/** * @file llface.cpp * @brief LLFace class implementation * * Copyright (c) 2001-$CurrentYear$, Linden Research, Inc. * $License$ */ #include "llviewerprecompiledheaders.h" #include "lldrawable.h" // lldrawable needs to be included before llface #include "llface.h" #include "llviewertextureanim.h" #include "llviewercontrol.h" #include "llvolume.h" #include "m3math.h" #include "v3color.h" #include "lldrawpoolsimple.h" #include "lldrawpoolbump.h" #include "llgl.h" #include "lllightconstants.h" #include "llsky.h" #include "llviewercamera.h" #include "llviewerimagelist.h" #include "llvosky.h" #include "llvovolume.h" #include "pipeline.h" #define LL_MAX_INDICES_COUNT 1000000 extern BOOL gPickFaces; BOOL LLFace::sSafeRenderSelect = TRUE; // FALSE #define DOTVEC(a,b) (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1] + a.mV[2]*b.mV[2]) /* For each vertex, given: B - binormal T - tangent N - normal P - position The resulting texture coordinate is: u = 2(B dot P) v = 2(T dot P) */ void planarProjection(LLVector2 &tc, const LLVolumeFace::VertexData &vd, const LLVector3 &mCenter, const LLVector3& vec) { //DONE! LLVector3 binormal; float d = vd.mNormal * LLVector3(1,0,0); if (d >= 0.5f || d <= -0.5f) { binormal = LLVector3(0,1,0); if (vd.mNormal.mV[0] < 0) { binormal = -binormal; } } else { binormal = LLVector3(1,0,0); if (vd.mNormal.mV[1] > 0) { binormal = -binormal; } } LLVector3 tangent = binormal % vd.mNormal; tc.mV[1] = -((tangent*vec)*2 - 0.5f); tc.mV[0] = 1.0f+((binormal*vec)*2 - 0.5f); } void sphericalProjection(LLVector2 &tc, const LLVolumeFace::VertexData &vd, const LLVector3 &mCenter, const LLVector3& vec) { //BROKEN /*tc.mV[0] = acosf(vd.mNormal * LLVector3(1,0,0))/3.14159f; tc.mV[1] = acosf(vd.mNormal * LLVector3(0,0,1))/6.284f; if (vd.mNormal.mV[1] > 0) { tc.mV[1] = 1.0f-tc.mV[1]; }*/ } void cylindricalProjection(LLVector2 &tc, const LLVolumeFace::VertexData &vd, const LLVector3 &mCenter, const LLVector3& vec) { //BROKEN /*LLVector3 binormal; float d = vd.mNormal * LLVector3(1,0,0); if (d >= 0.5f || d <= -0.5f) { binormal = LLVector3(0,1,0); } else{ binormal = LLVector3(1,0,0); } LLVector3 tangent = binormal % vd.mNormal; tc.mV[1] = -((tangent*vec)*2 - 0.5f); tc.mV[0] = acosf(vd.mNormal * LLVector3(1,0,0))/6.284f; if (vd.mNormal.mV[1] < 0) { tc.mV[0] = 1.0f-tc.mV[0]; }*/ } //////////////////// // // LLFace implementation // void LLFace::init(LLDrawable* drawablep, LLViewerObject* objp) { mLastUpdateTime = gFrameTimeSeconds; mVSize = 0.f; mPixelArea = 1024.f; mState = GLOBAL; mDrawPoolp = NULL; mPoolType = 0; mGeomIndex = -1; // mCenterLocal // mCenterAgent mDistance = 0.f; mGeomCount = 0; mIndicesCount = 0; mIndicesIndex = -1; mTexture = NULL; mTEOffset = -1; setDrawable(drawablep); mVObjp = objp; mReferenceIndex = -1; mAlphaFade = 0.f; mFaceColor = LLColor4(1,0,0,1); mLastVertexBuffer = mVertexBuffer; mLastGeomCount = mGeomCount; mLastGeomIndex = mGeomIndex; mLastIndicesCount = mIndicesCount; mLastIndicesIndex = mIndicesIndex; } void LLFace::destroy() { mDrawablep = NULL; mVObjp = NULL; if (mDrawPoolp) { mDrawPoolp->removeFace(this); mDrawPoolp = NULL; } } // static void LLFace::initClass() { } void LLFace::setWorldMatrix(const LLMatrix4 &mat) { llerrs << "Faces on this drawable are not independently modifiable\n" << llendl; } void LLFace::setPool(LLFacePool* new_pool, LLViewerImage *texturep) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (!new_pool) { llerrs << "Setting pool to null!" << llendl; } if (new_pool != mDrawPoolp) { // Remove from old pool if (mDrawPoolp) { mDrawPoolp->removeFace(this); if (mDrawablep) { gPipeline.markRebuild(mDrawablep, LLDrawable::REBUILD_ALL, TRUE); } } mGeomIndex = -1; // Add to new pool if (new_pool) { new_pool->addFace(this); } mDrawPoolp = new_pool; } mTexture = texturep; } void LLFace::setTEOffset(const S32 te_offset) { mTEOffset = te_offset; } void LLFace::setFaceColor(const LLColor4& color) { mFaceColor = color; setState(USE_FACE_COLOR); } void LLFace::unsetFaceColor() { clearState(USE_FACE_COLOR); } void LLFace::setDrawable(LLDrawable *drawable) { mDrawablep = drawable; mXform = &drawable->mXform; } void LLFace::setSize(const S32 num_vertices, const S32 num_indices) { mGeomCount = num_vertices; mIndicesCount = num_indices; } //============================================================================ S32 LLFace::getGeometryAvatar( LLStrider &vertices, LLStrider &normals, LLStrider &binormals, LLStrider &tex_coords, LLStrider &vertex_weights, LLStrider &clothing_weights) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (mVertexBuffer.notNull()) { mVertexBuffer->getVertexStrider (vertices, mGeomIndex); mVertexBuffer->getNormalStrider (normals, mGeomIndex); mVertexBuffer->getBinormalStrider (binormals, mGeomIndex); mVertexBuffer->getTexCoordStrider (tex_coords, mGeomIndex); mVertexBuffer->getWeightStrider(vertex_weights, mGeomIndex); mVertexBuffer->getClothWeightStrider(clothing_weights, mGeomIndex); } else { mGeomIndex = -1; } return mGeomIndex; } S32 LLFace::getGeometryTerrain( LLStrider &vertices, LLStrider &normals, LLStrider &colors, LLStrider &texcoords0, LLStrider &texcoords1, LLStrider &indicesp) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (mVertexBuffer.notNull()) { mVertexBuffer->getVertexStrider(vertices, mGeomIndex); mVertexBuffer->getNormalStrider(normals, mGeomIndex); mVertexBuffer->getColorStrider(colors, mGeomIndex); mVertexBuffer->getTexCoordStrider(texcoords0, mGeomIndex); mVertexBuffer->getTexCoord2Strider(texcoords1, mGeomIndex); mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex); } else { mGeomIndex = -1; } return mGeomIndex; } S32 LLFace::getGeometry(LLStrider &vertices, LLStrider &normals, LLStrider &tex_coords, LLStrider &indicesp) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (mGeomCount <= 0) { return -1; } if (mVertexBuffer.notNull()) { mVertexBuffer->getVertexStrider(vertices, mGeomIndex); if (mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_NORMAL)) { mVertexBuffer->getNormalStrider(normals, mGeomIndex); } if (mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_TEXCOORD)) { mVertexBuffer->getTexCoordStrider(tex_coords, mGeomIndex); } mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex); } else { mGeomIndex = -1; } return mGeomIndex; } S32 LLFace::getGeometryColors(LLStrider &vertices, LLStrider &normals, LLStrider &tex_coords, LLStrider &colors, LLStrider &indicesp) { S32 res = getGeometry(vertices, normals, tex_coords, indicesp); if (res >= 0) { getColors(colors); } return res; } void LLFace::updateCenterAgent() { if (mDrawablep->isActive()) { mCenterAgent = mCenterLocal * getRenderMatrix(); } else { mCenterAgent = mCenterLocal; } } void LLFace::renderForSelect(U32 data_mask) { if(mGeomIndex < 0 || mDrawablep.isNull() || mVertexBuffer.isNull()) { return; } if (mVObjp->mGLName) { S32 name = mVObjp->mGLName; LLColor4U color((U8)(name >> 16), (U8)(name >> 8), (U8)name); #if 0 // *FIX: Postponing this fix until we have texcoord pick info... if (mTEOffset != -1) { color.mV[VALPHA] = (U8)(getTextureEntry()->getColor().mV[VALPHA] * 255.f); } #endif glColor4ubv(color.mV); if (!getPool()) { switch (getPoolType()) { case LLDrawPool::POOL_ALPHA: getTexture()->bind(); break; default: LLImageGL::unbindTexture(0); break; } } mVertexBuffer->setBuffer(data_mask); #if !LL_RELEASE_FOR_DOWNLOAD LLGLState::checkClientArrays(data_mask); #endif U32* indicesp = (U32*) mVertexBuffer->getIndicesPointer() + mIndicesIndex; if (gPickFaces && mTEOffset != -1) { // mask off high 4 bits (16 total possible faces) color.mV[0] &= 0x0f; color.mV[0] |= (mTEOffset & 0x0f) << 4; glColor4ubv(color.mV); } if (mIndicesCount) { if (isState(GLOBAL)) { glDrawElements(GL_TRIANGLES, mIndicesCount, GL_UNSIGNED_INT, indicesp); } else { glPushMatrix(); glMultMatrixf((float*)getRenderMatrix().mMatrix); glDrawElements(GL_TRIANGLES, mIndicesCount, GL_UNSIGNED_INT, indicesp); glPopMatrix(); } } else if (mGeomCount > 0) { if (isState(GLOBAL)) { glDrawArrays(GL_TRIANGLES, mGeomIndex, mGeomCount); } else { glPushMatrix(); glMultMatrixf((float*)getRenderMatrix().mMatrix); glDrawArrays(GL_TRIANGLES, mGeomIndex, mGeomCount); glPopMatrix(); } } } } void LLFace::renderSelected(LLImageGL *imagep, const LLColor4& color, const S32 offset, const S32 count) { if(mGeomIndex < 0 || mDrawablep.isNull() || mVertexBuffer.isNull()) { return; } if (mGeomCount > 0 && mIndicesCount > 0) { LLGLSPipelineAlpha gls_pipeline_alpha; glColor4fv(color.mV); LLViewerImage::bindTexture(imagep); if (!isState(GLOBAL)) { // Apply the proper transform for non-global objects. glPushMatrix(); glMultMatrixf((float*)getRenderMatrix().mMatrix); } glEnableClientState(GL_TEXTURE_COORD_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); mVertexBuffer->setBuffer(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD); #if !LL_RELEASE_FOR_DOWNLOAD LLGLState::checkClientArrays(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD); #endif U32* indicesp = ((U32*) mVertexBuffer->getIndicesPointer()) + mIndicesIndex; if (count) { glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_INT, indicesp + offset); } else { glDrawElements(GL_TRIANGLES, mIndicesCount, GL_UNSIGNED_INT, indicesp); } glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); if (!isState(GLOBAL)) { // Restore the tranform for non-global objects glPopMatrix(); } } } void LLFace::renderSelectedUV(const S32 offset, const S32 count) { #if 0 LLUUID uv_img_red_blue_id(gViewerArt.getString("uv_test1.tga")); LLUUID uv_img_green_id(gViewerArt.getString("uv_test2.tga")); LLViewerImage* red_blue_imagep = gImageList.getImage(uv_img_red_blue_id, TRUE, TRUE); LLViewerImage* green_imagep = gImageList.getImage(uv_img_green_id, TRUE, TRUE); LLGLSObjectSelect object_select; LLGLEnable blend(GL_BLEND); LLGLEnable texture(GL_TEXTURE_2D); if (!mDrawPoolp || !getIndicesCount() || getIndicesStart() < 0) { return; } for (S32 pass = 0; pass < 2; pass++) { static F32 bias = 0.f; static F32 factor = -10.f; if (mGeomCount > 0) { glColor4fv(LLColor4::white.mV); if (pass == 0) { LLViewerImage::bindTexture(red_blue_imagep); } else // pass == 1 { glBlendFunc(GL_ONE, GL_ONE); LLViewerImage::bindTexture(green_imagep); glMatrixMode(GL_TEXTURE); glPushMatrix(); glScalef(256.f, 256.f, 1.f); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); if (!isState(GLOBAL)) { // Apply the proper transform for non-global objects. glMatrixMode(GL_MODELVIEW); glPushMatrix(); glMultMatrixf((float*)getRenderMatrix().mMatrix); } glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(factor, bias); if (sSafeRenderSelect) { glBegin(GL_TRIANGLES); if (count) { for (S32 i = offset; i < offset + count; i++) { LLVector2 tc = mDrawPoolp->getTexCoord(mDrawPoolp->getIndex(getIndicesStart() + i), 0); glTexCoord2fv(tc.mV); LLVector3 vertex = mDrawPoolp->getVertex(mDrawPoolp->getIndex(getIndicesStart() + i)); glVertex3fv(vertex.mV); } } else { for (U32 i = 0; i < getIndicesCount(); i++) { LLVector2 tc = mDrawPoolp->getTexCoord(mDrawPoolp->getIndex(getIndicesStart() + i), 0); glTexCoord2fv(tc.mV); LLVector3 vertex = mDrawPoolp->getVertex(mDrawPoolp->getIndex(getIndicesStart() + i)); glVertex3fv(vertex.mV); } } glEnd(); } else { glEnableClientState(GL_TEXTURE_COORD_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); llassert(mGeomIndex >= 0); if (count) { if (mIndicesCount > 0) { glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_INT, getRawIndices() + offset); } else { llerrs << "Rendering non-indexed volume face!" << llendl; glDrawArrays(mPrimType, mGeomIndex, mGeomCount); } } else { if (mIndicesCount > 0) { glDrawElements(GL_TRIANGLES, mIndicesCount, GL_UNSIGNED_INT, getRawIndices()); } else { glDrawArrays(GL_TRIANGLES, mGeomIndex, mGeomCount); } } glDisableClientState(GL_TEXTURE_COORD_ARRAY); } glDisable(GL_POLYGON_OFFSET_FILL); if (!isState(GLOBAL)) { // Restore the tranform for non-global objects glPopMatrix(); } if (pass == 1) { glMatrixMode(GL_TEXTURE); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glBlendFunc(GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA); } } } //restore blend func glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); #endif } void LLFace::printDebugInfo() const { LLFacePool *poolp = getPool(); llinfos << "Object: " << getViewerObject()->mID << llendl; if (getDrawable()) { llinfos << "Type: " << LLPrimitive::pCodeToString(getDrawable()->getVObj()->getPCode()) << llendl; } if (getTexture()) { llinfos << "Texture: " << getTexture() << " Comps: " << (U32)getTexture()->getComponents() << llendl; } else { llinfos << "No texture: " << llendl; } llinfos << "Face: " << this << llendl; llinfos << "State: " << getState() << llendl; llinfos << "Geom Index Data:" << llendl; llinfos << "--------------------" << llendl; llinfos << "GI: " << mGeomIndex << " Count:" << mGeomCount << llendl; llinfos << "Face Index Data:" << llendl; llinfos << "--------------------" << llendl; llinfos << "II: " << mIndicesIndex << " Count:" << mIndicesCount << llendl; llinfos << llendl; poolp->printDebugInfo(); S32 pool_references = 0; for (std::vector::iterator iter = poolp->mReferences.begin(); iter != poolp->mReferences.end(); iter++) { LLFace *facep = *iter; if (facep == this) { llinfos << "Pool reference: " << pool_references << llendl; pool_references++; } } if (pool_references != 1) { llinfos << "Incorrect number of pool references!" << llendl; } #if 0 llinfos << "Indices:" << llendl; llinfos << "--------------------" << llendl; const U32 *indicesp = getRawIndices(); S32 indices_count = getIndicesCount(); S32 geom_start = getGeomStart(); for (S32 i = 0; i < indices_count; i++) { llinfos << i << ":" << indicesp[i] << ":" << (S32)(indicesp[i] - geom_start) << llendl; } llinfos << llendl; llinfos << "Vertices:" << llendl; llinfos << "--------------------" << llendl; for (S32 i = 0; i < mGeomCount; i++) { llinfos << mGeomIndex + i << ":" << poolp->getVertex(mGeomIndex + i) << llendl; } llinfos << llendl; #endif } // Transform the texture coordinates for this face. static void xform(LLVector2 &tex_coord, F32 cosAng, F32 sinAng, F32 offS, F32 offT, F32 magS, F32 magT) { // New, good way F32 s = tex_coord.mV[0]; F32 t = tex_coord.mV[1]; // Texture transforms are done about the center of the face. s -= 0.5; t -= 0.5; // Handle rotation F32 temp = s; s = s * cosAng + t * sinAng; t = -temp * sinAng + t * cosAng; // Then scale s *= magS; t *= magT; // Then offset s += offS + 0.5f; t += offT + 0.5f; tex_coord.mV[0] = s; tex_coord.mV[1] = t; } BOOL LLFace::genVolumeBBoxes(const LLVolume &volume, S32 f, const LLMatrix4& mat_vert, const LLMatrix3& mat_normal, BOOL global_volume) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); const LLVolumeFace &face = volume.getVolumeFace(f); //get bounding box if (mDrawablep->isState(LLDrawable::REBUILD_VOLUME | LLDrawable::REBUILD_POSITION)) { if (mDrawablep->isState(LLDrawable::REBUILD_VOLUME)) { //vertex buffer no longer valid mVertexBuffer = NULL; mLastVertexBuffer = NULL; } LLVector3 min,max; min = face.mExtents[0]; max = face.mExtents[1]; //min, max are in volume space, convert to drawable render space LLVector3 center = ((min + max) * 0.5f)*mat_vert; LLVector3 size = ((max-min) * 0.5f); if (!global_volume) { size.scaleVec(mDrawablep->getVObj()->getScale()); } LLMatrix3 mat = mat_normal; LLVector3 x = mat.getFwdRow(); LLVector3 y = mat.getLeftRow(); LLVector3 z = mat.getUpRow(); x.normVec(); y.normVec(); z.normVec(); mat.setRows(x,y,z); LLQuaternion rotation = LLQuaternion(mat); LLVector3 v[4]; //get 4 corners of bounding box v[0] = (size * rotation); v[1] = (LLVector3(-size.mV[0], -size.mV[1], size.mV[2]) * rotation); v[2] = (LLVector3(size.mV[0], -size.mV[1], -size.mV[2]) * rotation); v[3] = (LLVector3(-size.mV[0], size.mV[1], -size.mV[2]) * rotation); LLVector3& newMin = mExtents[0]; LLVector3& newMax = mExtents[1]; newMin = newMax = center; for (U32 i = 0; i < 4; i++) { for (U32 j = 0; j < 3; j++) { F32 delta = fabsf(v[i].mV[j]); F32 min = center.mV[j] - delta; F32 max = center.mV[j] + delta; if (min < newMin.mV[j]) { newMin.mV[j] = min; } if (max > newMax.mV[j]) { newMax.mV[j] = max; } } } mCenterLocal = (newMin+newMax)*0.5f; updateCenterAgent(); } return TRUE; } BOOL LLFace::getGeometryVolume(const LLVolume& volume, S32 f, LLStrider& vertices, LLStrider& normals, LLStrider& tex_coords, LLStrider& tex_coords2, LLStrider& colors, LLStrider& indicesp, const LLMatrix4& mat_vert, const LLMatrix3& mat_normal, U32& index_offset) { const LLVolumeFace &vf = volume.getVolumeFace(f); S32 num_vertices = (S32)vf.mVertices.size(); S32 num_indices = (S32)vf.mIndices.size(); LLStrider old_verts; LLStrider old_texcoords; LLStrider old_texcoords2; LLStrider old_normals; LLStrider old_colors; BOOL full_rebuild = mDrawablep->isState(LLDrawable::REBUILD_VOLUME); BOOL moved = TRUE; BOOL global_volume = mDrawablep->getVOVolume()->isVolumeGlobal(); LLVector3 scale; if (global_volume) { scale.setVec(1,1,1); } else { scale = mVObjp->getScale(); } if (!full_rebuild) { if (mLastVertexBuffer == mVertexBuffer && !mVertexBuffer->isEmpty()) { //this face really doesn't need to be regenerated, try real hard not to do so if (mLastGeomCount == mGeomCount && mLastGeomIndex == mGeomIndex && mLastIndicesCount == mIndicesCount && mLastIndicesIndex == mIndicesIndex) { //data is in same location in vertex buffer moved = FALSE; } if (!moved && !mDrawablep->isState(LLDrawable::REBUILD_ALL)) { //nothing needs to be done vertices += mGeomCount; normals += mGeomCount; tex_coords += mGeomCount; colors += mGeomCount; tex_coords2 += mGeomCount; index_offset += mGeomCount; indicesp += mIndicesCount; return FALSE; } if (mLastGeomCount == mGeomCount) { if (mLastGeomIndex >= mGeomIndex && mLastGeomIndex + mGeomCount+1 < mVertexBuffer->getNumVerts()) { //copy from further down the buffer mVertexBuffer->getVertexStrider(old_verts, mLastGeomIndex); mVertexBuffer->getTexCoordStrider(old_texcoords, mLastGeomIndex); mVertexBuffer->getTexCoord2Strider(old_texcoords2, mLastGeomIndex); mVertexBuffer->getNormalStrider(old_normals, mLastGeomIndex); mVertexBuffer->getColorStrider(old_colors, mLastGeomIndex); if (!mDrawablep->isState(LLDrawable::REBUILD_ALL)) { //quick copy for (S32 i = 0; i < mGeomCount; i++) { *vertices++ = *old_verts++; *tex_coords++ = *old_texcoords++; *tex_coords2++ = *old_texcoords2++; *colors++ = *old_colors++; *normals++ = *old_normals++; } for (U32 i = 0; i < mIndicesCount; i++) { *indicesp++ = vf.mIndices[i] + index_offset; } index_offset += mGeomCount; mLastGeomIndex = mGeomIndex; mLastIndicesCount = mIndicesCount; mLastIndicesIndex = mIndicesIndex; return TRUE; } } else { full_rebuild = TRUE; } } } else { full_rebuild = TRUE; } } else { mLastUpdateTime = gFrameTimeSeconds; } BOOL rebuild_pos = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_POSITION); BOOL rebuild_color = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_COLOR); BOOL rebuild_tcoord = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_TCOORD); F32 r = 0, os = 0, ot = 0, ms = 0, mt = 0, cos_ang = 0, sin_ang = 0; BOOL is_static = mDrawablep->isStatic(); BOOL is_global = is_static; if (-1 == index_offset) { return TRUE; } LLVector3 center_sum(0.f, 0.f, 0.f); if (is_global) { setState(GLOBAL); } else { clearState(GLOBAL); } LLVector2 tmin, tmax; const LLTextureEntry *tep = mVObjp->getTE(f); U8 bump_code = tep ? tep->getBumpmap() : 0; if (rebuild_tcoord) { if (tep) { r = tep->getRotation(); os = tep->mOffsetS; ot = tep->mOffsetT; ms = tep->mScaleS; mt = tep->mScaleT; cos_ang = cos(r); sin_ang = sin(r); } else { cos_ang = 1.0f; sin_ang = 0.0f; os = 0.0f; ot = 0.0f; ms = 1.0f; mt = 1.0f; } } if (isState(TEXTURE_ANIM)) { LLVOVolume* vobj = (LLVOVolume*) (LLViewerObject*) mVObjp; U8 mode = vobj->mTexAnimMode; if (!mode) { clearState(TEXTURE_ANIM); } else { os = ot = 0.f; r = 0.f; cos_ang = 1.f; sin_ang = 0.f; ms = mt = 1.f; } } LLColor4U color = tep->getColor(); if (rebuild_color) { GLfloat alpha[4] = { 0.00f, 0.25f, 0.5f, 0.75f }; if (gPipeline.getPoolTypeFromTE(tep, getTexture()) == LLDrawPool::POOL_BUMP) { color.mV[3] = U8 (alpha[tep->getShiny()] * 255); } } // INDICES if (full_rebuild || moved) { for (S32 i = 0; i < num_indices; i++) { *indicesp++ = vf.mIndices[i] + index_offset; } } else { indicesp += num_indices; } //bump setup LLVector3 binormal_dir( -sin_ang, cos_ang, 0 ); LLVector3 bump_s_primary_light_ray; LLVector3 bump_t_primary_light_ray; if (bump_code) { F32 offset_multiple; switch( bump_code ) { case BE_NO_BUMP: offset_multiple = 0.f; break; case BE_BRIGHTNESS: case BE_DARKNESS: if( mTexture.notNull() && mTexture->getHasGLTexture()) { // Offset by approximately one texel S32 cur_discard = mTexture->getDiscardLevel(); S32 max_size = llmax( mTexture->getWidth(), mTexture->getHeight() ); max_size <<= cur_discard; const F32 ARTIFICIAL_OFFSET = 2.f; offset_multiple = ARTIFICIAL_OFFSET / (F32)max_size; } else { offset_multiple = 1.f/256; } break; default: // Standard bumpmap textures. Assumed to be 256x256 offset_multiple = 1.f / 256; break; } F32 s_scale = 1.f; F32 t_scale = 1.f; if( tep ) { tep->getScale( &s_scale, &t_scale ); } LLVector3 sun_ray = gSky.getSunDirection(); LLVector3 moon_ray = gSky.getMoonDirection(); LLVector3& primary_light_ray = (sun_ray.mV[VZ] > 0) ? sun_ray : moon_ray; bump_s_primary_light_ray = offset_multiple * s_scale * primary_light_ray; bump_t_primary_light_ray = offset_multiple * t_scale * primary_light_ray; } U8 texgen = getTextureEntry()->getTexGen(); for (S32 i = 0; i < num_vertices; i++) { if (rebuild_tcoord) { LLVector2 tc = vf.mVertices[i].mTexCoord; if (texgen != LLTextureEntry::TEX_GEN_DEFAULT) { LLVector3 vec = vf.mVertices[i].mPosition; vec.scaleVec(scale); switch (texgen) { case LLTextureEntry::TEX_GEN_PLANAR: planarProjection(tc, vf.mVertices[i], vf.mCenter, vec); break; case LLTextureEntry::TEX_GEN_SPHERICAL: sphericalProjection(tc, vf.mVertices[i], vf.mCenter, vec); break; case LLTextureEntry::TEX_GEN_CYLINDRICAL: cylindricalProjection(tc, vf.mVertices[i], vf.mCenter, vec); break; default: break; } } xform(tc, cos_ang, sin_ang, os, ot, ms, mt); *tex_coords++ = tc; if (bump_code) { LLVector3 tangent = vf.mVertices[i].mBinormal % vf.mVertices[i].mNormal; LLMatrix3 tangent_to_object; tangent_to_object.setRows(tangent, vf.mVertices[i].mBinormal, vf.mVertices[i].mNormal); LLVector3 binormal = binormal_dir * tangent_to_object; binormal = binormal * mat_normal; binormal.normVec(); tc += LLVector2( bump_s_primary_light_ray * tangent, bump_t_primary_light_ray * binormal ); *tex_coords2++ = tc; } } else if (moved) { *tex_coords++ = *old_texcoords++; if (bump_code) { *tex_coords2++ = *old_texcoords2++; } } if (rebuild_pos) { *vertices++ = vf.mVertices[i].mPosition * mat_vert; LLVector3 normal = vf.mVertices[i].mNormal * mat_normal; normal.normVec(); *normals++ = normal; } else if (moved) { *normals++ = *old_normals++; *vertices++ = *old_verts++; } if (rebuild_color) { *colors++ = color; } else if (moved) { *colors++ = *old_colors++; } } if (!rebuild_pos && !moved) { vertices += num_vertices; } if (!rebuild_tcoord && !moved) { tex_coords2 += num_vertices; tex_coords += num_vertices; } else if (!bump_code) { tex_coords2 += num_vertices; } if (!rebuild_color && !moved) { colors += num_vertices; } if (rebuild_tcoord) { mTexExtents[0].setVec(0,0); mTexExtents[1].setVec(1,1); xform(mTexExtents[0], cos_ang, sin_ang, os, ot, ms, mt); xform(mTexExtents[1], cos_ang, sin_ang, os, ot, ms, mt); } index_offset += num_vertices; mLastVertexBuffer = mVertexBuffer; mLastGeomCount = mGeomCount; mLastGeomIndex = mGeomIndex; mLastIndicesCount = mIndicesCount; mLastIndicesIndex = mIndicesIndex; return TRUE; } #if 0 BOOL LLFace::genLighting(const LLVolume* volume, const LLDrawable* drawablep, S32 fstart, S32 fend, const LLMatrix4& mat_vert, const LLMatrix3& mat_normal, BOOL do_lighting) { if (drawablep->isLight()) { do_lighting = FALSE; } if (!((mDrawPoolp->mDataMaskIL) & LLDrawPool::DATA_COLORS_MASK)) { return FALSE; } if (mGeomIndex < 0) { return FALSE; // no geometry } LLStrider colorsp; S32 idx = getColors(colorsp); if (idx < 0) { return FALSE; } for (S32 vol_face = fstart; vol_face <= fend; vol_face++) { const LLVolumeFace &vf = volume->getVolumeFace(vol_face); S32 num_vertices = (S32)vf.mVertices.size(); if (isState(FULLBRIGHT) || !do_lighting) { for (S32 i = 0; i < num_vertices; i++) { (*colorsp++).setToBlack(); } } else { for (S32 i = 0; i < num_vertices; i++) { LLVector3 vertex = vf.mVertices[i].mPosition * mat_vert; LLVector3 normal = vf.mVertices[i].mNormal * mat_normal; normal.normVec(); LLColor4 color; for (LLDrawable::drawable_set_t::const_iterator iter = drawablep->mLightSet.begin(); iter != drawablep->mLightSet.end(); ++iter) { LLDrawable* light_drawable = *iter; LLVOVolume* light = light_drawable->getVOVolume(); if (!light) { continue; } LLColor4 light_color; light->calcLightAtPoint(vertex, normal, light_color); color += light_color; } color.mV[3] = 1.0f; (*colorsp++).setVecScaleClamp(color); } } } return TRUE; } BOOL LLFace::genShadows(const LLVolume* volume, const LLDrawable* drawablep, S32 fstart, S32 fend, const LLMatrix4& mat_vert, const LLMatrix3& mat_normal, BOOL use_shadow_factor) { if (drawablep->isLight()) { return FALSE; } if (!((mDrawPoolp->mDataMaskIL) & LLDrawPool::DATA_COLORS_MASK)) { return FALSE; } if (mGeomIndex < 0) { return FALSE; // no geometry } LLStrider colorsp; S32 idx = getColors(colorsp); if (idx < 0) { return FALSE; } for (S32 vol_face = fstart; vol_face <= fend; vol_face++) { const LLVolumeFace &vf = volume->getVolumeFace(vol_face); S32 num_vertices = (S32)vf.mVertices.size(); if (isState(FULLBRIGHT)) { continue; } for (S32 i = 0; i < num_vertices; i++) { LLVector3 vertex = vf.mVertices[i].mPosition * mat_vert; LLVector3 normal = vf.mVertices[i].mNormal * mat_normal; normal.normVec(); U8 shadow; if (use_shadow_factor) { shadow = (U8) (drawablep->getSunShadowFactor() * 255); } else { shadow = 255; } (*colorsp++).mV[3] = shadow; } } return TRUE; } #endif BOOL LLFace::verify(const U32* indices_array) const { BOOL ok = TRUE; // First, check whether the face data fits within the pool's range. if ((mGeomIndex < 0) || (mGeomIndex + mGeomCount) > mVertexBuffer->getNumVerts()) { ok = FALSE; llinfos << "Face not within pool range!" << llendl; } S32 indices_count = (S32)getIndicesCount(); if (!indices_count) { return TRUE; } if (indices_count > LL_MAX_INDICES_COUNT) { ok = FALSE; llinfos << "Face has bogus indices count" << llendl; } #if 0 S32 geom_start = getGeomStart(); S32 geom_count = mGeomCount; const U32 *indicesp = indices_array ? indices_array + mIndicesIndex : getRawIndices(); for (S32 i = 0; i < indices_count; i++) { S32 delta = indicesp[i] - geom_start; if (0 > delta) { llwarns << "Face index too low!" << llendl; llinfos << "i:" << i << " Index:" << indicesp[i] << " GStart: " << geom_start << llendl; ok = FALSE; } else if (delta >= geom_count) { llwarns << "Face index too high!" << llendl; llinfos << "i:" << i << " Index:" << indicesp[i] << " GEnd: " << geom_start + geom_count << llendl; ok = FALSE; } } #endif if (!ok) { printDebugInfo(); } return ok; } void LLFace::setViewerObject(LLViewerObject* objp) { mVObjp = objp; } void LLFace::enableLights() const { if (isState(FULLBRIGHT|HUD_RENDER)) { gPipeline.enableLightsFullbright(LLColor4::white); } else if (mDrawablep->isState(LLDrawable::LIGHTING_BUILT)) { gPipeline.enableLightsStatic(1.f); } else { gPipeline.enableLightsDynamic(1.f); } if (isState(LIGHT)) { const LLVOVolume* vovolume = (const LLVOVolume*)(mDrawablep->getVObj()); gPipeline.setAmbient(vovolume->getLightColor()); } } const LLColor4& LLFace::getRenderColor() const { if (isState(USE_FACE_COLOR)) { return mFaceColor; // Face Color } else { const LLTextureEntry* tep = getTextureEntry(); return (tep ? tep->getColor() : LLColor4::white); } } void LLFace::renderSetColor() const { if (!LLFacePool::LLOverrideFaceColor::sOverrideFaceColor) { const LLColor4* color = &(getRenderColor()); if ((mDrawPoolp->mVertexShaderLevel > 0) && (mDrawPoolp->getMaterialAttribIndex() != 0)) { glVertexAttrib4fvARB(mDrawPoolp->getMaterialAttribIndex(), color->mV); } else { glColor4fv(color->mV); } } } S32 LLFace::pushVertices(const U32* index_array) const { if (mIndicesCount) { if (mGeomCount <= gGLManager.mGLMaxVertexRange && mIndicesCount <= (U32) gGLManager.mGLMaxIndexRange) { glDrawRangeElements(GL_TRIANGLES, mGeomIndex, mGeomIndex + mGeomCount-1, mIndicesCount, GL_UNSIGNED_INT, index_array + mIndicesIndex); } else { glDrawElements(GL_TRIANGLES, mIndicesCount, GL_UNSIGNED_INT, index_array+mIndicesIndex); } } return mIndicesCount; } const LLMatrix4& LLFace::getRenderMatrix() const { return mDrawablep->getRenderMatrix(); } S32 LLFace::renderElements(const U32 *index_array) const { S32 ret = 0; if (isState(GLOBAL)) { ret = pushVertices(index_array); } else { glPushMatrix(); glMultMatrixf((float*)getRenderMatrix().mMatrix); ret = pushVertices(index_array); glPopMatrix(); } return ret; } S32 LLFace::renderIndexed() { if(mGeomIndex < 0 || mDrawablep.isNull() || mDrawPoolp == NULL) { return 0; } return renderIndexed(mDrawPoolp->getVertexDataMask()); } S32 LLFace::renderIndexed(U32 mask) { if (mVertexBuffer.isNull()) { return 0; } mVertexBuffer->setBuffer(mask); U32* index_array = (U32*) mVertexBuffer->getIndicesPointer(); return renderElements(index_array); } //============================================================================ // From llface.inl S32 LLFace::getVertices(LLStrider &vertices) { if (!mGeomCount) { return -1; } if (mGeomIndex >= 0) // flexible objects may not have geometry { mVertexBuffer->getVertexStrider(vertices, mGeomIndex); } return mGeomIndex; } S32 LLFace::getColors(LLStrider &colors) { if (!mGeomCount) { return -1; } llassert(mGeomIndex >= 0); mVertexBuffer->getColorStrider(colors, mGeomIndex); return mGeomIndex; } S32 LLFace::getIndices(LLStrider &indicesp) { mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex); llassert(mGeomIndex >= 0 && indicesp[0] != indicesp[1]); return mIndicesIndex; } LLVector3 LLFace::getPositionAgent() const { if (mDrawablep->isStatic()) { return mCenterAgent; } else { return mCenterLocal * getRenderMatrix(); } }