_triangles", "high_triangles", "I went off the end of the lod_triangles_name array. Me so smart." }; std::string lod_vertices_name[NUM_LOD+1] = { "lowest_vertices", "low_vertices", "medium_vertices", "high_vertices", "I went off the end of the lod_vertices_name array. Me so smart." }; std::string lod_status_name[NUM_LOD+1] = { "lowest_status", "low_status", "medium_status", "high_status", "I went off the end of the lod_status_name array. Me so smart." }; std::string lod_icon_name[NUM_LOD+1] = { "status_icon_lowest", "status_icon_low", "status_icon_medium", "status_icon_high", "I went off the end of the lod_status_name array. Me so smart." }; std::string lod_status_image[NUM_LOD+1] = { "ModelImport_Status_Good", "ModelImport_Status_Warning", "ModelImport_Status_Error", "I went off the end of the lod_status_image array. Me so smart." }; std::string lod_label_name[NUM_LOD+1] = { "lowest_label", "low_label", "medium_label", "high_label", "I went off the end of the lod_label_name array. Me so smart." }; bool validate_face(const LLVolumeFace& face) { for (U32 i = 0; i < face.mNumIndices; ++i) { if (face.mIndices[i] >= face.mNumVertices) { llwarns << "Face has invalid index." << llendl; return false; } } return true; } bool validate_model(const LLModel* mdl) { if (mdl->getNumVolumeFaces() == 0) { llwarns << "Model has no faces!" << llendl; return false; } for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i) { if (mdl->getVolumeFace(i).mNumVertices == 0) { llwarns << "Face has no vertices." << llendl; return false; } if (mdl->getVolumeFace(i).mNumIndices == 0) { llwarns << "Face has no indices." << llendl; return false; } if (!validate_face(mdl->getVolumeFace(i))) { return false; } } return true; } BOOL stop_gloderror() { GLuint error = glodGetError(); if (error != GLOD_NO_ERROR) { llwarns << "GLOD error detected, cannot generate LOD: " << std::hex << error << llendl; return TRUE; } return FALSE; } LLMeshFilePicker::LLMeshFilePicker(LLModelPreview* mp, S32 lod) : LLFilePickerThread(LLFilePicker::FFLOAD_COLLADA) { mMP = mp; mLOD = lod; } void LLMeshFilePicker::notify(const std::string& filename) { mMP->loadModel(mFile, mLOD); } //----------------------------------------------------------------------------- // LLFloaterModelPreview() //----------------------------------------------------------------------------- LLFloaterModelPreview::LLFloaterModelPreview(const LLSD& key) : LLFloater(key) { sInstance = this; mLastMouseX = 0; mLastMouseY = 0; mGLName = 0; mStatusLock = new LLMutex(NULL); mLODMode[LLModel::LOD_HIGH] = 0; for (U32 i = 0; i < LLModel::LOD_HIGH; i++) { mLODMode[i] = 1; } } //----------------------------------------------------------------------------- // postBuild() //----------------------------------------------------------------------------- BOOL LLFloaterModelPreview::postBuild() { if (!LLFloater::postBuild()) { return FALSE; } childSetAction("lod_browse", onBrowseLOD, this); childSetCommitCallback("cancel_btn", onCancel, this); childSetCommitCallback("crease_angle", onGenerateNormalsCommit, this); childSetCommitCallback("generate_normals", onGenerateNormalsCommit, this); childSetCommitCallback("lod_generate", onAutoFillCommit, this); childSetCommitCallback("lod_mode", onLODParamCommit, this); childSetCommitCallback("lod_error_threshold", onLODParamCommit, this); childSetCommitCallback("lod_triangle_limit", onLODParamCommitTriangleLimit, this); childSetCommitCallback("build_operator", onLODParamCommit, this); childSetCommitCallback("queue_mode", onLODParamCommit, this); childSetCommitCallback("border_mode", onLODParamCommit, this); childSetCommitCallback("share_tolerance", onLODParamCommit, this); childSetTextArg("status", "[STATUS]", getString("status_idle")); //childSetLabelArg("ok_btn", "[AMOUNT]", llformat("%d",sUploadAmount)); childSetAction("ok_btn", onUpload, this); childDisable("ok_btn"); childSetAction("clear_materials", onClearMaterials, this); childSetCommitCallback("preview_lod_combo", onPreviewLODCommit, this); childSetCommitCallback("upload_skin", onUploadSkinCommit, this); childSetCommitCallback("upload_joints", onUploadJointsCommit, this); childSetCommitCallback("import_scale", onImportScaleCommit, this); childSetCommitCallback("pelvis_offset", onPelvisOffsetCommit, this); childSetCommitCallback("lod_file_or_limit", refresh, this); childSetCommitCallback("physics_load_radio", refresh, this); //childSetCommitCallback("physics_optimize", refresh, this); //childSetCommitCallback("physics_use_hull", refresh, this); childDisable("upload_skin"); childDisable("upload_joints"); childDisable("pelvis_offset"); childDisable("ok_btn"); mViewOptionMenuButton = getChild("options_gear_btn"); mCommitCallbackRegistrar.add("ModelImport.ViewOption.Action", boost::bind(&LLFloaterModelPreview::onViewOptionChecked, this, _2)); mEnableCallbackRegistrar.add("ModelImport.ViewOption.Check", boost::bind(&LLFloaterModelPreview::isViewOptionChecked, this, _2)); mEnableCallbackRegistrar.add("ModelImport.ViewOption.Enabled", boost::bind(&LLFloaterModelPreview::isViewOptionEnabled, this, _2)); mViewOptionMenu = LLUICtrlFactory::getInstance()->createFromFile("menu_model_import_gear_default.xml", gMenuHolder, LLViewerMenuHolderGL::child_registry_t::instance()); mViewOptionMenuButton->setMenu(mViewOptionMenu, LLMenuButton::MP_BOTTOM_LEFT); initDecompControls(); LLView* preview_panel = getChild("preview_panel"); mPreviewRect = preview_panel->getRect(); mModelPreview = new LLModelPreview(512, 512, this); mModelPreview->setPreviewTarget(16.f); mModelPreview->setDetailsCallback(boost::bind(&LLFloaterModelPreview::setDetails, this, _1, _2, _3, _4, _5)); //set callbacks for left click on line editor rows for (U32 i = 0; i <= LLModel::LOD_HIGH; i++) { LLTextBox* text = getChild(lod_label_name[i]); if (text) { text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i)); } text = getChild(lod_triangles_name[i]); if (text) { text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i)); } text = getChild(lod_vertices_name[i]); if (text) { text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i)); } text = getChild(lod_status_name[i]); if (text) { text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i)); } } return TRUE; } //----------------------------------------------------------------------------- // LLFloaterModelPreview() //----------------------------------------------------------------------------- LLFloaterModelPreview::~LLFloaterModelPreview() { sInstance = NULL; const LLModelLoader *model_loader = mModelPreview->mModelLoader; if (model_loader && model_loader->mResetJoints) { gAgentAvatarp->resetJointPositions(); } delete mModelPreview; if (mGLName) { LLImageGL::deleteTextures(1, &mGLName ); } delete mStatusLock; mStatusLock = NULL; } void LLFloaterModelPreview::onViewOptionChecked(const LLSD& userdata) { if (mModelPreview) { mModelPreview->mViewOption[userdata.asString()] = !mModelPreview->mViewOption[userdata.asString()]; mModelPreview->refresh(); } } bool LLFloaterModelPreview::isViewOptionChecked(const LLSD& userdata) { if (mModelPreview) { return mModelPreview->mViewOption[userdata.asString()]; } return false; } bool LLFloaterModelPreview::isViewOptionEnabled(const LLSD& userdata) { return !mViewOptionDisabled[userdata.asString()]; } void LLFloaterModelPreview::setViewOptionEnabled(const std::string& option, bool enabled) { mViewOptionDisabled[option] = !enabled; } void LLFloaterModelPreview::enableViewOption(const std::string& option) { setViewOptionEnabled(option, true); } void LLFloaterModelPreview::disableViewOption(const std::string& option) { setViewOptionEnabled(option, false); } void LLFloaterModelPreview::loadModel(S32 lod) { mModelPreview->mLoading = true; (new LLMeshFilePicker(mModelPreview, lod))->getFile(); } //static void LLFloaterModelPreview::onImportScaleCommit(LLUICtrl*,void* userdata) { LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata; if (!fp->mModelPreview) { return; } fp->mModelPreview->calcResourceCost(); fp->mModelPreview->refresh(); } //static void LLFloaterModelPreview::onPelvisOffsetCommit( LLUICtrl*, void* userdata ) { LLFloaterModelPreview *fp =(LLFloaterModelPreview*)userdata; if (!fp->mModelPreview) { return; } fp->mModelPreview->calcResourceCost(); fp->mModelPreview->refresh(); } //static void LLFloaterModelPreview::onUploadJointsCommit(LLUICtrl*,void* userdata) { LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata; if (!fp->mModelPreview) { return; } fp->mModelPreview->refresh(); } //static void LLFloaterModelPreview::onUploadSkinCommit(LLUICtrl*,void* userdata) { LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata; if (!fp->mModelPreview) { return; } fp->mModelPreview->calcResourceCost(); fp->mModelPreview->refresh(); fp->mModelPreview->resetPreviewTarget(); fp->mModelPreview->clearBuffers(); } //static void LLFloaterModelPreview::onPreviewLODCommit(LLUICtrl* ctrl, void* userdata) { LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata; if (!fp->mModelPreview) { return; } S32 which_mode = 0; LLComboBox* combo = (LLComboBox*) ctrl; which_mode = (NUM_LOD-1)-combo->getFirstSelectedIndex(); // combo box list of lods is in reverse order fp->mModelPreview->setPreviewLOD(which_mode); } //static void LLFloaterModelPreview::onGenerateNormalsCommit(LLUICtrl* ctrl, void* userdata) { LLFloaterModelPreview* fp = (LLFloaterModelPreview*) userdata; fp->mModelPreview->generateNormals(); } //static void LLFloaterModelPreview::onExplodeCommit(LLUICtrl* ctrl, void* userdata) { LLFloaterModelPreview* fp = LLFloaterModelPreview::sInstance; fp->mModelPreview->refresh(); } //static void LLFloaterModelPreview::onAutoFillCommit(LLUICtrl* ctrl, void* userdata) { LLFloaterModelPreview* fp = (LLFloaterModelPreview*) userdata; fp->mModelPreview->genLODs(); } //static void LLFloaterModelPreview::onLODParamCommit(LLUICtrl* ctrl, void* userdata) { LLFloaterModelPreview* fp = (LLFloaterModelPreview*) userdata; fp->mModelPreview->onLODParamCommit(false); } //static void LLFloaterModelPreview::onLODParamCommitTriangleLimit(LLUICtrl* ctrl, void* userdata) { LLFloaterModelPreview* fp = (LLFloaterModelPreview*) userdata; fp->mModelPreview->onLODParamCommit(true); } //----------------------------------------------------------------------------- // draw() //----------------------------------------------------------------------------- void LLFloaterModelPreview::draw() { LLFloater::draw(); LLRect r = getRect(); mModelPreview->update(); if (!mModelPreview->mLoading) { childSetTextArg("status", "[STATUS]", getString("status_idle")); } childSetTextArg("prim_cost", "[PRIM_COST]", llformat("%d", mModelPreview->mResourceCost)); childSetTextArg("description_label", "[TEXTURES]", llformat("%d", mModelPreview->mTextureSet.size())); if (!mCurRequest.empty()) { LLMutexLock lock(mStatusLock); childSetTextArg("status", "[STATUS]", mStatusMessage); } else { childSetVisible("Simplify", true); childSetVisible("simplify_cancel", false); childSetVisible("Decompose", true); childSetVisible("decompose_cancel", false); } U32 resource_cost = mModelPreview->mResourceCost*10; if (childGetValue("upload_textures").asBoolean()) { resource_cost += mModelPreview->mTextureSet.size()*10; } childSetLabelArg("ok_btn", "[AMOUNT]", llformat("%d", resource_cost)); if (mModelPreview) { gGL.color3f(1.f, 1.f, 1.f); gGL.getTexUnit(0)->bind(mModelPreview); LLView* preview_panel = getChild("preview_panel"); LLRect rect = preview_panel->getRect(); if (rect != mPreviewRect) { mModelPreview->refresh(); mPreviewRect = preview_panel->getRect(); } gGL.begin( LLRender::QUADS ); { gGL.texCoord2f(0.f, 1.f); gGL.vertex2i(mPreviewRect.mLeft, mPreviewRect.mTop-1); gGL.texCoord2f(0.f, 0.f); gGL.vertex2i(mPreviewRect.mLeft, mPreviewRect.mBottom); gGL.texCoord2f(1.f, 0.f); gGL.vertex2i(mPreviewRect.mRight-1, mPreviewRect.mBottom); gGL.texCoord2f(1.f, 1.f); gGL.vertex2i(mPreviewRect.mRight-1, mPreviewRect.mTop-1); } gGL.end(); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); } } //----------------------------------------------------------------------------- // handleMouseDown() //----------------------------------------------------------------------------- BOOL LLFloaterModelPreview::handleMouseDown(S32 x, S32 y, MASK mask) { if (mPreviewRect.pointInRect(x, y)) { bringToFront( x, y ); gFocusMgr.setMouseCapture(this); gViewerWindow->hideCursor(); mLastMouseX = x; mLastMouseY = y; return TRUE; } return LLFloater::handleMouseDown(x, y, mask); } //----------------------------------------------------------------------------- // handleMouseUp() //----------------------------------------------------------------------------- BOOL LLFloaterModelPreview::handleMouseUp(S32 x, S32 y, MASK mask) { gFocusMgr.setMouseCapture(FALSE); gViewerWindow->showCursor(); return LLFloater::handleMouseUp(x, y, mask); } //----------------------------------------------------------------------------- // handleHover() //----------------------------------------------------------------------------- BOOL LLFloaterModelPreview::handleHover (S32 x, S32 y, MASK mask) { MASK local_mask = mask & ~MASK_ALT; if (mModelPreview && hasMouseCapture()) { if (local_mask == MASK_PAN) { // pan here mModelPreview->pan((F32)(x - mLastMouseX) * -0.005f, (F32)(y - mLastMouseY) * -0.005f); } else if (local_mask == MASK_ORBIT) { F32 yaw_radians = (F32)(x - mLastMouseX) * -0.01f; F32 pitch_radians = (F32)(y - mLastMouseY) * 0.02f; mModelPreview->rotate(yaw_radians, pitch_radians); } else { F32 yaw_radians = (F32)(x - mLastMouseX) * -0.01f; F32 zoom_amt = (F32)(y - mLastMouseY) * 0.02f; mModelPreview->rotate(yaw_radians, 0.f); mModelPreview->zoom(zoom_amt); } mModelPreview->refresh(); LLUI::setMousePositionLocal(this, mLastMouseX, mLastMouseY); } if (!mPreviewRect.pointInRect(x, y) || !mModelPreview) { return LLFloater::handleHover(x, y, mask); } else if (local_mask == MASK_ORBIT) { gViewerWindow->setCursor(UI_CURSOR_TOOLCAMERA); } else if (local_mask == MASK_PAN) { gViewerWindow->setCursor(UI_CURSOR_TOOLPAN); } else { gViewerWindow->setCursor(UI_CURSOR_TOOLZOOMIN); } return TRUE; } //----------------------------------------------------------------------------- // handleScrollWheel() //----------------------------------------------------------------------------- BOOL LLFloaterModelPreview::handleScrollWheel(S32 x, S32 y, S32 clicks) { if (mPreviewRect.pointInRect(x, y) && mModelPreview) { mModelPreview->zoom((F32)clicks * -0.2f); mModelPreview->refresh(); } return TRUE; } //static void LLFloaterModelPreview::onPhysicsParamCommit(LLUICtrl* ctrl, void* data) { if (LLConvexDecomposition::getInstance() == NULL) { llinfos << "convex decomposition tool is a stub on this platform. cannot get decomp." << llendl; return; } if (sInstance) { LLCDParam* param = (LLCDParam*) data; std::string name(param->mName); sInstance->mDecompParams[name] = ctrl->getValue(); if (name == "Simplify Method") { if (ctrl->getValue().asInteger() == 0) { sInstance->childSetVisible("Retain%", true); sInstance->childSetVisible("Detail Scale", false); } else { sInstance->childSetVisible("Retain%", false); sInstance->childSetVisible("Detail Scale", true); } } } } //static void LLFloaterModelPreview::onPhysicsStageExecute(LLUICtrl* ctrl, void* data) { LLCDStageData* stage_data = (LLCDStageData*) data; std::string stage = stage_data->mName; if (sInstance) { if (!sInstance->mCurRequest.empty()) { llinfos << "Decomposition request still pending." << llendl; return; } if (sInstance->mModelPreview) { for (S32 i = 0; i < sInstance->mModelPreview->mModel[LLModel::LOD_PHYSICS].size(); ++i) { LLModel* mdl = sInstance->mModelPreview->mModel[LLModel::LOD_PHYSICS][i]; DecompRequest* request = new DecompRequest(stage, mdl); sInstance->mCurRequest.insert(request); gMeshRepo.mDecompThread->submitRequest(request); } } if (stage == "Decompose") { sInstance->setStatusMessage(sInstance->getString("decomposing")); sInstance->childSetVisible("Decompose", false); sInstance->childSetVisible("decompose_cancel", true); } else if (stage == "Simplify") { sInstance->setStatusMessage(sInstance->getString("simplifying")); sInstance->childSetVisible("Simplify", false); sInstance->childSetVisible("simplify_cancel", true); } } } //static void LLFloaterModelPreview::onPhysicsBrowse(LLUICtrl* ctrl, void* userdata) { sInstance->loadModel(LLModel::LOD_PHYSICS); } //static void LLFloaterModelPreview::onPhysicsUseLOD(LLUICtrl* ctrl, void* userdata) { S32 which_mode = 3; LLCtrlSelectionInterface* iface = sInstance->childGetSelectionInterface("physics_lod_combo"); if (iface) { which_mode = iface->getFirstSelectedIndex(); } sInstance->mModelPreview->setPhysicsFromLOD(which_mode); } //static void LLFloaterModelPreview::onCancel(LLUICtrl* ctrl, void* data) { if (sInstance) { sInstance->closeFloater(false); } } //static void LLFloaterModelPreview::onPhysicsStageCancel(LLUICtrl* ctrl, void*data) { if (sInstance) { for (std::set >::iterator iter = sInstance->mCurRequest.begin(); iter != sInstance->mCurRequest.end(); ++iter) { DecompRequest* req = *iter; req->mContinue = 0; } sInstance->mCurRequest.clear(); } } void LLFloaterModelPreview::initDecompControls() { LLSD key; childSetCommitCallback("simplify_cancel", onPhysicsStageCancel, NULL); childSetCommitCallback("decompose_cancel", onPhysicsStageCancel, NULL); childSetCommitCallback("physics_lod_combo", onPhysicsUseLOD, NULL); childSetCommitCallback("physics_browse", onPhysicsBrowse, NULL); static const LLCDStageData* stage = NULL; static S32 stage_count = 0; if (!stage && LLConvexDecomposition::getInstance() != NULL) { stage_count = LLConvexDecomposition::getInstance()->getStages(&stage); } static const LLCDParam* param = NULL; static S32 param_count = 0; if (!param && LLConvexDecomposition::getInstance() != NULL) { param_count = LLConvexDecomposition::getInstance()->getParameters(¶m); } for (S32 j = stage_count-1; j >= 0; --j) { LLButton* button = getChild(stage[j].mName); if (button) { button->setCommitCallback(onPhysicsStageExecute, (void*) &stage[j]); } gMeshRepo.mDecompThread->mStageID[stage[j].mName] = j; // protected against stub by stage_count being 0 for stub above LLConvexDecomposition::getInstance()->registerCallback(j, LLPhysicsDecomp::llcdCallback); //llinfos << "Physics decomp stage " << stage[j].mName << " (" << j << ") parameters:" << llendl; //llinfos << "------------------------------------" << llendl; for (S32 i = 0; i < param_count; ++i) { if (param[i].mStage != j) { continue; } std::string name(param[i].mName ? param[i].mName : ""); std::string description(param[i].mDescription ? param[i].mDescription : ""); std::string type = "unknown"; llinfos << name << " - " << description << llendl; if (param[i].mType == LLCDParam::LLCD_FLOAT) { mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mFloat); //llinfos << "Type: float, Default: " << param[i].mDefault.mFloat << llendl; LLSliderCtrl* slider = getChild(name); if (slider) { slider->setMinValue(param[i].mDetails.mRange.mLow.mFloat); slider->setMaxValue(param[i].mDetails.mRange.mHigh.mFloat); slider->setIncrement(param[i].mDetails.mRange.mDelta.mFloat); slider->setValue(param[i].mDefault.mFloat); slider->setCommitCallback(onPhysicsParamCommit, (void*) ¶m[i]); } } else if (param[i].mType == LLCDParam::LLCD_INTEGER) { mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mIntOrEnumValue); //llinfos << "Type: integer, Default: " << param[i].mDefault.mIntOrEnumValue << llendl; LLSliderCtrl* slider = getChild(name); if (slider) { slider->setMinValue(param[i].mDetails.mRange.mLow.mIntOrEnumValue); slider->setMaxValue(param[i].mDetails.mRange.mHigh.mIntOrEnumValue); slider->setIncrement(param[i].mDetails.mRange.mDelta.mIntOrEnumValue); slider->setValue(param[i].mDefault.mIntOrEnumValue); slider->setCommitCallback(onPhysicsParamCommit, (void*) ¶m[i]); } } else if (param[i].mType == LLCDParam::LLCD_BOOLEAN) { mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mBool); //llinfos << "Type: boolean, Default: " << (param[i].mDefault.mBool ? "True" : "False") << llendl; LLCheckBoxCtrl* check_box = getChild(name); if (check_box) { check_box->setValue(param[i].mDefault.mBool); check_box->setCommitCallback(onPhysicsParamCommit, (void*) ¶m[i]); } } else if (param[i].mType == LLCDParam::LLCD_ENUM) { mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mIntOrEnumValue); //llinfos << "Type: enum, Default: " << param[i].mDefault.mIntOrEnumValue << llendl; { //plug into combo box //llinfos << "Accepted values: " << llendl; LLComboBox* combo_box = getChild(name); for (S32 k = 0; k < param[i].mDetails.mEnumValues.mNumEnums; ++k) { //llinfos << param[i].mDetails.mEnumValues.mEnumsArray[k].mValue // << " - " << param[i].mDetails.mEnumValues.mEnumsArray[k].mName << llendl; combo_box->add(param[i].mDetails.mEnumValues.mEnumsArray[k].mName, LLSD::Integer(param[i].mDetails.mEnumValues.mEnumsArray[k].mValue)); } combo_box->setValue(param[i].mDefault.mIntOrEnumValue); combo_box->setCommitCallback(onPhysicsParamCommit, (void*) ¶m[i]); } //llinfos << "----" << llendl; } //llinfos << "-----------------------------" << llendl; } } childSetCommitCallback("physics_explode", LLFloaterModelPreview::onExplodeCommit, this); } //----------------------------------------------------------------------------- // onMouseCaptureLost() //----------------------------------------------------------------------------- // static void LLFloaterModelPreview::onMouseCaptureLostModelPreview(LLMouseHandler* handler) { gViewerWindow->showCursor(); } //----------------------------------------------------------------------------- // LLModelLoader //----------------------------------------------------------------------------- LLModelLoader::LLModelLoader(std::string filename, S32 lod, LLModelPreview* preview) : LLThread("Model Loader"), mFilename(filename), mLod(lod), mPreview(preview), mFirstTransform(TRUE), mResetJoints( FALSE ) { mJointMap["mPelvis"] = "mPelvis"; mJointMap["mTorso"] = "mTorso"; mJointMap["mChest"] = "mChest"; mJointMap["mNeck"] = "mNeck"; mJointMap["mHead"] = "mHead"; mJointMap["mSkull"] = "mSkull"; mJointMap["mEyeRight"] = "mEyeRight"; mJointMap["mEyeLeft"] = "mEyeLeft"; mJointMap["mCollarLeft"] = "mCollarLeft"; mJointMap["mShoulderLeft"] = "mShoulderLeft"; mJointMap["mElbowLeft"] = "mElbowLeft"; mJointMap["mWristLeft"] = "mWristLeft"; mJointMap["mCollarRight"] = "mCollarRight"; mJointMap["mShoulderRight"] = "mShoulderRight"; mJointMap["mElbowRight"] = "mElbowRight"; mJointMap["mWristRight"] = "mWristRight"; mJointMap["mHipRight"] = "mHipRight"; mJointMap["mKneeRight"] = "mKneeRight"; mJointMap["mAnkleRight"] = "mAnkleRight"; mJointMap["mFootRight"] = "mFootRight"; mJointMap["mToeRight"] = "mToeRight"; mJointMap["mHipLeft"] = "mHipLeft"; mJointMap["mKneeLeft"] = "mKneeLeft"; mJointMap["mAnkleLeft"] = "mAnkleLeft"; mJointMap["mFootLeft"] = "mFootLeft"; mJointMap["mToeLeft"] = "mToeLeft"; mJointMap["avatar_mPelvis"] = "mPelvis"; mJointMap["avatar_mTorso"] = "mTorso"; mJointMap["avatar_mChest"] = "mChest"; mJointMap["avatar_mNeck"] = "mNeck"; mJointMap["avatar_mHead"] = "mHead"; mJointMap["avatar_mSkull"] = "mSkull"; mJointMap["avatar_mEyeRight"] = "mEyeRight"; mJointMap["avatar_mEyeLeft"] = "mEyeLeft"; mJointMap["avatar_mCollarLeft"] = "mCollarLeft"; mJointMap["avatar_mShoulderLeft"] = "mShoulderLeft"; mJointMap["avatar_mElbowLeft"] = "mElbowLeft"; mJointMap["avatar_mWristLeft"] = "mWristLeft"; mJointMap["avatar_mCollarRight"] = "mCollarRight"; mJointMap["avatar_mShoulderRight"] = "mShoulderRight"; mJointMap["avatar_mElbowRight"] = "mElbowRight"; mJointMap["avatar_mWristRight"] = "mWristRight"; mJointMap["avatar_mHipRight"] = "mHipRight"; mJointMap["avatar_mKneeRight"] = "mKneeRight"; mJointMap["avatar_mAnkleRight"] = "mAnkleRight"; mJointMap["avatar_mFootRight"] = "mFootRight"; mJointMap["avatar_mToeRight"] = "mToeRight"; mJointMap["avatar_mHipLeft"] = "mHipLeft"; mJointMap["avatar_mKneeLeft"] = "mKneeLeft"; mJointMap["avatar_mAnkleLeft"] = "mAnkleLeft"; mJointMap["avatar_mFootLeft"] = "mFootLeft"; mJointMap["avatar_mToeLeft"] = "mToeLeft"; mJointMap["hip"] = "mPelvis"; mJointMap["abdomen"] = "mTorso"; mJointMap["chest"] = "mChest"; mJointMap["neck"] = "mNeck"; mJointMap["head"] = "mHead"; mJointMap["figureHair"] = "mSkull"; mJointMap["lCollar"] = "mCollarLeft"; mJointMap["lShldr"] = "mShoulderLeft"; mJointMap["lForeArm"] = "mElbowLeft"; mJointMap["lHand"] = "mWristLeft"; mJointMap["rCollar"] = "mCollarRight"; mJointMap["rShldr"] = "mShoulderRight"; mJointMap["rForeArm"] = "mElbowRight"; mJointMap["rHand"] = "mWristRight"; mJointMap["rThigh"] = "mHipRight"; mJointMap["rShin"] = "mKneeRight"; mJointMap["rFoot"] = "mFootRight"; mJointMap["lThigh"] = "mHipLeft"; mJointMap["lShin"] = "mKneeLeft"; mJointMap["lFoot"] = "mFootLeft"; //move into joint mapper class mMasterJointList.push_front("mPelvis"); mMasterJointList.push_front("mTorso"); mMasterJointList.push_front("mChest"); mMasterJointList.push_front("mNeck"); mMasterJointList.push_front("mHead"); mMasterJointList.push_front("mCollarLeft"); mMasterJointList.push_front("mShoulderLeft"); mMasterJointList.push_front("mElbowLeft"); mMasterJointList.push_front("mWristLeft"); mMasterJointList.push_front("mCollarRight"); mMasterJointList.push_front("mShoulderRight"); mMasterJointList.push_front("mElbowRight"); mMasterJointList.push_front("mWristRight"); mMasterJointList.push_front("mHipRight"); mMasterJointList.push_front("mKneeRight"); mMasterJointList.push_front("mFootRight"); mMasterJointList.push_front("mHipLeft"); mMasterJointList.push_front("mKneeLeft"); mMasterJointList.push_front("mFootLeft"); if (mPreview) { //only try to load from slm if viewer is configured to do so and this is the //initial model load (not an LoD or physics shape) mTrySLM = gSavedSettings.getBOOL("MeshImportUseSLM") && mPreview->mBaseModel.empty(); mPreview->setLoadState(STARTING); } else { mTrySLM = false; } } void stretch_extents(LLModel* model, LLMatrix4a& mat, LLVector4a& min, LLVector4a& max, BOOL& first_transform) { LLVector4a box[] = { LLVector4a(-1, 1,-1), LLVector4a(-1, 1, 1), LLVector4a(-1,-1,-1), LLVector4a(-1,-1, 1), LLVector4a( 1, 1,-1), LLVector4a( 1, 1, 1), LLVector4a( 1,-1,-1), LLVector4a( 1,-1, 1), }; for (S32 j = 0; j < model->getNumVolumeFaces(); ++j) { const LLVolumeFace& face = model->getVolumeFace(j); LLVector4a center; center.setAdd(face.mExtents[0], face.mExtents[1]); center.mul(0.5f); LLVector4a size; size.setSub(face.mExtents[1],face.mExtents[0]); size.mul(0.5f); for (U32 i = 0; i < 8; i++) { LLVector4a t; t.setMul(size, box[i]); t.add(center); LLVector4a v; mat.affineTransform(t, v); if (first_transform) { first_transform = FALSE; min = max = v; } else { update_min_max(min, max, v); } } } } void stretch_extents(LLModel* model, LLMatrix4& mat, LLVector3& min, LLVector3& max, BOOL& first_transform) { LLVector4a mina, maxa; LLMatrix4a mata; mata.loadu(mat); mina.load3(min.mV); maxa.load3(max.mV); stretch_extents(model, mata, mina, maxa, first_transform); min.set(mina.getF32ptr()); max.set(maxa.getF32ptr()); } void LLModelLoader::run() { if (!doLoadModel()) { mPreview = NULL; } doOnIdleOneTime(boost::bind(&LLModelLoader::loadModelCallback,this)); } bool LLModelLoader::doLoadModel() { //first, look for a .slm file of the same name that was modified later //than the .dae if (mTrySLM) { std::string filename = mFilename; std::string::size_type i = filename.rfind("."); if (i != std::string::npos) { filename.replace(i, filename.size()-1, ".slm"); llstat slm_status; if (LLFile::stat(filename, &slm_status) == 0) { //slm file exists llstat dae_status; if (LLFile::stat(mFilename, &dae_status) != 0 || dae_status.st_mtime < slm_status.st_mtime) { if (loadFromSLM(filename)) { //slm successfully loaded, if this fails, fall through and //try loading from dae mLod = -1; //successfully loading from an slm implicitly sets all //LoDs return true; } } } } } //no suitable slm exists, load from the .dae file DAE dae; domCOLLADA* dom = dae.open(mFilename); if (!dom) { return false; } daeDatabase* db = dae.getDatabase(); daeInt count = db->getElementCount(NULL, COLLADA_TYPE_MESH); daeDocument* doc = dae.getDoc(mFilename); if (!doc) { llwarns << "can't find internal doc" << llendl; return false; } daeElement* root = doc->getDomRoot(); if (!root) { llwarns << "document has no root" << llendl; return false; } //get unit scale mTransform.setIdentity(); domAsset::domUnit* unit = daeSafeCast(root->getDescendant(daeElement::matchType(domAsset::domUnit::ID()))); if (unit) { F32 meter = unit->getMeter(); mTransform.mMatrix[0][0] = meter; mTransform.mMatrix[1][1] = meter; mTransform.mMatrix[2][2] = meter; } //get up axis rotation LLMatrix4 rotation; domUpAxisType up = UPAXISTYPE_Y_UP; // default is Y_UP domAsset::domUp_axis* up_axis = daeSafeCast(root->getDescendant(daeElement::matchType(domAsset::domUp_axis::ID()))); if (up_axis) { up = up_axis->getValue(); } if (up == UPAXISTYPE_X_UP) { rotation.initRotation(0.0f, 90.0f * DEG_TO_RAD, 0.0f); } else if (up == UPAXISTYPE_Y_UP) { rotation.initRotation(90.0f * DEG_TO_RAD, 0.0f, 0.0f); } rotation *= mTransform; mTransform = rotation; for (daeInt idx = 0; idx < count; ++idx) { //build map of domEntities to LLModel domMesh* mesh = NULL; db->getElement((daeElement**) &mesh, idx, NULL, COLLADA_TYPE_MESH); if (mesh) { LLPointer model = LLModel::loadModelFromDomMesh(mesh); if (model.notNull() && validate_model(model)) { mModelList.push_back(model); mModel[mesh] = model; } } } count = db->getElementCount(NULL, COLLADA_TYPE_SKIN); for (daeInt idx = 0; idx < count; ++idx) { //add skinned meshes as instances domSkin* skin = NULL; db->getElement((daeElement**) &skin, idx, NULL, COLLADA_TYPE_SKIN); if (skin) { domGeometry* geom = daeSafeCast(skin->getSource().getElement()); if (geom) { domMesh* mesh = geom->getMesh(); if (mesh) { LLModel* model = mModel[mesh]; if (model) { LLVector3 mesh_scale_vector; LLVector3 mesh_translation_vector; model->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector); LLMatrix4 normalized_transformation; normalized_transformation.setTranslation(mesh_translation_vector); LLMatrix4 mesh_scale; mesh_scale.initScale(mesh_scale_vector); mesh_scale *= normalized_transformation; normalized_transformation = mesh_scale; glh::matrix4f inv_mat((F32*) normalized_transformation.mMatrix); inv_mat = inv_mat.inverse(); LLMatrix4 inverse_normalized_transformation(inv_mat.m); domSkin::domBind_shape_matrix* bind_mat = skin->getBind_shape_matrix(); if (bind_mat) { //get bind shape matrix domFloat4x4& dom_value = bind_mat->getValue(); for (int i = 0; i < 4; i++) { for(int j = 0; j < 4; j++) { model->mBindShapeMatrix.mMatrix[i][j] = dom_value[i + j*4]; } } LLMatrix4 trans = normalized_transformation; trans *= model->mBindShapeMatrix; model->mBindShapeMatrix = trans; } //The joint transfom map that we'll populate below std::map jointTransforms; jointTransforms.clear(); //Some collada setup for accessing the skeleton daeElement* pElement = 0; dae.getDatabase()->getElement( &pElement, 0, 0, "skeleton" ); //Try to get at the skeletal instance controller domInstance_controller::domSkeleton* pSkeleton = daeSafeCast( pElement ); bool missingSkeletonOrScene = false; //If no skeleton, do a breadth-first search to get at specific joints bool rootNode = false; bool skeletonWithNoRootNode = false; //Need to test for a skeleton that does not have a root node //This occurs when your instance controller does not have an associated scene if ( pSkeleton ) { daeElement* pSkeletonRootNode = pSkeleton->getValue().getElement(); if ( pSkeletonRootNode ) { rootNode = true; } else { skeletonWithNoRootNode = true; } } if ( !pSkeleton || !rootNode ) { daeElement* pScene = root->getDescendant("visual_scene"); if ( !pScene ) { llwarns<<"No visual scene - unable to parse bone offsets "< > children = pScene->getChildren(); S32 childCount = children.getCount(); //Process any children that are joints //Not all children are joints, some code be ambient lights, cameras, geometry etc.. for (S32 i = 0; i < childCount; ++i) { domNode* pNode = daeSafeCast(children[i]); if ( isNodeAJoint( pNode ) ) { processJointNode( pNode, jointTransforms ); } } } } else //Has Skeleton { //Get the root node of the skeleton daeElement* pSkeletonRootNode = pSkeleton->getValue().getElement(); if ( pSkeletonRootNode ) { //Once we have the root node - start acccessing it's joint components const int jointCnt = mJointMap.size(); std::map :: const_iterator jointIt = mJointMap.begin(); //Loop over all the possible joints within the .dae - using the allowed joint list in the ctor. for ( int i=0; i( resolver.getElement() ); if ( pJoint ) { //Pull out the translate id and store it in the jointTranslations map daeSIDResolver jointResolver( pJoint, "./translate" ); domTranslate* pTranslate = daeSafeCast( jointResolver.getElement() ); LLMatrix4 workingTransform; //Translation via SID if ( pTranslate ) { extractTranslation( pTranslate, workingTransform ); } else { //Translation via child from element daeElement* pTranslateElement = getChildFromElement( pJoint, "translate" ); if ( pTranslateElement && pTranslateElement->typeID() != domTranslate::ID() ) { llwarns<< "The found element is not a translate node" <getJoints(); domInputLocal_Array& joint_input = joints->getInput_array(); for (size_t i = 0; i < joint_input.getCount(); ++i) { domInputLocal* input = joint_input.get(i); xsNMTOKEN semantic = input->getSemantic(); if (strcmp(semantic, COMMON_PROFILE_INPUT_JOINT) == 0) { //found joint source, fill model->mJointMap and model->mJointList daeElement* elem = input->getSource().getElement(); domSource* source = daeSafeCast(elem); if (source) { domName_array* names_source = source->getName_array(); if (names_source) { domListOfNames &names = names_source->getValue(); for (size_t j = 0; j < names.getCount(); ++j) { std::string name(names.get(j)); if (mJointMap.find(name) != mJointMap.end()) { name = mJointMap[name]; } model->mJointList.push_back(name); model->mJointMap[name] = j; } } else { domIDREF_array* names_source = source->getIDREF_array(); if (names_source) { xsIDREFS& names = names_source->getValue(); for (size_t j = 0; j < names.getCount(); ++j) { std::string name(names.get(j).getID()); if (mJointMap.find(name) != mJointMap.end()) { name = mJointMap[name]; } model->mJointList.push_back(name); model->mJointMap[name] = j; } } } } } else if (strcmp(semantic, COMMON_PROFILE_INPUT_INV_BIND_MATRIX) == 0) { //found inv_bind_matrix array, fill model->mInvBindMatrix domSource* source = daeSafeCast(input->getSource().getElement()); if (source) { domFloat_array* t = source->getFloat_array(); if (t) { domListOfFloats& transform = t->getValue(); S32 count = transform.getCount()/16; for (S32 k = 0; k < count; ++k) { LLMatrix4 mat; for (int i = 0; i < 4; i++) { for(int j = 0; j < 4; j++) { mat.mMatrix[i][j] = transform[k*16 + i + j*4]; } } model->mInvBindMatrix.push_back(mat); } } } } } //Now that we've parsed the joint array, let's determine if we have a full rig //(which means we have all the joints that are required for an avatar versus //a skinned asset attached to a node in a file that contains an entire skeleton, //but does not use the skeleton). mPreview->setRigValid( doesJointArrayContainACompleteRig( model->mJointList ) ); if ( !skeletonWithNoRootNode && !model->mJointList.empty() && mPreview->isRigValid() ) { mResetJoints = true; } if ( !missingSkeletonOrScene ) { //Set the joint translations on the avatar - if it's a full mapping //The joints are reset in the dtor if ( mResetJoints ) { std::map :: const_iterator masterJointIt = mJointMap.begin(); std::map :: const_iterator masterJointItEnd = mJointMap.end(); for (;masterJointIt!=masterJointItEnd;++masterJointIt ) { std::string lookingForJoint = (*masterJointIt).first.c_str(); if ( jointTransforms.find( lookingForJoint ) != jointTransforms.end() ) { //llinfos<<"joint "<getJoint( lookingForJoint ); if ( pJoint ) { pJoint->storeCurrentXform( jointTransform.getTranslation() ); } else { //Most likely an error in the asset. llwarns<<"Tried to apply joint position from .dae, but it did not exist in the avatar rig." << llendl; } } } } } //missingSkeletonOrScene //We need to construct the alternate bind matrix (which contains the new joint positions) //in the same order as they were stored in the joint buffer. The joints associated //with the skeleton are not stored in the same order as they are in the exported joint buffer. //This remaps the skeletal joints to be in the same order as the joints stored in the model. std::vector :: const_iterator jointIt = model->mJointList.begin(); const int jointCnt = model->mJointList.size(); for ( int i=0; imInvBindMatrix[i]; newInverse.setTranslation( jointTransforms[lookingForJoint].getTranslation() ); model->mAlternateBindMatrix.push_back( newInverse ); } else { llwarns<<"Possibly misnamed/missing joint [" <getVertices(); if (verts) { domInputLocal_Array& inputs = verts->getInput_array(); for (size_t i = 0; i < inputs.getCount() && model->mPosition.empty(); ++i) { if (strcmp(inputs[i]->getSemantic(), COMMON_PROFILE_INPUT_POSITION) == 0) { domSource* pos_source = daeSafeCast(inputs[i]->getSource().getElement()); if (pos_source) { domFloat_array* pos_array = pos_source->getFloat_array(); if (pos_array) { domListOfFloats& pos = pos_array->getValue(); for (size_t j = 0; j < pos.getCount(); j += 3) { if (pos.getCount() <= j+2) { llerrs << "WTF?" << llendl; } LLVector3 v(pos[j], pos[j+1], pos[j+2]); //transform from COLLADA space to volume space v = v * inverse_normalized_transformation; model->mPosition.push_back(v); } } } } } } //grab skin weights array domSkin::domVertex_weights* weights = skin->getVertex_weights(); if (weights) { domInputLocalOffset_Array& inputs = weights->getInput_array(); domFloat_array* vertex_weights = NULL; for (size_t i = 0; i < inputs.getCount(); ++i) { if (strcmp(inputs[i]->getSemantic(), COMMON_PROFILE_INPUT_WEIGHT) == 0) { domSource* weight_source = daeSafeCast(inputs[i]->getSource().getElement()); if (weight_source) { vertex_weights = weight_source->getFloat_array(); } } } if (vertex_weights) { domListOfFloats& w = vertex_weights->getValue(); domListOfUInts& vcount = weights->getVcount()->getValue(); domListOfInts& v = weights->getV()->getValue(); U32 c_idx = 0; for (size_t vc_idx = 0; vc_idx < vcount.getCount(); ++vc_idx) { //for each vertex daeUInt count = vcount[vc_idx]; //create list of weights that influence this vertex LLModel::weight_list weight_list; for (daeUInt i = 0; i < count; ++i) { //for each weight daeInt joint_idx = v[c_idx++]; daeInt weight_idx = v[c_idx++]; if (joint_idx == -1) { //ignore bindings to bind_shape_matrix continue; } F32 weight_value = w[weight_idx]; weight_list.push_back(LLModel::JointWeight(joint_idx, weight_value)); } //sort by joint weight std::sort(weight_list.begin(), weight_list.end(), LLModel::CompareWeightGreater()); std::vector wght; F32 total = 0.f; for (U32 i = 0; i < llmin((U32) 4, (U32) weight_list.size()); ++i) { //take up to 4 most significant weights if (weight_list[i].mWeight > 0.f) { wght.push_back( weight_list[i] ); total += weight_list[i].mWeight; } } F32 scale = 1.f/total; if (scale != 1.f) { //normalize weights for (U32 i = 0; i < wght.size(); ++i) { wght[i].mWeight *= scale; } } model->mSkinWeights[model->mPosition[vc_idx]] = wght; } //add instance to scene for this model LLMatrix4 transformation = mTransform; // adjust the transformation to compensate for mesh normalization LLMatrix4 mesh_translation; mesh_translation.setTranslation(mesh_translation_vector); mesh_translation *= transformation; transformation = mesh_translation; LLMatrix4 mesh_scale; mesh_scale.initScale(mesh_scale_vector); mesh_scale *= transformation; transformation = mesh_scale; std::vector materials; materials.resize(model->getNumVolumeFaces()); mScene[transformation].push_back(LLModelInstance(model, model->mLabel, transformation, materials)); stretch_extents(model, transformation, mExtents[0], mExtents[1], mFirstTransform); } } } } } } } daeElement* scene = root->getDescendant("visual_scene"); if (!scene) { llwarns << "document has no visual_scene" << llendl; setLoadState( ERROR_PARSING ); return false; } setLoadState( DONE ); processElement(scene); handlePivotPoint( root ); return true; } void LLModelLoader::setLoadState(U32 state) { if (mPreview) { mPreview->setLoadState(state); } } bool LLModelLoader::loadFromSLM(const std::string& filename) { //only need to populate mScene with data from slm llstat stat; if (LLFile::stat(filename, &stat)) { //file does not exist return false; } S32 file_size = (S32) stat.st_size; llifstream ifstream(filename, std::ifstream::in | std::ifstream::binary); LLSD data; LLSDSerialize::fromBinary(data, ifstream, file_size); ifstream.close(); //build model list for each LoD model_list model[LLModel::NUM_LODS]; LLSD& mesh = data["mesh"]; LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE); for (S32 lod = 0; lod < LLModel::NUM_LODS; ++lod) { for (U32 i = 0; i < mesh.size(); ++i) { std::stringstream str(mesh[i].asString()); LLPointer loaded_model = new LLModel(volume_params, (F32) lod); if (loaded_model->createVolumeFacesFromStream(str)) { loaded_model->mLocalID = i; model[lod].push_back(loaded_model); } else { llassert(model[lod].empty()); } } } if (model[LLModel::LOD_HIGH].empty()) { //failed to load high lod return false; } //load instance list model_instance_list instance_list; LLSD& instance = data["instance"]; for (U32 i = 0; i < instance.size(); ++i) { //deserialize instance list instance_list.push_back(LLModelInstance(instance[i])); //match up model instance pointers S32 idx = instance_list[i].mLocalMeshID; for (U32 lod = 0; lod < LLModel::NUM_LODS; ++lod) { if (!model[lod].empty()) { instance_list[i].mLOD[lod] = model[lod][idx]; } } instance_list[i].mModel = model[LLModel::LOD_HIGH][idx]; } //convert instance_list to mScene mFirstTransform = TRUE; for (U32 i = 0; i < instance_list.size(); ++i) { LLModelInstance& cur_instance = instance_list[i]; mScene[cur_instance.mTransform].push_back(cur_instance); stretch_extents(cur_instance.mModel, cur_instance.mTransform, mExtents[0], mExtents[1], mFirstTransform); } return true; } void LLModelLoader::loadModelCallback() { if (mPreview) { mPreview->loadModelCallback(mLod); } while (!isStopped()) { //wait until this thread is stopped before deleting self apr_sleep(100); } delete this; } void LLModelLoader::handlePivotPoint( daeElement* pRoot ) { //Import an optional pivot point - a pivot point is just a node in the visual scene named "AssetPivot" //If no assetpivot is found then the asset will use the SL default daeElement* pScene = pRoot->getDescendant("visual_scene"); if ( pScene ) { daeTArray< daeSmartRef > children = pScene->getChildren(); S32 childCount = children.getCount(); for (S32 i = 0; i < childCount; ++i) { domNode* pNode = daeSafeCast(children[i]); if ( pNode && isNodeAPivotPoint( pNode ) ) { LLMatrix4 workingTransform; daeSIDResolver nodeResolver( pNode, "./translate" ); domTranslate* pTranslate = daeSafeCast( nodeResolver.getElement() ); //Translation via SID was successful //todo#extract via element as well if ( pTranslate ) { extractTranslation( pTranslate, workingTransform ); mPreview->setModelPivot( workingTransform.getTranslation() ); mPreview->setHasPivot( true ); } } } } } bool LLModelLoader::doesJointArrayContainACompleteRig( const std::vector &jointListFromModel ) { std::deque :: const_iterator masterJointIt = mMasterJointList.begin(); std::deque :: const_iterator masterJointEndIt = mMasterJointList.end(); std::vector :: const_iterator modelJointIt = jointListFromModel.begin(); std::vector :: const_iterator modelJointItEnd = jointListFromModel.end(); bool found = false; for ( ;masterJointIt!=masterJointEndIt;++masterJointIt ) { found = false; modelJointIt = jointListFromModel.begin(); for ( ;modelJointIt!=modelJointItEnd; ++modelJointIt ) { if ( *masterJointIt == *modelJointIt ) { found = true; break; } } if ( !found ) { llinfos<<" Asset did not contain the joint (if you're u/l a fully rigged asset - it is required)." << *masterJointIt<< llendl; break; } } return found; } //called in the main thread void LLModelLoader::loadTextures() { BOOL is_paused = isPaused() ; pause() ; //pause the loader for(scene::iterator iter = mScene.begin(); iter != mScene.end(); ++iter) { for(U32 i = 0 ; i < iter->second.size(); i++) { for(U32 j = 0 ; j < iter->second[i].mMaterial.size() ; j++) { if(!iter->second[i].mMaterial[j].mDiffuseMapFilename.empty()) { iter->second[i].mMaterial[j].mDiffuseMap = LLViewerTextureManager::getFetchedTextureFromUrl("file://" + iter->second[i].mMaterial[j].mDiffuseMapFilename, TRUE, LLViewerTexture::BOOST_PREVIEW); iter->second[i].mMaterial[j].mDiffuseMap->setLoadedCallback(LLModelPreview::textureLoadedCallback, 0, TRUE, FALSE, mPreview, NULL, FALSE); iter->second[i].mMaterial[j].mDiffuseMap->forceToSaveRawImage(); } } } } if(!is_paused) { unpause() ; } } bool LLModelLoader::isNodeAJoint( domNode* pNode ) { if ( pNode->getName() == NULL) { return false; } if ( mJointMap.find( pNode->getName() ) != mJointMap.end() ) { return true; } return false; } bool LLModelLoader::isNodeAPivotPoint( domNode* pNode ) { bool result = false; if ( pNode && pNode->getName() ) { std::string name = pNode->getName(); if ( name == "AssetPivot" ) { result = true; } else { result = false; } } return result; } void LLModelLoader::extractTranslation( domTranslate* pTranslate, LLMatrix4& transform ) { domFloat3 jointTrans = pTranslate->getValue(); LLVector3 singleJointTranslation( jointTrans[0], jointTrans[1], jointTrans[2] ); transform.setTranslation( singleJointTranslation ); } void LLModelLoader::extractTranslationViaElement( daeElement* pTranslateElement, LLMatrix4& transform ) { domTranslate* pTranslateChild = dynamic_cast( pTranslateElement ); domFloat3 translateChild = pTranslateChild->getValue(); LLVector3 singleJointTranslation( translateChild[0], translateChild[1], translateChild[2] ); transform.setTranslation( singleJointTranslation ); } void LLModelLoader::processJointNode( domNode* pNode, std::map& jointTransforms ) { if (pNode->getName() == NULL) { llwarns << "nameless node, can't process" << llendl; return; } //llwarns<<"ProcessJointNode# Node:" <getName()<( jointResolver.getElement() ); //Translation via SID was successful if ( pTranslate ) { extractTranslation( pTranslate, workingTransform ); } else { //Translation via child from element daeElement* pTranslateElement = getChildFromElement( pNode, "translate" ); if ( !pTranslateElement || pTranslateElement->typeID() != domTranslate::ID() ) { //llwarns<< "The found element is not a translate node" <( jointResolver.getElement() ); if ( pMatrix ) { //llinfos<<"A matrix SID was however found!"<getValue(); for ( int i = 0; i < 4; i++ ) { for( int j = 0; j < 4; j++ ) { workingTransform.mMatrix[i][j] = domArray[i + j*4]; } } } else { llwarns<< "The found element is not translate or matrix node - most likely a corrupt export!" <getName() ] = workingTransform; //2. handle the nodes children //Gather and handle the incoming nodes children daeTArray< daeSmartRef > childOfChild = pNode->getChildren(); S32 childOfChildCount = childOfChild.getCount(); for (S32 i = 0; i < childOfChildCount; ++i) { domNode* pChildNode = daeSafeCast( childOfChild[i] ); if ( pChildNode ) { processJointNode( pChildNode, jointTransforms ); } } } daeElement* LLModelLoader::getChildFromElement( daeElement* pElement, std::string const & name ) { daeElement* pChildOfElement = pElement->getChild( name.c_str() ); if ( pChildOfElement ) { return pChildOfElement; } llwarns<< "Could not find a child [" << name << "] for the element: \"" << pElement->getAttribute("id") << "\"" << llendl; return NULL; } void LLModelLoader::processElement(daeElement* element) { LLMatrix4 saved_transform = mTransform; domTranslate* translate = daeSafeCast(element); if (translate) { domFloat3 dom_value = translate->getValue(); LLMatrix4 translation; translation.setTranslation(LLVector3(dom_value[0], dom_value[1], dom_value[2])); translation *= mTransform; mTransform = translation; } domRotate* rotate = daeSafeCast(element); if (rotate) { domFloat4 dom_value = rotate->getValue(); LLMatrix4 rotation; rotation.initRotTrans(dom_value[3] * DEG_TO_RAD, LLVector3(dom_value[0], dom_value[1], dom_value[2]), LLVector3(0, 0, 0)); rotation *= mTransform; mTransform = rotation; } domScale* scale = daeSafeCast(element); if (scale) { domFloat3 dom_value = scale->getValue(); LLMatrix4 scaling; scaling.initScale(LLVector3(dom_value[0], dom_value[1], dom_value[2])); scaling *= mTransform; mTransform = scaling; } domMatrix* matrix = daeSafeCast(element); if (matrix) { domFloat4x4 dom_value = matrix->getValue(); LLMatrix4 matrix_transform; for (int i = 0; i < 4; i++) { for(int j = 0; j < 4; j++) { matrix_transform.mMatrix[i][j] = dom_value[i + j*4]; } } matrix_transform *= mTransform; mTransform = matrix_transform; } domInstance_geometry* instance_geo = daeSafeCast(element); if (instance_geo) { domGeometry* geo = daeSafeCast(instance_geo->getUrl().getElement()); if (geo) { domMesh* mesh = daeSafeCast(geo->getDescendant(daeElement::matchType(domMesh::ID()))); if (mesh) { LLModel* model = mModel[mesh]; if (model) { LLMatrix4 transformation = mTransform; std::vector materials = getMaterials(model, instance_geo); // adjust the transformation to compensate for mesh normalization LLVector3 mesh_scale_vector; LLVector3 mesh_translation_vector; model->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector); LLMatrix4 mesh_translation; mesh_translation.setTranslation(mesh_translation_vector); mesh_translation *= transformation; transformation = mesh_translation; LLMatrix4 mesh_scale; mesh_scale.initScale(mesh_scale_vector); mesh_scale *= transformation; transformation = mesh_scale; std::string label = getElementLabel(instance_geo); mScene[transformation].push_back(LLModelInstance(model, label, transformation, materials)); stretch_extents(model, transformation, mExtents[0], mExtents[1], mFirstTransform); } } } } domInstance_node* instance_node = daeSafeCast(element); if (instance_node) { daeElement* instance = instance_node->getUrl().getElement(); if (instance) { processElement(instance); } } //process children daeTArray< daeSmartRef > children = element->getChildren(); for (S32 i = 0; i < children.getCount(); i++) { processElement(children[i]); } domNode* node = daeSafeCast(element); if (node) { //this element was a node, restore transform before processiing siblings mTransform = saved_transform; } } std::vector LLModelLoader::getMaterials(LLModel* model, domInstance_geometry* instance_geo) { std::vector materials; for (int i = 0; i < model->mMaterialList.size(); i++) { LLImportMaterial import_material; domInstance_material* instance_mat = NULL; domBind_material::domTechnique_common* technique = daeSafeCast(instance_geo->getDescendant(daeElement::matchType(domBind_material::domTechnique_common::ID()))); if (technique) { daeTArray< daeSmartRef > inst_materials = technique->getChildrenByType(); for (int j = 0; j < inst_materials.getCount(); j++) { std::string symbol(inst_materials[j]->getSymbol()); if (symbol == model->mMaterialList[i]) // found the binding { instance_mat = inst_materials[j]; } } } if (instance_mat) { domMaterial* material = daeSafeCast(instance_mat->getTarget().getElement()); if (material) { domInstance_effect* instance_effect = daeSafeCast(material->getDescendant(daeElement::matchType(domInstance_effect::ID()))); if (instance_effect) { domEffect* effect = daeSafeCast(instance_effect->getUrl().getElement()); if (effect) { domProfile_COMMON* profile = daeSafeCast(effect->getDescendant(daeElement::matchType(domProfile_COMMON::ID()))); if (profile) { import_material = profileToMaterial(profile); } } } } } materials.push_back(import_material); } return materials; } LLImportMaterial LLModelLoader::profileToMaterial(domProfile_COMMON* material) { LLImportMaterial mat; mat.mFullbright = FALSE; daeElement* diffuse = material->getDescendant("diffuse"); if (diffuse) { domCommon_color_or_texture_type_complexType::domTexture* texture = daeSafeCast(diffuse->getDescendant("texture")); if (texture) { domCommon_newparam_type_Array newparams = material->getNewparam_array(); for (S32 i = 0; i < newparams.getCount(); i++) { domFx_surface_common* surface = newparams[i]->getSurface(); if (surface) { domFx_surface_init_common* init = surface->getFx_surface_init_common(); if (init) { domFx_surface_init_from_common_Array init_from = init->getInit_from_array(); if (init_from.getCount() > i) { domImage* image = daeSafeCast(init_from[i]->getValue().getElement()); if (image) { // we only support init_from now - embedded data will come later domImage::domInit_from* init = image->getInit_from(); if (init) { mat.mDiffuseMapFilename = cdom::uriToNativePath(init->getValue().str()); mat.mDiffuseMapLabel = getElementLabel(material); } } } } } } } domCommon_color_or_texture_type_complexType::domColor* color = daeSafeCast(diffuse->getDescendant("color")); if (color) { domFx_color_common domfx_color = color->getValue(); LLColor4 value = LLColor4(domfx_color[0], domfx_color[1], domfx_color[2], domfx_color[3]); mat.mDiffuseColor = value; } } daeElement* emission = material->getDescendant("emission"); if (emission) { LLColor4 emission_color = getDaeColor(emission); if (((emission_color[0] + emission_color[1] + emission_color[2]) / 3.0) > 0.25) { mat.mFullbright = TRUE; } } return mat; } // try to get a decent label for this element std::string LLModelLoader::getElementLabel(daeElement *element) { // if we have a name attribute, use it std::string name = element->getAttribute("name"); if (name.length()) { return name; } // if we have an ID attribute, use it if (element->getID()) { return std::string(element->getID()); } // if we have a parent, use it daeElement* parent = element->getParent(); if (parent) { // if parent has a name, use it std::string name = parent->getAttribute("name"); if (name.length()) { return name; } // if parent has an ID, use it if (parent->getID()) { return std::string(parent->getID()); } } // try to use our type daeString element_name = element->getElementName(); if (element_name) { return std::string(element_name); } // if all else fails, use "object" return std::string("object"); } LLColor4 LLModelLoader::getDaeColor(daeElement* element) { LLColor4 value; domCommon_color_or_texture_type_complexType::domColor* color = daeSafeCast(element->getDescendant("color")); if (color) { domFx_color_common domfx_color = color->getValue(); value = LLColor4(domfx_color[0], domfx_color[1], domfx_color[2], domfx_color[3]); } return value; } //----------------------------------------------------------------------------- // LLModelPreview //----------------------------------------------------------------------------- LLModelPreview::LLModelPreview(S32 width, S32 height, LLFloater* fmp) : LLViewerDynamicTexture(width, height, 3, ORDER_MIDDLE, FALSE), LLMutex(NULL) , mPelvisZOffset( 0.0f ) , mRigValid( false ) { mNeedsUpdate = TRUE; mCameraDistance = 0.f; mCameraYaw = 0.f; mCameraPitch = 0.f; mCameraZoom = 1.f; mTextureName = 0; mPreviewLOD = 0; mModelLoader = NULL; mMaxTriangleLimit = 0; mDirty = false; mGenLOD = false; mLoading = false; mLoadState = LLModelLoader::STARTING; mGroup = 0; mBuildShareTolerance = 0.f; mBuildQueueMode = GLOD_QUEUE_GREEDY; mBuildBorderMode = GLOD_BORDER_UNLOCK; mBuildOperator = GLOD_OPERATOR_EDGE_COLLAPSE; for (U32 i = 0; i < LLModel::NUM_LODS; ++i) { mRequestedTriangleCount[i] = 0; } mViewOption["show_textures"] = false; mFMP = fmp; mHasPivot = false; mModelPivot = LLVector3( 0.0f, 0.0f, 0.0f ); glodInit(); } LLModelPreview::~LLModelPreview() { if (mModelLoader) { mModelLoader->mPreview = NULL; } //*HACK : *TODO : turn this back on when we understand why this crashes //glodShutdown(); } U32 LLModelPreview::calcResourceCost() { assert_main_thread(); rebuildUploadData(); if (mFMP && mModelLoader) { if ( getLoadState() != LLModelLoader::ERROR_PARSING ) { mFMP->childEnable("ok_btn"); } } //Upload skin is selected BUT the joints coming in from the asset //were malformed. if ( mFMP && mFMP->childGetValue("upload_skin").asBoolean() ) { if ( !isRigValid() ) { mFMP->childDisable("ok_btn"); } } U32 cost = 0; std::set accounted; U32 num_points = 0; U32 num_hulls = 0; F32 debug_scale = mFMP ? mFMP->childGetValue("import_scale").asReal() : 1.f; mPelvisZOffset = mFMP ? mFMP->childGetValue("pelvis_offset").asReal() : 8.0f; //if ( mFMP && mFMP->childGetValue("upload_joints").asBoolean() ) //{ // gAgentAvatarp->setPelvisOffset( mPelvisZOffset ); //} F32 streaming_cost = 0.f; F32 physics_cost = 0.f; for (U32 i = 0; i < mUploadData.size(); ++i) { LLModelInstance& instance = mUploadData[i]; if (accounted.find(instance.mModel) == accounted.end()) { accounted.insert(instance.mModel); LLModel::convex_hull_decomposition& decomp = instance.mLOD[LLModel::LOD_PHYSICS] ? instance.mLOD[LLModel::LOD_PHYSICS]->mConvexHullDecomp : instance.mModel->mConvexHullDecomp; LLSD ret = LLModel::writeModel( "", instance.mLOD[4], instance.mLOD[3], instance.mLOD[2], instance.mLOD[1], instance.mLOD[0], decomp, mFMP->childGetValue("upload_skin").asBoolean(), mFMP->childGetValue("upload_joints").asBoolean(), TRUE); cost += gMeshRepo.calcResourceCost(ret); num_hulls += decomp.size(); for (U32 i = 0; i < decomp.size(); ++i) { num_points += decomp[i].size(); } //calculate streaming cost LLMatrix4 transformation = instance.mTransform; LLVector3 position = LLVector3(0, 0, 0) * transformation; LLVector3 x_transformed = LLVector3(1, 0, 0) * transformation - position; LLVector3 y_transformed = LLVector3(0, 1, 0) * transformation - position; LLVector3 z_transformed = LLVector3(0, 0, 1) * transformation - position; F32 x_length = x_transformed.normalize(); F32 y_length = y_transformed.normalize(); F32 z_length = z_transformed.normalize(); LLVector3 scale = LLVector3(x_length, y_length, z_length); F32 radius = scale.length()*debug_scale; streaming_cost += LLMeshRepository::getStreamingCost(ret, radius); } } F32 scale = mFMP ? mFMP->childGetValue("import_scale").asReal()*2.f : 2.f; mDetailsSignal(mPreviewScale[0]*scale, mPreviewScale[1]*scale, mPreviewScale[2]*scale, streaming_cost, physics_cost); updateStatusMessages(); return cost; } void LLFloaterModelPreview::setDetails(F32 x, F32 y, F32 z, F32 streaming_cost, F32 physics_cost) { childSetTextArg("import_dimensions", "[X]", llformat("%.3f", x)); childSetTextArg("import_dimensions", "[Y]", llformat("%.3f", y)); childSetTextArg("import_dimensions", "[Z]", llformat("%.3f", z)); childSetTextArg("streaming cost", "[COST]", llformat("%.3f", streaming_cost)); childSetTextArg("physics cost", "[COST]", llformat("%.3f", physics_cost)); } void LLModelPreview::alterModelsPivot( void ) { for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter) { if ( *iter ) { (*iter)->offsetMesh( mModelPivot ); } } for ( int i=0;ioffsetMesh( mModelPivot ); } } } } void LLModelPreview::rebuildUploadData() { assert_main_thread(); mUploadData.clear(); mTextureSet.clear(); //fill uploaddata instance vectors from scene data std::string requested_name = mFMP->getChild("description_form")->getValue().asString(); LLSpinCtrl* scale_spinner = mFMP->getChild("import_scale"); if (!scale_spinner) { llerrs << "floater_model_preview.xml MUST contain import_scale spinner." << llendl; } F32 scale = scale_spinner->getValue().asReal(); LLMatrix4 scale_mat; scale_mat.initScale(LLVector3(scale, scale, scale)); F32 max_scale = 0.f; if ( mBaseScene.size() > 0 ) { mFMP->childEnable("ok_btn"); } for (LLModelLoader::scene::iterator iter = mBaseScene.begin(); iter != mBaseScene.end(); ++iter) { //for each transform in scene LLMatrix4 mat = iter->first; // compute position LLVector3 position = LLVector3(0, 0, 0) * mat; // compute scale LLVector3 x_transformed = LLVector3(1, 0, 0) * mat - position; LLVector3 y_transformed = LLVector3(0, 1, 0) * mat - position; LLVector3 z_transformed = LLVector3(0, 0, 1) * mat - position; F32 x_length = x_transformed.normalize(); F32 y_length = y_transformed.normalize(); F32 z_length = z_transformed.normalize(); max_scale = llmax(llmax(llmax(max_scale, x_length), y_length), z_length); mat *= scale_mat; for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter) { //for each instance with said transform applied LLModelInstance instance = *model_iter; LLModel* base_model = instance.mModel; if (base_model) { base_model->mRequestedLabel = requested_name; } S32 idx = 0; for (idx = 0; idx < mBaseModel.size(); ++idx) { //find reference instance for this model if (mBaseModel[idx] == base_model) { break; } } for (U32 i = 0; i < LLModel::NUM_LODS; i++) { //fill LOD slots based on reference model index if (!mModel[i].empty()) { instance.mLOD[i] = mModel[i][idx]; } else { instance.mLOD[i] = NULL; } } instance.mTransform = mat; mUploadData.push_back(instance); } } F32 max_import_scale = DEFAULT_MAX_PRIM_SCALE/max_scale; scale_spinner->setMaxValue(max_import_scale); if (max_import_scale < scale) { scale_spinner->setValue(max_import_scale); } } void LLModelPreview::saveUploadData(bool save_skinweights, bool save_joint_positions) { if (!mLODFile[LLModel::LOD_HIGH].empty()) { std::string filename = mLODFile[LLModel::LOD_HIGH]; std::string::size_type i = filename.rfind("."); if (i != std::string::npos) { filename.replace(i, filename.size()-1, ".slm"); saveUploadData(filename, save_skinweights, save_joint_positions); } } } void LLModelPreview::saveUploadData(const std::string& filename, bool save_skinweights, bool save_joint_positions) { std::set > meshes; std::map mesh_binary; LLModel::hull empty_hull; LLSD data; S32 mesh_id = 0; //build list of unique models and initialize local id for (U32 i = 0; i < mUploadData.size(); ++i) { LLModelInstance& instance = mUploadData[i]; if (meshes.find(instance.mModel) == meshes.end()) { instance.mModel->mLocalID = mesh_id++; meshes.insert(instance.mModel); std::stringstream str; LLModel::convex_hull_decomposition& decomp = instance.mLOD[LLModel::LOD_PHYSICS].notNull() ? instance.mLOD[LLModel::LOD_PHYSICS]->mConvexHullDecomp : instance.mModel->mConvexHullDecomp; LLModel::writeModel(str, instance.mLOD[LLModel::LOD_PHYSICS], instance.mLOD[LLModel::LOD_HIGH], instance.mLOD[LLModel::LOD_MEDIUM], instance.mLOD[LLModel::LOD_LOW], instance.mLOD[LLModel::LOD_IMPOSTOR], decomp, empty_hull, save_skinweights, save_joint_positions); data["mesh"][instance.mModel->mLocalID] = str.str(); } data["instance"][i] = instance.asLLSD(); } llofstream out(filename, std::ios_base::out | std::ios_base::binary); LLSDSerialize::toBinary(data, out); out.flush(); out.close(); } void LLModelPreview::clearModel(S32 lod) { if (lod < 0 || lod > LLModel::LOD_PHYSICS) { return; } mVertexBuffer[lod].clear(); mModel[lod].clear(); mScene[lod].clear(); } void LLModelPreview::loadModel(std::string filename, S32 lod) { assert_main_thread(); LLMutexLock lock(this); // This triggers if you bring up the file picker and then hit CANCEL. // Just use the previous model (if any) and ignore that you brought up // the file picker. if (filename.empty()) { if (mBaseModel.empty()) { // this is the initial file picking. Close the whole floater // if we don't have a base model to show for high LOD. mFMP->closeFloater(false); mLoading = false; } return; } if (mModelLoader) { llwarns << "Incompleted model load operation pending." << llendl; return; } mLODFile[lod] = filename; if (lod == LLModel::LOD_HIGH) { clearGLODGroup(); } mModelLoader = new LLModelLoader(filename, lod, this); mModelLoader->start(); mFMP->childSetTextArg("status", "[STATUS]", mFMP->getString("status_reading_file")); setPreviewLOD(lod); if ( getLoadState() == LLModelLoader::ERROR_PARSING ) { mFMP->childDisable("ok_btn"); } if (lod == mPreviewLOD) { mFMP->childSetText("lod_file", mLODFile[mPreviewLOD]); } else if (lod == LLModel::LOD_PHYSICS) { mFMP->childSetText("physics_file", mLODFile[lod]); } mFMP->openFloater(); } void LLModelPreview::setPhysicsFromLOD(S32 lod) { assert_main_thread(); if (lod >= 0 && lod <= 3) { mModel[LLModel::LOD_PHYSICS] = mModel[lod]; mScene[LLModel::LOD_PHYSICS] = mScene[lod]; mLODFile[LLModel::LOD_PHYSICS].clear(); mFMP->childSetText("physics_file", mLODFile[LLModel::LOD_PHYSICS]); mVertexBuffer[LLModel::LOD_PHYSICS].clear(); rebuildUploadData(); refresh(); updateStatusMessages(); } } void LLModelPreview::clearIncompatible(S32 lod) { for (U32 i = 0; i <= LLModel::LOD_HIGH; i++) { //clear out any entries that aren't compatible with this model if (i != lod) { if (mModel[i].size() != mModel[lod].size()) { mModel[i].clear(); mScene[i].clear(); mVertexBuffer[i].clear(); if (i == LLModel::LOD_HIGH) { mBaseModel = mModel[lod]; clearGLODGroup(); mBaseScene = mScene[lod]; mVertexBuffer[5].clear(); } } } } } void LLModelPreview::clearGLODGroup() { if (mGroup) { for (std::map, U32>::iterator iter = mObject.begin(); iter != mObject.end(); ++iter) { glodDeleteObject(iter->second); stop_gloderror(); } mObject.clear(); glodDeleteGroup(mGroup); stop_gloderror(); mGroup = 0; } } void LLModelPreview::loadModelCallback(S32 lod) { assert_main_thread(); LLMutexLock lock(this); if (!mModelLoader) { return; } mModelLoader->loadTextures() ; if (lod == -1) { //populate all LoDs from model loader scene mBaseModel.clear(); mBaseScene.clear(); for (S32 lod = 0; lod < LLModel::NUM_LODS; ++lod) { //for each LoD //clear scene and model info mScene[lod].clear(); mModel[lod].clear(); mVertexBuffer[lod].clear(); if (mModelLoader->mScene.begin()->second[0].mLOD[lod].notNull()) { //if this LoD exists in the loaded scene //copy scene to current LoD mScene[lod] = mModelLoader->mScene; //touch up copied scene to look like current LoD for (LLModelLoader::scene::iterator iter = mScene[lod].begin(); iter != mScene[lod].end(); ++iter) { LLModelLoader::model_instance_list& list = iter->second; for (LLModelLoader::model_instance_list::iterator list_iter = list.begin(); list_iter != list.end(); ++list_iter) { //override displayed model with current LoD list_iter->mModel = list_iter->mLOD[lod]; //add current model to current LoD's model list (LLModel::mLocalID makes a good vector index) S32 idx = list_iter->mModel->mLocalID; if (mModel[lod].size() <= idx) { //stretch model list to fit model at given index mModel[lod].resize(idx+1); } mModel[lod][idx] = list_iter->mModel; } } } } //copy high lod to base scene for LoD generation mBaseScene = mScene[LLModel::LOD_HIGH]; mBaseModel = mModel[LLModel::LOD_HIGH]; mDirty = true; resetPreviewTarget(); } else { //only replace given LoD mModel[lod] = mModelLoader->mModelList; mScene[lod] = mModelLoader->mScene; mVertexBuffer[lod].clear(); if (lod == LLModel::LOD_PHYSICS) { mPhysicsMesh.clear(); } setPreviewLOD(lod); if (lod == LLModel::LOD_HIGH) { //save a copy of the highest LOD for automatic LOD manipulation if (mBaseModel.empty()) { //first time we've loaded a model, auto-gen LoD mGenLOD = true; } mBaseModel = mModel[lod]; clearGLODGroup(); mBaseScene = mScene[lod]; mVertexBuffer[5].clear(); } clearIncompatible(lod); mDirty = true; if (lod == LLModel::LOD_HIGH) { resetPreviewTarget(); } } mLoading = false; refresh(); mModelLoadedSignal(); } void LLModelPreview::resetPreviewTarget() { if ( mModelLoader ) { mPreviewTarget = (mModelLoader->mExtents[0] + mModelLoader->mExtents[1]) * 0.5f; mPreviewScale = (mModelLoader->mExtents[1] - mModelLoader->mExtents[0]) * 0.5f; } setPreviewTarget(mPreviewScale.magVec()*2.f); } void LLModelPreview::generateNormals() { assert_main_thread(); S32 which_lod = mPreviewLOD; if (which_lod > 4 || which_lod < 0 || mModel[which_lod].empty()) { return; } F32 angle_cutoff = mFMP->childGetValue("crease_angle").asReal(); angle_cutoff *= DEG_TO_RAD; if (which_lod == 3 && !mBaseModel.empty()) { for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter) { (*iter)->generateNormals(angle_cutoff); } mVertexBuffer[5].clear(); } for (LLModelLoader::model_list::iterator iter = mModel[which_lod].begin(); iter != mModel[which_lod].end(); ++iter) { (*iter)->generateNormals(angle_cutoff); } mVertexBuffer[which_lod].clear(); refresh(); } void LLModelPreview::clearMaterials() { for (LLModelLoader::scene::iterator iter = mScene[mPreviewLOD].begin(); iter != mScene[mPreviewLOD].end(); ++iter) { //for each transform in current scene for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter) { //for each instance with that transform LLModelInstance& source_instance = *model_iter; LLModel* source = source_instance.mModel; for (S32 i = 0; i < source->getNumVolumeFaces(); ++i) { //for each face in instance LLImportMaterial& source_material = source_instance.mMaterial[i]; //clear material info source_material.mDiffuseColor = LLColor4(1,1,1,1); source_material.mDiffuseMap = NULL; source_material.mDiffuseMapFilename.clear(); source_material.mDiffuseMapLabel.clear(); source_material.mFullbright = false; } } } mVertexBuffer[mPreviewLOD].clear(); if (mPreviewLOD == LLModel::LOD_HIGH) { mBaseScene = mScene[mPreviewLOD]; mBaseModel = mModel[mPreviewLOD]; clearGLODGroup(); mVertexBuffer[5].clear(); } mResourceCost = calcResourceCost(); refresh(); } void LLModelPreview::genLODs(S32 which_lod, U32 decimation, bool enforce_tri_limit) { if (mBaseModel.empty()) { return; } if (which_lod == LLModel::LOD_PHYSICS) { //clear physics mesh map mPhysicsMesh.clear(); } LLVertexBuffer::unbind(); stop_gloderror(); static U32 cur_name = 1; S32 limit = -1; U32 triangle_count = 0; for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter) { LLModel* mdl = *iter; for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i) { triangle_count += mdl->getVolumeFace(i).mNumIndices/3; } } U32 base_triangle_count = triangle_count; U32 type_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0; U32 lod_mode = 0; LLCtrlSelectionInterface* iface = mFMP->childGetSelectionInterface("lod_mode"); if (iface) { lod_mode = iface->getFirstSelectedIndex(); } F32 lod_error_threshold = mFMP->childGetValue("lod_error_threshold").asReal(); if (lod_mode == 0) { lod_mode = GLOD_TRIANGLE_BUDGET; if (which_lod != -1) { limit = mFMP->childGetValue("lod_triangle_limit").asInteger(); } } else { lod_mode = GLOD_ERROR_THRESHOLD; } U32 build_operator = 0; iface = mFMP->childGetSelectionInterface("build_operator"); if (iface) { build_operator = iface->getFirstSelectedIndex(); } if (build_operator == 0) { build_operator = GLOD_OPERATOR_EDGE_COLLAPSE; } else { build_operator = GLOD_OPERATOR_HALF_EDGE_COLLAPSE; } U32 queue_mode=0; iface = mFMP->childGetSelectionInterface("queue_mode"); if (iface) { queue_mode = iface->getFirstSelectedIndex(); } if (queue_mode == 0) { queue_mode = GLOD_QUEUE_GREEDY; } else if (queue_mode == 1) { queue_mode = GLOD_QUEUE_LAZY; } else { queue_mode = GLOD_QUEUE_INDEPENDENT; } U32 border_mode = 0; iface = mFMP->childGetSelectionInterface("border_mode"); if (iface) { border_mode = iface->getFirstSelectedIndex(); } if (border_mode == 0) { border_mode = GLOD_BORDER_UNLOCK; } else { border_mode = GLOD_BORDER_LOCK; } bool object_dirty = false; if (border_mode != mBuildBorderMode) { mBuildBorderMode = border_mode; object_dirty = true; } if (queue_mode != mBuildQueueMode) { mBuildQueueMode = queue_mode; object_dirty = true; } if (build_operator != mBuildOperator) { mBuildOperator = build_operator; object_dirty = true; } F32 share_tolerance = mFMP->childGetValue("share_tolerance").asReal(); if (share_tolerance != mBuildShareTolerance) { mBuildShareTolerance = share_tolerance; object_dirty = true; } if (mGroup == 0) { object_dirty = true; mGroup = cur_name++; glodNewGroup(mGroup); } if (object_dirty) { for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter) { //build GLOD objects for each model in base model list LLModel* mdl = *iter; if (mObject[mdl] != 0) { glodDeleteObject(mObject[mdl]); } mObject[mdl] = cur_name++; glodNewObject(mObject[mdl], mGroup, GLOD_DISCRETE); stop_gloderror(); if (iter == mBaseModel.begin() && !mdl->mSkinWeights.empty()) { //regenerate vertex buffer for skinned models to prevent animation feedback during LOD generation mVertexBuffer[5].clear(); } if (mVertexBuffer[5].empty()) { genBuffers(5, false); } U32 tri_count = 0; for (U32 i = 0; i < mVertexBuffer[5][mdl].size(); ++i) { mVertexBuffer[5][mdl][i]->setBuffer(type_mask); U32 num_indices = mVertexBuffer[5][mdl][i]->getNumIndices(); if (num_indices > 2) { glodInsertElements(mObject[mdl], i, GL_TRIANGLES, num_indices, GL_UNSIGNED_SHORT, mVertexBuffer[5][mdl][i]->getIndicesPointer(), 0, 0.f); } tri_count += num_indices/3; stop_gloderror(); } glodObjectParameteri(mObject[mdl], GLOD_BUILD_OPERATOR, build_operator); stop_gloderror(); glodObjectParameteri(mObject[mdl], GLOD_BUILD_QUEUE_MODE, queue_mode); stop_gloderror(); glodObjectParameteri(mObject[mdl], GLOD_BUILD_BORDER_MODE, border_mode); stop_gloderror(); glodObjectParameterf(mObject[mdl], GLOD_BUILD_SHARE_TOLERANCE, share_tolerance); stop_gloderror(); glodBuildObject(mObject[mdl]); stop_gloderror(); } } S32 start = LLModel::LOD_HIGH; S32 end = 0; if (which_lod != -1) { start = end = which_lod; } mMaxTriangleLimit = base_triangle_count; for (S32 lod = start; lod >= end; --lod) { if (which_lod == -1) { if (lod < start) { triangle_count /= decimation; } } else { if (enforce_tri_limit) { triangle_count = limit; } else { for (S32 j=LLModel::LOD_HIGH; j>which_lod; --j) { triangle_count /= decimation; } } } mModel[lod].clear(); mModel[lod].resize(mBaseModel.size()); mVertexBuffer[lod].clear(); U32 actual_tris = 0; U32 actual_verts = 0; U32 submeshes = 0; mRequestedTriangleCount[lod] = triangle_count; glodGroupParameteri(mGroup, GLOD_ADAPT_MODE, lod_mode); stop_gloderror(); glodGroupParameteri(mGroup, GLOD_ERROR_MODE, GLOD_OBJECT_SPACE_ERROR); stop_gloderror(); glodGroupParameterf(mGroup, GLOD_OBJECT_SPACE_ERROR_THRESHOLD, lod_error_threshold); stop_gloderror(); glodGroupParameteri(mGroup, GLOD_MAX_TRIANGLES, 0); stop_gloderror(); glodAdaptGroup(mGroup); stop_gloderror(); if (lod_mode == GLOD_TRIANGLE_BUDGET) { //SH-632 Always adapt to 0 before adapting to actual desired amount, and always //add 1 to desired amount to avoid decimating below desired amount glodGroupParameteri(mGroup, GLOD_MAX_TRIANGLES, triangle_count+1); stop_gloderror(); glodAdaptGroup(mGroup); stop_gloderror(); } for (U32 mdl_idx = 0; mdl_idx < mBaseModel.size(); ++mdl_idx) { LLModel* base = mBaseModel[mdl_idx]; GLint patch_count = 0; glodGetObjectParameteriv(mObject[base], GLOD_NUM_PATCHES, &patch_count); stop_gloderror(); LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE); mModel[lod][mdl_idx] = new LLModel(volume_params, 0.f); GLint* sizes = new GLint[patch_count*2]; glodGetObjectParameteriv(mObject[base], GLOD_PATCH_SIZES, sizes); stop_gloderror(); GLint* names = new GLint[patch_count]; glodGetObjectParameteriv(mObject[base], GLOD_PATCH_NAMES, names); stop_gloderror(); mModel[lod][mdl_idx]->setNumVolumeFaces(patch_count); LLModel* target_model = mModel[lod][mdl_idx]; for (GLint i = 0; i < patch_count; ++i) { LLPointer buff = new LLVertexBuffer(type_mask, 0); if (sizes[i*2+1] > 0 && sizes[i*2] > 0) { buff->allocateBuffer(sizes[i*2+1], sizes[i*2], true); buff->setBuffer(type_mask); glodFillElements(mObject[base], names[i], GL_UNSIGNED_SHORT, buff->getIndicesPointer()); stop_gloderror(); } else { //this face was eliminated, create a dummy triangle (one vertex, 3 indices, all 0) buff->allocateBuffer(1, 3, true); memset(buff->getMappedData(), 0, buff->getSize()); memset(buff->getIndicesPointer(), 0, buff->getIndicesSize()); } buff->validateRange(0, buff->getNumVerts()-1, buff->getNumIndices(), 0); LLStrider pos; LLStrider norm; LLStrider tc; LLStrider index; buff->getVertexStrider(pos); buff->getNormalStrider(norm); buff->getTexCoord0Strider(tc); buff->getIndexStrider(index); target_model->setVolumeFaceData(names[i], pos, norm, tc, index, buff->getNumVerts(), buff->getNumIndices()); actual_tris += buff->getNumIndices()/3; actual_verts += buff->getNumVerts(); ++submeshes; if (!validate_face(target_model->getVolumeFace(names[i]))) { llerrs << "Invalid face generated during LOD generation." << llendl; } } //blind copy skin weights and just take closest skin weight to point on //decimated mesh for now (auto-generating LODs with skin weights is still a bit //of an open problem). target_model->mPosition = base->mPosition; target_model->mSkinWeights = base->mSkinWeights; target_model->mJointMap = base->mJointMap; target_model->mJointList = base->mJointList; target_model->mInvBindMatrix = base->mInvBindMatrix; target_model->mBindShapeMatrix = base->mBindShapeMatrix; target_model->mAlternateBindMatrix = base->mAlternateBindMatrix; //copy material list target_model->mMaterialList = base->mMaterialList; if (!validate_model(target_model)) { llerrs << "Invalid model generated when creating LODs" << llendl; } delete [] sizes; delete [] names; } //rebuild scene based on mBaseScene mScene[lod].clear(); mScene[lod] = mBaseScene; for (U32 i = 0; i < mBaseModel.size(); ++i) { LLModel* mdl = mBaseModel[i]; LLModel* target = mModel[lod][i]; if (target) { for (LLModelLoader::scene::iterator iter = mScene[lod].begin(); iter != mScene[lod].end(); ++iter) { for (U32 j = 0; j < iter->second.size(); ++j) { if (iter->second[j].mModel == mdl) { iter->second[j].mModel = target; } } } } } } mResourceCost = calcResourceCost(); /*if (which_lod == -1 && mScene[LLModel::LOD_PHYSICS].empty()) { //build physics scene mScene[LLModel::LOD_PHYSICS] = mScene[LLModel::LOD_LOW]; mModel[LLModel::LOD_PHYSICS] = mModel[LLModel::LOD_LOW]; for (U32 i = 1; i < mModel[LLModel::LOD_PHYSICS].size(); ++i) { mPhysicsQ.push(mModel[LLModel::LOD_PHYSICS][i]); } }*/ } void LLModelPreview::updateStatusMessages() { assert_main_thread(); //triangle/vertex/submesh count for each mesh asset for each lod std::vector tris[LLModel::NUM_LODS]; std::vector verts[LLModel::NUM_LODS]; std::vector submeshes[LLModel::NUM_LODS]; //total triangle/vertex/submesh count for each lod S32 total_tris[LLModel::NUM_LODS]; S32 total_verts[LLModel::NUM_LODS]; S32 total_submeshes[LLModel::NUM_LODS]; for (S32 lod = 0; lod < LLModel::NUM_LODS; ++lod) { //initialize total for this lod to 0 total_tris[lod] = total_verts[lod] = total_submeshes[lod] = 0; for (U32 i = 0; i < mModel[lod].size(); ++i) { //for each model in the lod S32 cur_tris = 0; S32 cur_verts = 0; S32 cur_submeshes = mModel[lod][i]->getNumVolumeFaces(); for (S32 j = 0; j < cur_submeshes; ++j) { //for each submesh (face), add triangles and vertices to current total const LLVolumeFace& face = mModel[lod][i]->getVolumeFace(j); cur_tris += face.mNumIndices/3; cur_verts += face.mNumVertices; } //add this model to the lod total total_tris[lod] += cur_tris; total_verts[lod] += cur_verts; total_submeshes[lod] += cur_submeshes; //store this model's counts to asset data tris[lod].push_back(cur_tris); verts[lod].push_back(cur_verts); submeshes[lod].push_back(cur_submeshes); } } if (mMaxTriangleLimit == 0) { mMaxTriangleLimit = total_tris[LLModel::LOD_HIGH]; } mFMP->childSetTextArg("submeshes_info", "[SUBMESHES]", llformat("%d", total_submeshes[LLModel::LOD_HIGH])); std::string mesh_status_na = mFMP->getString("mesh_status_na"); S32 upload_status[LLModel::LOD_HIGH+1]; bool upload_ok = true; for (S32 lod = 0; lod <= LLModel::LOD_HIGH; ++lod) { upload_status[lod] = 0; std::string message = "mesh_status_good"; if (total_tris[lod] > 0) { mFMP->childSetText(lod_triangles_name[lod], llformat("%d", total_tris[lod])); mFMP->childSetText(lod_vertices_name[lod], llformat("%d", total_verts[lod])); } else { if (lod == LLModel::LOD_HIGH) { upload_status[lod] = 2; message = "mesh_status_missing_lod"; } else { for (S32 i = lod-1; i >= 0; --i) { if (total_tris[i] > 0) { upload_status[lod] = 2; message = "mesh_status_missing_lod"; } } } mFMP->childSetText(lod_triangles_name[lod], mesh_status_na); mFMP->childSetText(lod_vertices_name[lod], mesh_status_na); } const U32 lod_high = LLModel::LOD_HIGH; if (lod != lod_high) { if (total_submeshes[lod] && total_submeshes[lod] != total_submeshes[lod_high]) { //number of submeshes is different message = "mesh_status_submesh_mismatch"; upload_status[lod] = 2; } else if (!tris[lod].empty() && tris[lod].size() != tris[lod_high].size()) { //number of meshes is different message = "mesh_status_mesh_mismatch"; upload_status[lod] = 2; } else if (!verts[lod].empty()) { for (U32 i = 0; i < verts[lod].size(); ++i) { S32 max_verts = i < verts[lod+1].size() ? verts[lod+1][i] : 0; if (max_verts > 0) { if (verts[lod][i] > max_verts) { //too many vertices in this lod message = "mesh_status_too_many_vertices"; upload_status[lod] = 2; } } } } } LLIconCtrl* icon = mFMP->getChild(lod_icon_name[lod]); LLUIImagePtr img = LLUI::getUIImage(lod_status_image[upload_status[lod]]); icon->setVisible(true); icon->setImage(img); if (upload_status[lod] >= 2) { upload_ok = false; } if (lod == mPreviewLOD) { mFMP->childSetText("lod_status_message_text", mFMP->getString(message)); icon = mFMP->getChild("lod_status_message_icon"); icon->setImage(img); } } bool errorStateFromLoader = getLoadState() == LLModelLoader::ERROR_PARSING ? true : false; bool skinAndRigOk = true; bool uploadingSkin = mFMP->childGetValue("upload_skin").asBoolean(); if ( uploadingSkin && !isRigValid() ) { skinAndRigOk = false; } if ( upload_ok && !errorStateFromLoader && skinAndRigOk ) { mFMP->childEnable("ok_btn"); } //add up physics triangles etc S32 start = 0; S32 end = mModel[LLModel::LOD_PHYSICS].size(); S32 phys_tris = 0; S32 phys_hulls = 0; S32 phys_points = 0; for (S32 i = start; i < end; ++i) { //add up hulls and points and triangles for selected mesh(es) LLModel* model = mModel[LLModel::LOD_PHYSICS][i]; S32 cur_submeshes = model->getNumVolumeFaces(); LLModel::convex_hull_decomposition& decomp = model->mConvexHullDecomp; if (!decomp.empty()) { phys_hulls += decomp.size(); for (U32 i = 0; i < decomp.size(); ++i) { phys_points += decomp[i].size(); } } else { //choose physics shape OR decomposition, can't use both for (S32 j = 0; j < cur_submeshes; ++j) { //for each submesh (face), add triangles and vertices to current total const LLVolumeFace& face = model->getVolumeFace(j); phys_tris += face.mNumIndices/3; } } } if (phys_tris > 0) { mFMP->childSetTextArg("physics_triangles", "[TRIANGLES]", llformat("%d", phys_tris)); } else { mFMP->childSetTextArg("physics_triangles", "[TRIANGLES]", mesh_status_na); } if (phys_hulls > 0) { mFMP->childSetTextArg("physics_hulls", "[HULLS]", llformat("%d", phys_hulls)); mFMP->childSetTextArg("physics_points", "[POINTS]", llformat("%d", phys_points)); } else { mFMP->childSetTextArg("physics_hulls", "[HULLS]", mesh_status_na); mFMP->childSetTextArg("physics_points", "[POINTS]", mesh_status_na); } LLFloaterModelPreview* fmp = LLFloaterModelPreview::sInstance; if (fmp) { if (phys_tris > 0 || phys_hulls > 0) { if (!fmp->isViewOptionEnabled("show_physics")) { fmp->enableViewOption("show_physics"); mViewOption["show_physics"] = true; } } else { fmp->disableViewOption("show_physics"); mViewOption["show_physics"] = false; } //bool use_hull = fmp->childGetValue("physics_use_hull").asBoolean(); //fmp->childSetEnabled("physics_optimize", !use_hull); bool enable = phys_tris > 0 || phys_hulls > 0; //enable = enable && !use_hull && fmp->childGetValue("physics_optimize").asBoolean(); //enable/disable "analysis" UI LLPanel* panel = fmp->getChild("physics analysis"); LLView* child = panel->getFirstChild(); while (child) { child->setEnabled(enable); child = panel->findNextSibling(child); } enable = phys_hulls > 0; //enable/disable "simplification" UI panel = fmp->getChild("physics simplification"); child = panel->getFirstChild(); while (child) { child->setEnabled(enable); child = panel->findNextSibling(child); } } const char* lod_controls[] = { "lod_mode", "lod_triangle_limit", "lod_error_tolerance", "build_operator_text", "queue_mode_text", "border_mode_text", "share_tolerance_text", "build_operator", "queue_mode", "border_mode", "share_tolerance" }; const U32 num_lod_controls = sizeof(lod_controls)/sizeof(char*); const char* file_controls[] = { "lod_browse", "lod_file" }; const U32 num_file_controls = sizeof(file_controls)/sizeof(char*); if (fmp) { //enable/disable controls based on radio groups if (mFMP->childGetValue("lod_from_file").asBoolean()) { fmp->mLODMode[mPreviewLOD] = 0; for (U32 i = 0; i < num_file_controls; ++i) { mFMP->childEnable(file_controls[i]); } for (U32 i = 0; i < num_lod_controls; ++i) { mFMP->childDisable(lod_controls[i]); } } else if (mFMP->childGetValue("lod_none").asBoolean()) { fmp->mLODMode[mPreviewLOD] = 2; for (U32 i = 0; i < num_file_controls; ++i) { mFMP->childDisable(file_controls[i]); } for (U32 i = 0; i < num_lod_controls; ++i) { mFMP->childDisable(lod_controls[i]); } if (!mModel[mPreviewLOD].empty()) { mModel[mPreviewLOD].clear(); mScene[mPreviewLOD].clear(); mVertexBuffer[mPreviewLOD].clear(); //this can cause phasing issues with the UI, so reenter this function and return updateStatusMessages(); return; } } else { // auto generate, also the default case for wizard which has no radio selection fmp->mLODMode[mPreviewLOD] = 1; for (U32 i = 0; i < num_file_controls; ++i) { mFMP->childDisable(file_controls[i]); } for (U32 i = 0; i < num_lod_controls; ++i) { mFMP->childEnable(lod_controls[i]); } //if (threshold) { U32 lod_mode = 0; LLCtrlSelectionInterface* iface = mFMP->childGetSelectionInterface("lod_mode"); if (iface) { lod_mode = iface->getFirstSelectedIndex(); } LLSpinCtrl* threshold = mFMP->getChild("lod_error_threshold"); LLSpinCtrl* limit = mFMP->getChild("lod_triangle_limit"); limit->setMaxValue(mMaxTriangleLimit); limit->setValue(mRequestedTriangleCount[mPreviewLOD]); if (lod_mode == 0) { limit->setVisible(true); threshold->setVisible(false); limit->setMaxValue(mMaxTriangleLimit); limit->setIncrement(mMaxTriangleLimit/32); } else { limit->setVisible(false); threshold->setVisible(true); } } } } if (mFMP->childGetValue("physics_load_from_file").asBoolean()) { mFMP->childDisable("physics_lod_combo"); mFMP->childEnable("physics_file"); mFMP->childEnable("physics_browse"); } else { mFMP->childEnable("physics_lod_combo"); mFMP->childDisable("physics_file"); mFMP->childDisable("physics_browse"); } } void LLModelPreview::setPreviewTarget(F32 distance) { mCameraDistance = distance; mCameraZoom = 1.f; mCameraPitch = 0.f; mCameraYaw = 0.f; mCameraOffset.clearVec(); } void LLModelPreview::clearBuffers() { for (U32 i = 0; i < 6; i++) { mVertexBuffer[i].clear(); } } void LLModelPreview::genBuffers(S32 lod, bool include_skin_weights) { U32 tri_count = 0; U32 vertex_count = 0; U32 mesh_count = 0; LLModelLoader::model_list* model = NULL; if (lod < 0 || lod > 4) { model = &mBaseModel; lod = 5; } else { model = &(mModel[lod]); } if (!mVertexBuffer[lod].empty()) { mVertexBuffer[lod].clear(); } mVertexBuffer[lod].clear(); LLModelLoader::model_list::iterator base_iter = mBaseModel.begin(); for (LLModelLoader::model_list::iterator iter = model->begin(); iter != model->end(); ++iter) { LLModel* mdl = *iter; if (!mdl) { continue; } LLModel* base_mdl = *base_iter; base_iter++; for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i) { const LLVolumeFace &vf = mdl->getVolumeFace(i); U32 num_vertices = vf.mNumVertices; U32 num_indices = vf.mNumIndices; if (!num_vertices || ! num_indices) { continue; } LLVertexBuffer* vb = NULL; bool skinned = include_skin_weights && !mdl->mSkinWeights.empty(); U32 mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0; if (skinned) { mask |= LLVertexBuffer::MAP_WEIGHT4; } vb = new LLVertexBuffer(mask, 0); vb->allocateBuffer(num_vertices, num_indices, TRUE); LLStrider vertex_strider; LLStrider normal_strider; LLStrider tc_strider; LLStrider index_strider; LLStrider weights_strider; vb->getVertexStrider(vertex_strider); vb->getNormalStrider(normal_strider); vb->getTexCoord0Strider(tc_strider); vb->getIndexStrider(index_strider); if (skinned) { vb->getWeight4Strider(weights_strider); } LLVector4a::memcpyNonAliased16((F32*) vertex_strider.get(), (F32*) vf.mPositions, num_vertices*4*sizeof(F32)); LLVector4a::memcpyNonAliased16((F32*) tc_strider.get(), (F32*) vf.mTexCoords, num_vertices*2*sizeof(F32)); LLVector4a::memcpyNonAliased16((F32*) normal_strider.get(), (F32*) vf.mNormals, num_vertices*4*sizeof(F32)); if (skinned) { for (U32 i = 0; i < num_vertices; i++) { //find closest weight to vf.mVertices[i].mPosition LLVector3 pos(vf.mPositions[i].getF32ptr()); const LLModel::weight_list& weight_list = base_mdl->getJointInfluences(pos); LLVector4 w(0,0,0,0); if (weight_list.size() > 4) { llerrs << "WTF?" << llendl; } for (U32 i = 0; i < weight_list.size(); ++i) { F32 wght = llmin(weight_list[i].mWeight, 0.999999f); F32 joint = (F32) weight_list[i].mJointIdx; w.mV[i] = joint + wght; } *(weights_strider++) = w; } } // build indices for (U32 i = 0; i < num_indices; i++) { *(index_strider++) = vf.mIndices[i]; } mVertexBuffer[lod][mdl].push_back(vb); vertex_count += num_vertices; tri_count += num_indices/3; ++mesh_count; } } } void LLModelPreview::update() { if (mDirty) { mDirty = false; mResourceCost = calcResourceCost(); refresh(); updateStatusMessages(); } if (mGenLOD) { mGenLOD = false; genLODs(); refresh(); updateStatusMessages(); } } //----------------------------------------------------------------------------- // render() //----------------------------------------------------------------------------- BOOL LLModelPreview::render() { assert_main_thread(); LLMutexLock lock(this); mNeedsUpdate = FALSE; bool edges = mViewOption["show_edges"]; bool joint_positions = mViewOption["show_joint_positions"]; bool skin_weight = mViewOption["show_skin_weight"]; bool textures = mViewOption["show_textures"]; bool physics = mViewOption["show_physics"]; S32 width = getWidth(); S32 height = getHeight(); LLGLSUIDefault def; LLGLDisable no_blend(GL_BLEND); LLGLEnable cull(GL_CULL_FACE); LLGLDepthTest depth(GL_TRUE); LLGLDisable fog(GL_FOG); { //clear background to blue glMatrixMode(GL_PROJECTION); gGL.pushMatrix(); glLoadIdentity(); glOrtho(0.0f, width, 0.0f, height, -1.0f, 1.0f); glMatrixMode(GL_MODELVIEW); gGL.pushMatrix(); glLoadIdentity(); gGL.color4f(0.169f, 0.169f, 0.169f, 1.f); gl_rect_2d_simple( width, height ); glMatrixMode(GL_PROJECTION); gGL.popMatrix(); glMatrixMode(GL_MODELVIEW); gGL.popMatrix(); } LLFloaterModelPreview* fmp = LLFloaterModelPreview::sInstance; bool has_skin_weights = false; bool upload_skin = mFMP->childGetValue("upload_skin").asBoolean(); bool upload_joints = mFMP->childGetValue("upload_joints").asBoolean(); for (LLModelLoader::scene::iterator iter = mScene[mPreviewLOD].begin(); iter != mScene[mPreviewLOD].end(); ++iter) { for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter) { LLModelInstance& instance = *model_iter; LLModel* model = instance.mModel; model->mPelvisOffset = mPelvisZOffset; if (!model->mSkinWeights.empty()) { has_skin_weights = true; } } } if (has_skin_weights) { //model has skin weights, enable view options for skin weights and joint positions if (fmp) { fmp->enableViewOption("show_skin_weight"); fmp->setViewOptionEnabled("show_joint_positions", skin_weight); } mFMP->childEnable("upload_skin"); } else { mFMP->childDisable("upload_skin"); if (fmp) { mViewOption["show_skin_weight"] = false; fmp->disableViewOption("show_skin_weight"); fmp->disableViewOption("show_joint_positions"); } skin_weight = false; } if (upload_skin && !has_skin_weights) { //can't upload skin weights if model has no skin weights mFMP->childSetValue("upload_skin", false); upload_skin = false; } if (!upload_skin && upload_joints) { //can't upload joints if not uploading skin weights mFMP->childSetValue("upload_joints", false); upload_joints = false; } mFMP->childSetEnabled("upload_joints", upload_skin); F32 explode = mFMP->childGetValue("physics_explode").asReal(); glClear(GL_DEPTH_BUFFER_BIT); LLRect preview_rect = mFMP->getChildView("preview_panel")->getRect(); F32 aspect = (F32) preview_rect.getWidth()/preview_rect.getHeight(); LLViewerCamera::getInstance()->setAspect(aspect); LLViewerCamera::getInstance()->setView(LLViewerCamera::getInstance()->getDefaultFOV() / mCameraZoom); LLVector3 offset = mCameraOffset; LLVector3 target_pos = mPreviewTarget+offset; F32 z_near = 0.001f; F32 z_far = mCameraDistance+mPreviewScale.magVec()+mCameraOffset.magVec(); if (skin_weight) { target_pos = gAgentAvatarp->getPositionAgent(); z_near = 0.01f; z_far = 1024.f; mCameraDistance = 16.f; //render avatar previews every frame refresh(); } glLoadIdentity(); gPipeline.enableLightsPreview(); LLQuaternion camera_rot = LLQuaternion(mCameraPitch, LLVector3::y_axis) * LLQuaternion(mCameraYaw, LLVector3::z_axis); LLQuaternion av_rot = camera_rot; LLViewerCamera::getInstance()->setOriginAndLookAt( target_pos + ((LLVector3(mCameraDistance, 0.f, 0.f) + offset) * av_rot), // camera LLVector3::z_axis, // up target_pos); // point of interest LLViewerCamera::getInstance()->setPerspective(FALSE, mOrigin.mX, mOrigin.mY, width, height, FALSE, z_near, z_far); stop_glerror(); gGL.pushMatrix(); const F32 BRIGHTNESS = 0.9f; gGL.color3f(BRIGHTNESS, BRIGHTNESS, BRIGHTNESS); LLGLEnable normalize(GL_NORMALIZE); if (!mBaseModel.empty() && mVertexBuffer[5].empty()) { genBuffers(-1, skin_weight); //genBuffers(3); //genLODs(); } if (!mModel[mPreviewLOD].empty()) { bool regen = mVertexBuffer[mPreviewLOD].empty(); if (!regen) { const std::vector >& vb_vec = mVertexBuffer[mPreviewLOD].begin()->second; if (!vb_vec.empty()) { const LLVertexBuffer* buff = vb_vec[0]; regen = buff->hasDataType(LLVertexBuffer::TYPE_WEIGHT4) != skin_weight; } } if (regen) { genBuffers(mPreviewLOD, skin_weight); } if (!skin_weight) { for (LLMeshUploadThread::instance_list::iterator iter = mUploadData.begin(); iter != mUploadData.end(); ++iter) { LLModelInstance& instance = *iter; LLModel* model = instance.mLOD[mPreviewLOD]; if (!model) { continue; } gGL.pushMatrix(); LLMatrix4 mat = instance.mTransform; glMultMatrixf((GLfloat*) mat.mMatrix); for (U32 i = 0; i < mVertexBuffer[mPreviewLOD][model].size(); ++i) { LLVertexBuffer* buffer = mVertexBuffer[mPreviewLOD][model][i]; buffer->setBuffer(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0); if (textures) { glColor4fv(instance.mMaterial[i].mDiffuseColor.mV); if (i < instance.mMaterial.size() && instance.mMaterial[i].mDiffuseMap.notNull()) { gGL.getTexUnit(0)->bind(instance.mMaterial[i].mDiffuseMap, true); if (instance.mMaterial[i].mDiffuseMap->getDiscardLevel() > -1) { mTextureSet.insert(instance.mMaterial[i].mDiffuseMap.get()); } } } else { glColor4f(1,1,1,1); } buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); glColor3f(0.4f, 0.4f, 0.4f); if (edges) { glLineWidth(3.f); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glLineWidth(1.f); } } gGL.popMatrix(); } if (physics) { glClear(GL_DEPTH_BUFFER_BIT); LLGLEnable blend(GL_BLEND); gGL.blendFunc(LLRender::BF_ONE, LLRender::BF_ZERO); for (LLMeshUploadThread::instance_list::iterator iter = mUploadData.begin(); iter != mUploadData.end(); ++iter) { LLModelInstance& instance = *iter; LLModel* model = instance.mLOD[LLModel::LOD_PHYSICS]; if (!model) { continue; } gGL.pushMatrix(); LLMatrix4 mat = instance.mTransform; glMultMatrixf((GLfloat*) mat.mMatrix); bool render_mesh = true; LLPhysicsDecomp* decomp = gMeshRepo.mDecompThread; if (decomp) { LLMutexLock(decomp->mMutex); std::map, std::vector > >::iterator iter = mPhysicsMesh.find(model); if (iter != mPhysicsMesh.end()) { //render hull instead of mesh render_mesh = false; for (U32 i = 0; i < iter->second.size(); ++i) { if (explode > 0.f) { gGL.pushMatrix(); LLVector3 offset = model->mHullCenter[i]-model->mCenterOfHullCenters; offset *= explode; gGL.translatef(offset.mV[0], offset.mV[1], offset.mV[2]); } static std::vector hull_colors; if (i+1 >= hull_colors.size()) { hull_colors.push_back(LLColor4U(rand()%128+127, rand()%128+127, rand()%128+127, 255)); } LLVertexBuffer* buff = iter->second[i]; if (buff) { buff->setBuffer(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL); glColor4ubv(hull_colors[i].mV); buff->drawArrays(LLRender::TRIANGLES, 0, buff->getNumVerts()); } if (explode > 0.f) { gGL.popMatrix(); } } } } if (render_mesh) { if (mVertexBuffer[LLModel::LOD_PHYSICS].empty()) { genBuffers(LLModel::LOD_PHYSICS, false); } for (U32 i = 0; i < mVertexBuffer[LLModel::LOD_PHYSICS][model].size(); ++i) { LLVertexBuffer* buffer = mVertexBuffer[LLModel::LOD_PHYSICS][model][i]; buffer->setBuffer(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0); buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); glColor4f(0.4f, 0.4f, 0.0f, 0.4f); buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0); glColor3f(1.f, 1.f, 0.f); glLineWidth(3.f); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glLineWidth(1.f); } } gGL.popMatrix(); } gGL.setSceneBlendType(LLRender::BT_ALPHA); } } else { LLVOAvatarSelf* avatar = gAgentAvatarp; target_pos = avatar->getPositionAgent(); LLViewerCamera::getInstance()->setOriginAndLookAt( target_pos + ((LLVector3(mCameraDistance, 0.f, 0.f) + offset) * av_rot), // camera LLVector3::z_axis, // up target_pos); // point of interest if (joint_positions) { avatar->renderCollisionVolumes(); } for (LLModelLoader::scene::iterator iter = mScene[mPreviewLOD].begin(); iter != mScene[mPreviewLOD].end(); ++iter) { for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter) { LLModelInstance& instance = *model_iter; LLModel* model = instance.mModel; if (!model->mSkinWeights.empty()) { for (U32 i = 0; i < mVertexBuffer[mPreviewLOD][model].size(); ++i) { LLVertexBuffer* buffer = mVertexBuffer[mPreviewLOD][model][i]; const LLVolumeFace& face = model->getVolumeFace(i); LLStrider position; buffer->getVertexStrider(position); LLStrider weight; buffer->getWeight4Strider(weight); //quick 'n dirty software vertex skinning //build matrix palette LLMatrix4 mat[64]; for (U32 j = 0; j < model->mJointList.size(); ++j) { LLJoint* joint = avatar->getJoint(model->mJointList[j]); if (joint) { mat[j] = model->mInvBindMatrix[j]; mat[j] *= joint->getWorldMatrix(); } } for (U32 j = 0; j < buffer->getRequestedVerts(); ++j) { LLMatrix4 final_mat; final_mat.mMatrix[0][0] = final_mat.mMatrix[1][1] = final_mat.mMatrix[2][2] = final_mat.mMatrix[3][3] = 0.f; LLVector4 wght; S32 idx[4]; F32 scale = 0.f; for (U32 k = 0; k < 4; k++) { F32 w = weight[j].mV[k]; idx[k] = (S32) floorf(w); wght.mV[k] = w - floorf(w); scale += wght.mV[k]; } wght *= 1.f/scale; for (U32 k = 0; k < 4; k++) { F32* src = (F32*) mat[idx[k]].mMatrix; F32* dst = (F32*) final_mat.mMatrix; F32 w = wght.mV[k]; for (U32 l = 0; l < 16; l++) { dst[l] += src[l]*w; } } //VECTORIZE THIS LLVector3 v(face.mPositions[j].getF32ptr()); v = v * model->mBindShapeMatrix; v = v * final_mat; position[j] = v; } buffer->setBuffer(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0); glColor4fv(instance.mMaterial[i].mDiffuseColor.mV); gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); buffer->draw(LLRender::TRIANGLES, buffer->getNumIndices(), 0); glColor3f(0.4f, 0.4f, 0.4f); if (edges) { glLineWidth(3.f); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); buffer->draw(LLRender::TRIANGLES, buffer->getNumIndices(), 0); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glLineWidth(1.f); } } } } } } } gGL.popMatrix(); return TRUE; } //----------------------------------------------------------------------------- // refresh() //----------------------------------------------------------------------------- void LLModelPreview::refresh() { mNeedsUpdate = TRUE; } //----------------------------------------------------------------------------- // rotate() //----------------------------------------------------------------------------- void LLModelPreview::rotate(F32 yaw_radians, F32 pitch_radians) { mCameraYaw = mCameraYaw + yaw_radians; mCameraPitch = llclamp(mCameraPitch + pitch_radians, F_PI_BY_TWO * -0.8f, F_PI_BY_TWO * 0.8f); } //----------------------------------------------------------------------------- // zoom() //----------------------------------------------------------------------------- void LLModelPreview::zoom(F32 zoom_amt) { F32 new_zoom = mCameraZoom+zoom_amt; mCameraZoom = llclamp(new_zoom, 1.f, 10.f); } void LLModelPreview::pan(F32 right, F32 up) { mCameraOffset.mV[VY] = llclamp(mCameraOffset.mV[VY] + right * mCameraDistance / mCameraZoom, -1.f, 1.f); mCameraOffset.mV[VZ] = llclamp(mCameraOffset.mV[VZ] + up * mCameraDistance / mCameraZoom, -1.f, 1.f); } void LLModelPreview::setPreviewLOD(S32 lod) { lod = llclamp(lod, 0, (S32) LLModel::LOD_HIGH); if (lod != mPreviewLOD) { mPreviewLOD = lod; LLComboBox* combo_box = mFMP->getChild("preview_lod_combo"); combo_box->setCurrentByIndex((NUM_LOD-1)-mPreviewLOD); // combo box list of lods is in reverse order mFMP->childSetTextArg("lod_table_footer", "[DETAIL]", mFMP->getString(lod_name[mPreviewLOD])); mFMP->childSetText("lod_file", mLODFile[mPreviewLOD]); // the wizard has three lod drop downs LLComboBox* combo_box2 = mFMP->getChild("preview_lod_combo2"); combo_box2->setCurrentByIndex((NUM_LOD-1)-mPreviewLOD); // combo box list of lods is in reverse order LLComboBox* combo_box3 = mFMP->getChild("preview_lod_combo3"); combo_box2->setCurrentByIndex((NUM_LOD-1)-mPreviewLOD); // combo box list of lods is in reverse order LLColor4 highlight_color = LLUIColorTable::instance().getColor("MeshImportTableHighlightColor"); LLColor4 normal_color = LLUIColorTable::instance().getColor("MeshImportTableNormalColor"); for (S32 i = 0; i <= LLModel::LOD_HIGH; ++i) { const LLColor4& color = (i == lod) ? highlight_color : normal_color; mFMP->childSetColor(lod_status_name[i], color); mFMP->childSetColor(lod_label_name[i], color); mFMP->childSetColor(lod_triangles_name[i], color); mFMP->childSetColor(lod_vertices_name[i], color); } LLFloaterModelPreview* fmp = LLFloaterModelPreview::sInstance; if (fmp) { LLRadioGroup* radio = fmp->getChild("lod_file_or_limit"); radio->selectNthItem(fmp->mLODMode[mPreviewLOD]); } } refresh(); updateStatusMessages(); } //static void LLFloaterModelPreview::onBrowseLOD(void* data) { assert_main_thread(); LLFloaterModelPreview* mp = (LLFloaterModelPreview*) data; mp->loadModel(mp->mModelPreview->mPreviewLOD); } //static void LLFloaterModelPreview::onUpload(void* user_data) { assert_main_thread(); LLFloaterModelPreview* mp = (LLFloaterModelPreview*) user_data; if ( mp && mp->mModelPreview->mHasPivot ) { mp->mModelPreview->alterModelsPivot(); } mp->mModelPreview->rebuildUploadData(); bool upload_skinweights = mp->childGetValue("upload_skin").asBoolean(); bool upload_joint_positions = mp->childGetValue("upload_joints").asBoolean(); mp->mModelPreview->saveUploadData(upload_skinweights, upload_joint_positions); gMeshRepo.uploadModel(mp->mModelPreview->mUploadData, mp->mModelPreview->mPreviewScale, mp->childGetValue("upload_textures").asBoolean(), upload_skinweights, upload_joint_positions); mp->closeFloater(false); } //static void LLFloaterModelPreview::onClearMaterials(void* user_data) { LLFloaterModelPreview* mp = (LLFloaterModelPreview*) user_data; mp->mModelPreview->clearMaterials(); } //static void LLFloaterModelPreview::refresh(LLUICtrl* ctrl, void* user_data) { sInstance->mModelPreview->mDirty = true; } void LLFloaterModelPreview::updateResourceCost() { U32 cost = mModelPreview->mResourceCost; childSetLabelArg("ok_btn", "[AMOUNT]", llformat("%d",cost)); } //static void LLModelPreview::textureLoadedCallback( BOOL success, LLViewerFetchedTexture *src_vi, LLImageRaw* src, LLImageRaw* src_aux, S32 discard_level, BOOL final, void* userdata ) { LLModelPreview* preview = (LLModelPreview*) userdata; preview->refresh(); } void LLModelPreview::onLODParamCommit(bool enforce_tri_limit) { genLODs(mPreviewLOD, 3, enforce_tri_limit); updateStatusMessages(); refresh(); } LLFloaterModelPreview::DecompRequest::DecompRequest(const std::string& stage, LLModel* mdl) { mStage = stage; mContinue = 1; mModel = mdl; mDecompID = &mdl->mDecompID; mParams = sInstance->mDecompParams; //copy out positions and indices if (mdl) { U16 index_offset = 0; mPositions.clear(); mIndices.clear(); //queue up vertex positions and indices for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i) { const LLVolumeFace& face = mdl->getVolumeFace(i); if (mPositions.size() + face.mNumVertices > 65535) { continue; } for (U32 j = 0; j < face.mNumVertices; ++j) { mPositions.push_back(LLVector3(face.mPositions[j].getF32ptr())); } for (U32 j = 0; j < face.mNumIndices; ++j) { mIndices.push_back(face.mIndices[j]+index_offset); } index_offset += face.mNumVertices; } } } void LLFloaterModelPreview::setStatusMessage(const std::string& msg) { LLMutexLock lock(mStatusLock); mStatusMessage = msg; } S32 LLFloaterModelPreview::DecompRequest::statusCallback(const char* status, S32 p1, S32 p2) { if (mContinue) { setStatusMessage(llformat("%s: %d/%d", status, p1, p2)); if (LLFloaterModelPreview::sInstance) { LLFloaterModelPreview::sInstance->setStatusMessage(mStatusMessage); } } return mContinue; } void LLFloaterModelPreview::DecompRequest::completed() { //called from the main thread if (mContinue) { mModel->setConvexHullDecomposition(mHull); if (sInstance) { if (mContinue) { if (sInstance->mModelPreview) { sInstance->mModelPreview->mPhysicsMesh[mModel] = mHullMesh; sInstance->mModelPreview->mDirty = true; LLFloaterModelPreview::sInstance->mModelPreview->refresh(); } } sInstance->mCurRequest.erase(this); } } else if (sInstance) { llassert(sInstance->mCurRequest.find(this) == sInstance->mCurRequest.end()); } }