/** * @file llface.cpp * @brief LLFace class implementation * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "lldrawable.h" // lldrawable needs to be included before llface #include "llface.h" #include "llviewertextureanim.h" #include "llviewercontrol.h" #include "llvolume.h" #include "m3math.h" #include "llmatrix4a.h" #include "v3color.h" #include "lldrawpoolavatar.h" #include "lldrawpoolbump.h" #include "llgl.h" #include "llrender.h" #include "lllightconstants.h" #include "llsky.h" #include "llviewercamera.h" #include "llviewertexturelist.h" #include "llvosky.h" #include "llvovolume.h" #include "pipeline.h" #include "llviewerregion.h" #include "llviewerwindow.h" #define LL_MAX_INDICES_COUNT 1000000 BOOL LLFace::sSafeRenderSelect = TRUE; // FALSE #define DOTVEC(a,b) (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1] + a.mV[2]*b.mV[2]) /* For each vertex, given: B - binormal T - tangent N - normal P - position The resulting texture coordinate is: u = 2(B dot P) v = 2(T dot P) */ void planarProjection(LLVector2 &tc, const LLVector4a& normal, const LLVector4a ¢er, const LLVector4a& vec) { LLVector4a binormal; F32 d = normal[0]; if (d >= 0.5f || d <= -0.5f) { if (d < 0) { binormal.set(0,-1,0); } else { binormal.set(0, 1, 0); } } else { if (normal[1] > 0) { binormal.set(-1,0,0); } else { binormal.set(1,0,0); } } LLVector4a tangent; tangent.setCross3(binormal,normal); tc.mV[1] = -((tangent.dot3(vec).getF32())*2 - 0.5f); tc.mV[0] = 1.0f+((binormal.dot3(vec).getF32())*2 - 0.5f); } void sphericalProjection(LLVector2 &tc, const LLVector4a& normal, const LLVector4a &mCenter, const LLVector4a& vec) { //BROKEN /*tc.mV[0] = acosf(vd.mNormal * LLVector3(1,0,0))/3.14159f; tc.mV[1] = acosf(vd.mNormal * LLVector3(0,0,1))/6.284f; if (vd.mNormal.mV[1] > 0) { tc.mV[1] = 1.0f-tc.mV[1]; }*/ } void cylindricalProjection(LLVector2 &tc, const LLVector4a& normal, const LLVector4a &mCenter, const LLVector4a& vec) { //BROKEN /*LLVector3 binormal; float d = vd.mNormal * LLVector3(1,0,0); if (d >= 0.5f || d <= -0.5f) { binormal = LLVector3(0,1,0); } else{ binormal = LLVector3(1,0,0); } LLVector3 tangent = binormal % vd.mNormal; tc.mV[1] = -((tangent*vec)*2 - 0.5f); tc.mV[0] = acosf(vd.mNormal * LLVector3(1,0,0))/6.284f; if (vd.mNormal.mV[1] < 0) { tc.mV[0] = 1.0f-tc.mV[0]; }*/ } //////////////////// // // LLFace implementation // void LLFace::init(LLDrawable* drawablep, LLViewerObject* objp) { mLastUpdateTime = gFrameTimeSeconds; mLastMoveTime = 0.f; mLastSkinTime = gFrameTimeSeconds; mVSize = 0.f; mPixelArea = 16.f; mState = GLOBAL; mDrawPoolp = NULL; mPoolType = 0; mCenterLocal = objp->getPosition(); mCenterAgent = drawablep->getPositionAgent(); mDistance = 0.f; mGeomCount = 0; mGeomIndex = 0; mIndicesCount = 0; mIndicesIndex = 0; mIndexInTex = 0; mTexture = NULL; mTEOffset = -1; mTextureIndex = 255; setDrawable(drawablep); mVObjp = objp; mReferenceIndex = -1; mTextureMatrix = NULL; mDrawInfo = NULL; mFaceColor = LLColor4(1,0,0,1); mLastVertexBuffer = mVertexBuffer; mLastGeomCount = mGeomCount; mLastGeomIndex = mGeomIndex; mLastIndicesCount = mIndicesCount; mLastIndicesIndex = mIndicesIndex; mImportanceToCamera = 0.f ; mBoundingSphereRadius = 0.0f ; mAtlasInfop = NULL ; mUsingAtlas = FALSE ; mHasMedia = FALSE ; } void LLFace::destroy() { if (gDebugGL) { gPipeline.checkReferences(this); } if(mTexture.notNull()) { mTexture->removeFace(this) ; } if (mDrawPoolp) { if (this->isState(LLFace::RIGGED) && mDrawPoolp->getType() == LLDrawPool::POOL_AVATAR) { ((LLDrawPoolAvatar*) mDrawPoolp)->removeRiggedFace(this); } else { mDrawPoolp->removeFace(this); } mDrawPoolp = NULL; } if (mTextureMatrix) { delete mTextureMatrix; mTextureMatrix = NULL; if (mDrawablep.notNull()) { LLSpatialGroup* group = mDrawablep->getSpatialGroup(); if (group) { group->dirtyGeom(); gPipeline.markRebuild(group, TRUE); } } } setDrawInfo(NULL); removeAtlas(); mDrawablep = NULL; mVObjp = NULL; } // static void LLFace::initClass() { } void LLFace::setWorldMatrix(const LLMatrix4 &mat) { llerrs << "Faces on this drawable are not independently modifiable\n" << llendl; } void LLFace::setPool(LLFacePool* pool) { mDrawPoolp = pool; } void LLFace::setPool(LLFacePool* new_pool, LLViewerTexture *texturep) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (!new_pool) { llerrs << "Setting pool to null!" << llendl; } if (new_pool != mDrawPoolp) { // Remove from old pool if (mDrawPoolp) { mDrawPoolp->removeFace(this); if (mDrawablep) { gPipeline.markRebuild(mDrawablep, LLDrawable::REBUILD_ALL, TRUE); } } mGeomIndex = 0; // Add to new pool if (new_pool) { new_pool->addFace(this); } mDrawPoolp = new_pool; } setTexture(texturep) ; } void LLFace::setTexture(LLViewerTexture* tex) { if(mTexture == tex) { return ; } if(mTexture.notNull()) { mTexture->removeFace(this) ; removeAtlas() ; } if(tex) { tex->addFace(this) ; } mTexture = tex ; } void LLFace::dirtyTexture() { gPipeline.markTextured(getDrawable()); } void LLFace::switchTexture(LLViewerTexture* new_texture) { if(mTexture == new_texture) { return ; } if(!new_texture) { llerrs << "Can not switch to a null texture." << llendl; return; } new_texture->addTextureStats(mTexture->getMaxVirtualSize()) ; getViewerObject()->changeTEImage(mTEOffset, new_texture) ; setTexture(new_texture) ; dirtyTexture(); } void LLFace::setTEOffset(const S32 te_offset) { mTEOffset = te_offset; } void LLFace::setFaceColor(const LLColor4& color) { mFaceColor = color; setState(USE_FACE_COLOR); } void LLFace::unsetFaceColor() { clearState(USE_FACE_COLOR); } void LLFace::setDrawable(LLDrawable *drawable) { mDrawablep = drawable; mXform = &drawable->mXform; } void LLFace::setSize(S32 num_vertices, S32 num_indices, bool align) { if (align) { //allocate vertices in blocks of 16 for alignment num_vertices = (num_vertices + 0xF) & ~0xF; } if (mGeomCount != num_vertices || mIndicesCount != num_indices) { mGeomCount = num_vertices; mIndicesCount = num_indices; mVertexBuffer = NULL; mLastVertexBuffer = NULL; } llassert(verify()); } void LLFace::setGeomIndex(U16 idx) { if (mGeomIndex != idx) { mGeomIndex = idx; mVertexBuffer = NULL; } } void LLFace::setTextureIndex(U8 index) { if (index != mTextureIndex) { mTextureIndex = index; if (mTextureIndex != 255) { mDrawablep->setState(LLDrawable::REBUILD_POSITION); } else { if (mDrawInfo && !mDrawInfo->mTextureList.empty()) { llerrs << "Face with no texture index references indexed texture draw info." << llendl; } } } } void LLFace::setIndicesIndex(S32 idx) { if (mIndicesIndex != idx) { mIndicesIndex = idx; mVertexBuffer = NULL; } } //============================================================================ U16 LLFace::getGeometryAvatar( LLStrider &vertices, LLStrider &normals, LLStrider &tex_coords, LLStrider &vertex_weights, LLStrider &clothing_weights) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (mVertexBuffer.notNull()) { mVertexBuffer->getVertexStrider (vertices, mGeomIndex, mGeomCount); mVertexBuffer->getNormalStrider (normals, mGeomIndex, mGeomCount); mVertexBuffer->getTexCoord0Strider (tex_coords, mGeomIndex, mGeomCount); mVertexBuffer->getWeightStrider(vertex_weights, mGeomIndex, mGeomCount); mVertexBuffer->getClothWeightStrider(clothing_weights, mGeomIndex, mGeomCount); } return mGeomIndex; } U16 LLFace::getGeometry(LLStrider &vertices, LLStrider &normals, LLStrider &tex_coords, LLStrider &indicesp) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); if (mVertexBuffer.notNull()) { mVertexBuffer->getVertexStrider(vertices, mGeomIndex, mGeomCount); if (mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_NORMAL)) { mVertexBuffer->getNormalStrider(normals, mGeomIndex, mGeomCount); } if (mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_TEXCOORD0)) { mVertexBuffer->getTexCoord0Strider(tex_coords, mGeomIndex, mGeomCount); } mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex, mIndicesCount); } return mGeomIndex; } void LLFace::updateCenterAgent() { if (mDrawablep->isActive()) { mCenterAgent = mCenterLocal * getRenderMatrix(); } else { mCenterAgent = mCenterLocal; } } void LLFace::renderSelected(LLViewerTexture *imagep, const LLColor4& color) { if (mDrawablep->getSpatialGroup() == NULL) { return; } mDrawablep->getSpatialGroup()->rebuildGeom(); mDrawablep->getSpatialGroup()->rebuildMesh(); if(mDrawablep.isNull() || mVertexBuffer.isNull()) { return; } if (mGeomCount > 0 && mIndicesCount > 0) { gGL.getTexUnit(0)->bind(imagep); gGL.pushMatrix(); if (mDrawablep->isActive()) { gGL.multMatrix((GLfloat*)mDrawablep->getRenderMatrix().mMatrix); } else { gGL.multMatrix((GLfloat*)mDrawablep->getRegion()->mRenderMatrix.mMatrix); } gGL.diffuseColor4fv(color.mV); if (mDrawablep->isState(LLDrawable::RIGGED)) { LLVOVolume* volume = mDrawablep->getVOVolume(); if (volume) { LLRiggedVolume* rigged = volume->getRiggedVolume(); if (rigged) { LLGLEnable offset(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.f, -1.f); gGL.multMatrix((F32*) volume->getRelativeXform().mMatrix); const LLVolumeFace& vol_face = rigged->getVolumeFace(getTEOffset()); LLVertexBuffer::unbind(); glVertexPointer(3, GL_FLOAT, 16, vol_face.mPositions); if (vol_face.mTexCoords) { glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 8, vol_face.mTexCoords); } gGL.syncMatrices(); glDrawElements(GL_TRIANGLES, vol_face.mNumIndices, GL_UNSIGNED_SHORT, vol_face.mIndices); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } } } else { mVertexBuffer->setBuffer(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0); mVertexBuffer->draw(LLRender::TRIANGLES, mIndicesCount, mIndicesIndex); } gGL.popMatrix(); } } /* removed in lieu of raycast uv detection void LLFace::renderSelectedUV() { LLViewerTexture* red_blue_imagep = LLViewerTextureManager::getFetchedTextureFromFile("uv_test1.j2c", TRUE, LLViewerTexture::BOOST_UI); LLViewerTexture* green_imagep = LLViewerTextureManager::getFetchedTextureFromFile("uv_test2.tga", TRUE, LLViewerTexture::BOOST_UI); LLGLSUVSelect object_select; // use red/blue gradient to get coarse UV coordinates renderSelected(red_blue_imagep, LLColor4::white); static F32 bias = 0.f; static F32 factor = -10.f; glPolygonOffset(factor, bias); // add green dither pattern on top of red/blue gradient gGL.blendFunc(LLRender::BF_ONE, LLRender::BF_ONE); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.pushMatrix(); // make green pattern repeat once per texel in red/blue texture gGL.scalef(256.f, 256.f, 1.f); gGL.matrixMode(LLRender::MM_MODELVIEW); renderSelected(green_imagep, LLColor4::white); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.popMatrix(); gGL.matrixMode(LLRender::MM_MODELVIEW); gGL.blendFunc(LLRender::BF_SOURCE_ALPHA, LLRender::BF_ONE_MINUS_SOURCE_ALPHA); } */ void LLFace::setDrawInfo(LLDrawInfo* draw_info) { if (draw_info) { if (draw_info->mFace) { draw_info->mFace->setDrawInfo(NULL); } draw_info->mFace = this; } if (mDrawInfo) { mDrawInfo->mFace = NULL; } mDrawInfo = draw_info; } void LLFace::printDebugInfo() const { LLFacePool *poolp = getPool(); llinfos << "Object: " << getViewerObject()->mID << llendl; if (getDrawable()) { llinfos << "Type: " << LLPrimitive::pCodeToString(getDrawable()->getVObj()->getPCode()) << llendl; } if (getTexture()) { llinfos << "Texture: " << getTexture() << " Comps: " << (U32)getTexture()->getComponents() << llendl; } else { llinfos << "No texture: " << llendl; } llinfos << "Face: " << this << llendl; llinfos << "State: " << getState() << llendl; llinfos << "Geom Index Data:" << llendl; llinfos << "--------------------" << llendl; llinfos << "GI: " << mGeomIndex << " Count:" << mGeomCount << llendl; llinfos << "Face Index Data:" << llendl; llinfos << "--------------------" << llendl; llinfos << "II: " << mIndicesIndex << " Count:" << mIndicesCount << llendl; llinfos << llendl; if (poolp) { poolp->printDebugInfo(); S32 pool_references = 0; for (std::vector::iterator iter = poolp->mReferences.begin(); iter != poolp->mReferences.end(); iter++) { LLFace *facep = *iter; if (facep == this) { llinfos << "Pool reference: " << pool_references << llendl; pool_references++; } } if (pool_references != 1) { llinfos << "Incorrect number of pool references!" << llendl; } } #if 0 llinfos << "Indices:" << llendl; llinfos << "--------------------" << llendl; const U32 *indicesp = getRawIndices(); S32 indices_count = getIndicesCount(); S32 geom_start = getGeomStart(); for (S32 i = 0; i < indices_count; i++) { llinfos << i << ":" << indicesp[i] << ":" << (S32)(indicesp[i] - geom_start) << llendl; } llinfos << llendl; llinfos << "Vertices:" << llendl; llinfos << "--------------------" << llendl; for (S32 i = 0; i < mGeomCount; i++) { llinfos << mGeomIndex + i << ":" << poolp->getVertex(mGeomIndex + i) << llendl; } llinfos << llendl; #endif } // Transform the texture coordinates for this face. static void xform(LLVector2 &tex_coord, F32 cosAng, F32 sinAng, F32 offS, F32 offT, F32 magS, F32 magT) { // New, good way F32 s = tex_coord.mV[0]; F32 t = tex_coord.mV[1]; // Texture transforms are done about the center of the face. s -= 0.5; t -= 0.5; // Handle rotation F32 temp = s; s = s * cosAng + t * sinAng; t = -temp * sinAng + t * cosAng; // Then scale s *= magS; t *= magT; // Then offset s += offS + 0.5f; t += offT + 0.5f; tex_coord.mV[0] = s; tex_coord.mV[1] = t; } bool less_than_max_mag(const LLVector4a& vec) { LLVector4a MAX_MAG; MAX_MAG.splat(1024.f*1024.f); LLVector4a val; val.setAbs(vec); S32 lt = val.lessThan(MAX_MAG).getGatheredBits() & 0x7; return lt == 0x7; } BOOL LLFace::genVolumeBBoxes(const LLVolume &volume, S32 f, const LLMatrix4& mat_vert_in, const LLMatrix3& mat_normal_in, BOOL global_volume) { LLMemType mt1(LLMemType::MTYPE_DRAWABLE); //get bounding box if (mDrawablep->isState(LLDrawable::REBUILD_VOLUME | LLDrawable::REBUILD_POSITION | LLDrawable::REBUILD_RIGGED)) { //VECTORIZE THIS LLMatrix4a mat_vert; mat_vert.loadu(mat_vert_in); LLMatrix4a mat_normal; mat_normal.loadu(mat_normal_in); //if (mDrawablep->isState(LLDrawable::REBUILD_VOLUME)) //{ //vertex buffer no longer valid // mVertexBuffer = NULL; // mLastVertexBuffer = NULL; //} //VECTORIZE THIS LLVector4a min,max; if (f >= volume.getNumVolumeFaces()) { llwarns << "Generating bounding box for invalid face index!" << llendl; f = 0; } const LLVolumeFace &face = volume.getVolumeFace(f); min = face.mExtents[0]; max = face.mExtents[1]; llassert(less_than_max_mag(min)); llassert(less_than_max_mag(max)); //min, max are in volume space, convert to drawable render space LLVector4a center; LLVector4a t; t.setAdd(min, max); t.mul(0.5f); mat_vert.affineTransform(t, center); LLVector4a size; size.setSub(max, min); size.mul(0.5f); llassert(less_than_max_mag(min)); llassert(less_than_max_mag(max)); if (!global_volume) { //VECTORIZE THIS LLVector4a scale; scale.load3(mDrawablep->getVObj()->getScale().mV); size.mul(scale); } mat_normal.mMatrix[0].normalize3fast(); mat_normal.mMatrix[1].normalize3fast(); mat_normal.mMatrix[2].normalize3fast(); LLVector4a v[4]; //get 4 corners of bounding box mat_normal.rotate(size,v[0]); //VECTORIZE THIS LLVector4a scale; scale.set(-1.f, -1.f, 1.f); scale.mul(size); mat_normal.rotate(scale, v[1]); scale.set(1.f, -1.f, -1.f); scale.mul(size); mat_normal.rotate(scale, v[2]); scale.set(-1.f, 1.f, -1.f); scale.mul(size); mat_normal.rotate(scale, v[3]); LLVector4a& newMin = mExtents[0]; LLVector4a& newMax = mExtents[1]; newMin = newMax = center; llassert(less_than_max_mag(center)); for (U32 i = 0; i < 4; i++) { LLVector4a delta; delta.setAbs(v[i]); LLVector4a min; min.setSub(center, delta); LLVector4a max; max.setAdd(center, delta); newMin.setMin(newMin,min); newMax.setMax(newMax,max); llassert(less_than_max_mag(newMin)); llassert(less_than_max_mag(newMax)); } if (!mDrawablep->isActive()) { LLVector4a offset; offset.load3(mDrawablep->getRegion()->getOriginAgent().mV); newMin.add(offset); newMax.add(offset); llassert(less_than_max_mag(newMin)); llassert(less_than_max_mag(newMax)); } t.setAdd(newMin, newMax); t.mul(0.5f); llassert(less_than_max_mag(t)); //VECTORIZE THIS mCenterLocal.set(t.getF32ptr()); llassert(less_than_max_mag(newMin)); llassert(less_than_max_mag(newMax)); t.setSub(newMax,newMin); mBoundingSphereRadius = t.getLength3().getF32()*0.5f; updateCenterAgent(); } return TRUE; } // convert surface coordinates to texture coordinates, based on // the values in the texture entry. probably should be // integrated with getGeometryVolume() for its texture coordinate // generation - but i'll leave that to someone more familiar // with the implications. LLVector2 LLFace::surfaceToTexture(LLVector2 surface_coord, LLVector3 position, LLVector3 normal) { LLVector2 tc = surface_coord; const LLTextureEntry *tep = getTextureEntry(); if (tep == NULL) { // can't do much without the texture entry return surface_coord; } //VECTORIZE THIS // see if we have a non-default mapping U8 texgen = getTextureEntry()->getTexGen(); if (texgen != LLTextureEntry::TEX_GEN_DEFAULT) { LLVector4a& center = *(mDrawablep->getVOVolume()->getVolume()->getVolumeFace(mTEOffset).mCenter); LLVector4a volume_position; volume_position.load3(mDrawablep->getVOVolume()->agentPositionToVolume(position).mV); if (!mDrawablep->getVOVolume()->isVolumeGlobal()) { LLVector4a scale; scale.load3(mVObjp->getScale().mV); volume_position.mul(scale); } LLVector4a volume_normal; volume_normal.load3(mDrawablep->getVOVolume()->agentDirectionToVolume(normal).mV); volume_normal.normalize3fast(); switch (texgen) { case LLTextureEntry::TEX_GEN_PLANAR: planarProjection(tc, volume_normal, center, volume_position); break; case LLTextureEntry::TEX_GEN_SPHERICAL: sphericalProjection(tc, volume_normal, center, volume_position); break; case LLTextureEntry::TEX_GEN_CYLINDRICAL: cylindricalProjection(tc, volume_normal, center, volume_position); break; default: break; } } if (mTextureMatrix) // if we have a texture matrix, use it { LLVector3 tc3(tc); tc3 = tc3 * *mTextureMatrix; tc = LLVector2(tc3); } else // otherwise use the texture entry parameters { xform(tc, cos(tep->getRotation()), sin(tep->getRotation()), tep->mOffsetS, tep->mOffsetT, tep->mScaleS, tep->mScaleT); } return tc; } // Returns scale compared to default texgen, and face orientation as calculated // by planarProjection(). This is needed to match planar texgen parameters. void LLFace::getPlanarProjectedParams(LLQuaternion* face_rot, LLVector3* face_pos, F32* scale) const { const LLMatrix4& vol_mat = getWorldMatrix(); const LLVolumeFace& vf = getViewerObject()->getVolume()->getVolumeFace(mTEOffset); const LLVector4a& normal4a = vf.mNormals[0]; const LLVector4a& binormal4a = vf.mBinormals[0]; LLVector2 projected_binormal; planarProjection(projected_binormal, normal4a, *vf.mCenter, binormal4a); projected_binormal -= LLVector2(0.5f, 0.5f); // this normally happens in xform() *scale = projected_binormal.length(); // rotate binormal to match what planarProjection() thinks it is, // then find rotation from that: projected_binormal.normalize(); F32 ang = acos(projected_binormal.mV[VY]); ang = (projected_binormal.mV[VX] < 0.f) ? -ang : ang; //VECTORIZE THIS LLVector3 binormal(binormal4a.getF32ptr()); LLVector3 normal(normal4a.getF32ptr()); binormal.rotVec(ang, normal); LLQuaternion local_rot( binormal % normal, binormal, normal ); *face_rot = local_rot * vol_mat.quaternion(); *face_pos = vol_mat.getTranslation(); } // Returns the necessary texture transform to align this face's TE to align_to's TE bool LLFace::calcAlignedPlanarTE(const LLFace* align_to, LLVector2* res_st_offset, LLVector2* res_st_scale, F32* res_st_rot) const { if (!align_to) { return false; } const LLTextureEntry *orig_tep = align_to->getTextureEntry(); if ((orig_tep->getTexGen() != LLTextureEntry::TEX_GEN_PLANAR) || (getTextureEntry()->getTexGen() != LLTextureEntry::TEX_GEN_PLANAR)) { return false; } LLVector3 orig_pos, this_pos; LLQuaternion orig_face_rot, this_face_rot; F32 orig_proj_scale, this_proj_scale; align_to->getPlanarProjectedParams(&orig_face_rot, &orig_pos, &orig_proj_scale); getPlanarProjectedParams(&this_face_rot, &this_pos, &this_proj_scale); // The rotation of "this face's" texture: LLQuaternion orig_st_rot = LLQuaternion(orig_tep->getRotation(), LLVector3::z_axis) * orig_face_rot; LLQuaternion this_st_rot = orig_st_rot * ~this_face_rot; F32 x_ang, y_ang, z_ang; this_st_rot.getEulerAngles(&x_ang, &y_ang, &z_ang); *res_st_rot = z_ang; // Offset and scale of "this face's" texture: LLVector3 centers_dist = (this_pos - orig_pos) * ~orig_st_rot; LLVector3 st_scale(orig_tep->mScaleS, orig_tep->mScaleT, 1.f); st_scale *= orig_proj_scale; centers_dist.scaleVec(st_scale); LLVector2 orig_st_offset(orig_tep->mOffsetS, orig_tep->mOffsetT); *res_st_offset = orig_st_offset + (LLVector2)centers_dist; res_st_offset->mV[VX] -= (S32)res_st_offset->mV[VX]; res_st_offset->mV[VY] -= (S32)res_st_offset->mV[VY]; st_scale /= this_proj_scale; *res_st_scale = (LLVector2)st_scale; return true; } void LLFace::updateRebuildFlags() { if (!mDrawablep->isState(LLDrawable::REBUILD_VOLUME)) { BOOL moved = TRUE; if (mLastVertexBuffer == mVertexBuffer && !mVertexBuffer->isEmpty()) { //this face really doesn't need to be regenerated, try real hard not to do so if (mLastGeomCount == mGeomCount && mLastGeomIndex == mGeomIndex && mLastIndicesCount == mIndicesCount && mLastIndicesIndex == mIndicesIndex) { //data is in same location in vertex buffer moved = FALSE; } } mLastMoveTime = gFrameTimeSeconds; if (moved) { mDrawablep->setState(LLDrawable::REBUILD_VOLUME); } } else { mLastUpdateTime = gFrameTimeSeconds; } } bool LLFace::canRenderAsMask() { if (LLPipeline::sNoAlpha) { return true; } const LLTextureEntry* te = getTextureEntry(); if ((te->getColor().mV[3] == 1.0f) && // can't treat as mask if we have face alpha (te->getGlow() == 0.f) && // glowing masks are hard to implement - don't mask getTexture()->getIsAlphaMask()) // texture actually qualifies for masking (lazily recalculated but expensive) { if (LLPipeline::sRenderDeferred) { if (getViewerObject()->isHUDAttachment() || te->getFullbright()) { //hud attachments and fullbright objects are NOT subject to the deferred rendering pipe return LLPipeline::sAutoMaskAlphaNonDeferred; } else { return LLPipeline::sAutoMaskAlphaDeferred; } } else { return LLPipeline::sAutoMaskAlphaNonDeferred; } } return false; } static LLFastTimer::DeclareTimer FTM_FACE_GET_GEOM("Face Geom"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_POSITION("Position"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_NORMAL("Normal"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_TEXTURE("Texture"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_COLOR("Color"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_EMISSIVE("Emissive"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_WEIGHTS("Weights"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_BINORMAL("Binormal"); static LLFastTimer::DeclareTimer FTM_FACE_GEOM_INDEX("Index"); BOOL LLFace::getGeometryVolume(const LLVolume& volume, const S32 &f, const LLMatrix4& mat_vert_in, const LLMatrix3& mat_norm_in, const U16 &index_offset, bool force_rebuild) { LLFastTimer t(FTM_FACE_GET_GEOM); llassert(verify()); const LLVolumeFace &vf = volume.getVolumeFace(f); S32 num_vertices = (S32)vf.mNumVertices; S32 num_indices = (S32) vf.mNumIndices; bool map_range = gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange; if (mVertexBuffer.notNull()) { if (num_indices + (S32) mIndicesIndex > mVertexBuffer->getNumIndices()) { llwarns << "Index buffer overflow!" << llendl; llwarns << "Indices Count: " << mIndicesCount << " VF Num Indices: " << num_indices << " Indices Index: " << mIndicesIndex << " VB Num Indices: " << mVertexBuffer->getNumIndices() << llendl; llwarns << "Last Indices Count: " << mLastIndicesCount << " Last Indices Index: " << mLastIndicesIndex << " Face Index: " << f << " Pool Type: " << mPoolType << llendl; return FALSE; } if (num_vertices + mGeomIndex > mVertexBuffer->getNumVerts()) { llwarns << "Vertex buffer overflow!" << llendl; return FALSE; } } LLStrider vert; LLVector4a* vertices = NULL; LLStrider tex_coords; LLStrider tex_coords2; LLVector4a* normals = NULL; LLStrider norm; LLStrider colors; LLVector4a* binormals = NULL; LLStrider binorm; LLStrider indicesp; LLVector4a* weights = NULL; LLStrider wght; BOOL full_rebuild = force_rebuild || mDrawablep->isState(LLDrawable::REBUILD_VOLUME); BOOL global_volume = mDrawablep->getVOVolume()->isVolumeGlobal(); LLVector3 scale; if (global_volume) { scale.setVec(1,1,1); } else { scale = mVObjp->getScale(); } bool rebuild_pos = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_POSITION); bool rebuild_color = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_COLOR); bool rebuild_emissive = rebuild_color && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_EMISSIVE); bool rebuild_tcoord = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_TCOORD); bool rebuild_normal = rebuild_pos && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_NORMAL); bool rebuild_binormal = rebuild_pos && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_BINORMAL); bool rebuild_weights = rebuild_pos && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_WEIGHT4); const LLTextureEntry *tep = mVObjp->getTE(f); const U8 bump_code = tep ? tep->getBumpmap() : 0; F32 tcoord_xoffset = 0.f ; F32 tcoord_yoffset = 0.f ; F32 tcoord_xscale = 1.f ; F32 tcoord_yscale = 1.f ; BOOL in_atlas = FALSE ; if (rebuild_tcoord) { in_atlas = isAtlasInUse() ; if(in_atlas) { const LLVector2* tmp = getTexCoordOffset() ; tcoord_xoffset = tmp->mV[0] ; tcoord_yoffset = tmp->mV[1] ; tmp = getTexCoordScale() ; tcoord_xscale = tmp->mV[0] ; tcoord_yscale = tmp->mV[1] ; } } BOOL is_static = mDrawablep->isStatic(); BOOL is_global = is_static; LLVector3 center_sum(0.f, 0.f, 0.f); if (is_global) { setState(GLOBAL); } else { clearState(GLOBAL); } LLColor4U color = tep->getColor(); if (rebuild_color) { if (tep) { GLfloat alpha[4] = { 0.00f, 0.25f, 0.5f, 0.75f }; if (getPoolType() != LLDrawPool::POOL_ALPHA && (LLPipeline::sRenderDeferred || (LLPipeline::sRenderBump && tep->getShiny()))) { color.mV[3] = U8 (alpha[tep->getShiny()] * 255); } } } // INDICES if (full_rebuild) { LLFastTimer t(FTM_FACE_GEOM_INDEX); mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex, mIndicesCount, map_range); __m128i* dst = (__m128i*) indicesp.get(); __m128i* src = (__m128i*) vf.mIndices; __m128i offset = _mm_set1_epi16(index_offset); S32 end = num_indices/8; for (S32 i = 0; i < end; i++) { __m128i res = _mm_add_epi16(src[i], offset); _mm_storeu_si128(dst+i, res); } for (S32 i = end*8; i < num_indices; ++i) { indicesp[i] = vf.mIndices[i]+index_offset; } if (map_range) { mVertexBuffer->setBuffer(0); } } LLMatrix4a mat_normal; mat_normal.loadu(mat_norm_in); //if it's not fullbright and has no normals, bake sunlight based on face normal //bool bake_sunlight = !getTextureEntry()->getFullbright() && // !mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_NORMAL); F32 r = 0, os = 0, ot = 0, ms = 0, mt = 0, cos_ang = 0, sin_ang = 0; if (rebuild_tcoord) { LLFastTimer t(FTM_FACE_GEOM_TEXTURE); bool do_xform; if (tep) { r = tep->getRotation(); os = tep->mOffsetS; ot = tep->mOffsetT; ms = tep->mScaleS; mt = tep->mScaleT; cos_ang = cos(r); sin_ang = sin(r); if (cos_ang != 1.f || sin_ang != 0.f || os != 0.f || ot != 0.f || ms != 1.f || mt != 1.f) { do_xform = true; } else { do_xform = false; } } else { do_xform = false; } //bump setup LLVector4a binormal_dir( -sin_ang, cos_ang, 0.f ); LLVector4a bump_s_primary_light_ray(0.f, 0.f, 0.f); LLVector4a bump_t_primary_light_ray(0.f, 0.f, 0.f); LLQuaternion bump_quat; if (mDrawablep->isActive()) { bump_quat = LLQuaternion(mDrawablep->getRenderMatrix()); } if (bump_code) { mVObjp->getVolume()->genBinormals(f); F32 offset_multiple; switch( bump_code ) { case BE_NO_BUMP: offset_multiple = 0.f; break; case BE_BRIGHTNESS: case BE_DARKNESS: if( mTexture.notNull() && mTexture->hasGLTexture()) { // Offset by approximately one texel S32 cur_discard = mTexture->getDiscardLevel(); S32 max_size = llmax( mTexture->getWidth(), mTexture->getHeight() ); max_size <<= cur_discard; const F32 ARTIFICIAL_OFFSET = 2.f; offset_multiple = ARTIFICIAL_OFFSET / (F32)max_size; } else { offset_multiple = 1.f/256; } break; default: // Standard bumpmap textures. Assumed to be 256x256 offset_multiple = 1.f / 256; break; } F32 s_scale = 1.f; F32 t_scale = 1.f; if( tep ) { tep->getScale( &s_scale, &t_scale ); } // Use the nudged south when coming from above sun angle, such // that emboss mapping always shows up on the upward faces of cubes when // it's noon (since a lot of builders build with the sun forced to noon). LLVector3 sun_ray = gSky.mVOSkyp->mBumpSunDir; LLVector3 moon_ray = gSky.getMoonDirection(); LLVector3& primary_light_ray = (sun_ray.mV[VZ] > 0) ? sun_ray : moon_ray; bump_s_primary_light_ray.load3((offset_multiple * s_scale * primary_light_ray).mV); bump_t_primary_light_ray.load3((offset_multiple * t_scale * primary_light_ray).mV); } U8 texgen = getTextureEntry()->getTexGen(); if (rebuild_tcoord && texgen != LLTextureEntry::TEX_GEN_DEFAULT) { //planar texgen needs binormals mVObjp->getVolume()->genBinormals(f); } U8 tex_mode = 0; if (isState(TEXTURE_ANIM)) { LLVOVolume* vobj = (LLVOVolume*) (LLViewerObject*) mVObjp; tex_mode = vobj->mTexAnimMode; if (!tex_mode) { clearState(TEXTURE_ANIM); } else { os = ot = 0.f; r = 0.f; cos_ang = 1.f; sin_ang = 0.f; ms = mt = 1.f; do_xform = false; } if (getVirtualSize() >= MIN_TEX_ANIM_SIZE) { //don't override texture transform during tc bake tex_mode = 0; } } LLVector4a scalea; scalea.load3(scale.mV); bool do_bump = bump_code && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_TEXCOORD1); bool do_tex_mat = tex_mode && mTextureMatrix; if (!in_atlas && !do_bump) { //not in atlas or not bump mapped, might be able to do a cheap update mVertexBuffer->getTexCoord0Strider(tex_coords, mGeomIndex, mGeomCount); if (texgen != LLTextureEntry::TEX_GEN_PLANAR) { if (!do_tex_mat) { if (!do_xform) { LLVector4a::memcpyNonAliased16((F32*) tex_coords.get(), (F32*) vf.mTexCoords, num_vertices*2*sizeof(F32)); } else { for (S32 i = 0; i < num_vertices; i++) { LLVector2 tc(vf.mTexCoords[i]); xform(tc, cos_ang, sin_ang, os, ot, ms, mt); *tex_coords++ = tc; } } } else { //do tex mat, no texgen, no atlas, no bump for (S32 i = 0; i < num_vertices; i++) { LLVector2 tc(vf.mTexCoords[i]); //LLVector4a& norm = vf.mNormals[i]; //LLVector4a& center = *(vf.mCenter); LLVector3 tmp(tc.mV[0], tc.mV[1], 0.f); tmp = tmp * *mTextureMatrix; tc.mV[0] = tmp.mV[0]; tc.mV[1] = tmp.mV[1]; *tex_coords++ = tc; } } } else { //no bump, no atlas, tex gen planar if (do_tex_mat) { for (S32 i = 0; i < num_vertices; i++) { LLVector2 tc(vf.mTexCoords[i]); LLVector4a& norm = vf.mNormals[i]; LLVector4a& center = *(vf.mCenter); LLVector4a vec = vf.mPositions[i]; vec.mul(scalea); planarProjection(tc, norm, center, vec); LLVector3 tmp(tc.mV[0], tc.mV[1], 0.f); tmp = tmp * *mTextureMatrix; tc.mV[0] = tmp.mV[0]; tc.mV[1] = tmp.mV[1]; *tex_coords++ = tc; } } else { for (S32 i = 0; i < num_vertices; i++) { LLVector2 tc(vf.mTexCoords[i]); LLVector4a& norm = vf.mNormals[i]; LLVector4a& center = *(vf.mCenter); LLVector4a vec = vf.mPositions[i]; vec.mul(scalea); planarProjection(tc, norm, center, vec); xform(tc, cos_ang, sin_ang, os, ot, ms, mt); *tex_coords++ = tc; } } } if (map_range) { mVertexBuffer->setBuffer(0); } } else { //either bump mapped or in atlas, just do the whole expensive loop mVertexBuffer->getTexCoord0Strider(tex_coords, mGeomIndex, mGeomCount, map_range); std::vector bump_tc; for (S32 i = 0; i < num_vertices; i++) { LLVector2 tc(vf.mTexCoords[i]); LLVector4a& norm = vf.mNormals[i]; LLVector4a& center = *(vf.mCenter); if (texgen != LLTextureEntry::TEX_GEN_DEFAULT) { LLVector4a vec = vf.mPositions[i]; vec.mul(scalea); switch (texgen) { case LLTextureEntry::TEX_GEN_PLANAR: planarProjection(tc, norm, center, vec); break; case LLTextureEntry::TEX_GEN_SPHERICAL: sphericalProjection(tc, norm, center, vec); break; case LLTextureEntry::TEX_GEN_CYLINDRICAL: cylindricalProjection(tc, norm, center, vec); break; default: break; } } if (tex_mode && mTextureMatrix) { LLVector3 tmp(tc.mV[0], tc.mV[1], 0.f); tmp = tmp * *mTextureMatrix; tc.mV[0] = tmp.mV[0]; tc.mV[1] = tmp.mV[1]; } else { xform(tc, cos_ang, sin_ang, os, ot, ms, mt); } if(in_atlas) { // //manually calculate tex-coord per vertex for varying address modes. //should be removed if shader can handle this. // S32 int_part = 0 ; switch(mTexture->getAddressMode()) { case LLTexUnit::TAM_CLAMP: if(tc.mV[0] < 0.f) { tc.mV[0] = 0.f ; } else if(tc.mV[0] > 1.f) { tc.mV[0] = 1.f; } if(tc.mV[1] < 0.f) { tc.mV[1] = 0.f ; } else if(tc.mV[1] > 1.f) { tc.mV[1] = 1.f; } break; case LLTexUnit::TAM_MIRROR: if(tc.mV[0] < 0.f) { tc.mV[0] = -tc.mV[0] ; } int_part = (S32)tc.mV[0] ; if(int_part & 1) //odd number { tc.mV[0] = int_part + 1 - tc.mV[0] ; } else //even number { tc.mV[0] -= int_part ; } if(tc.mV[1] < 0.f) { tc.mV[1] = -tc.mV[1] ; } int_part = (S32)tc.mV[1] ; if(int_part & 1) //odd number { tc.mV[1] = int_part + 1 - tc.mV[1] ; } else //even number { tc.mV[1] -= int_part ; } break; case LLTexUnit::TAM_WRAP: if(tc.mV[0] > 1.f) tc.mV[0] -= (S32)(tc.mV[0] - 0.00001f) ; else if(tc.mV[0] < -1.f) tc.mV[0] -= (S32)(tc.mV[0] + 0.00001f) ; if(tc.mV[1] > 1.f) tc.mV[1] -= (S32)(tc.mV[1] - 0.00001f) ; else if(tc.mV[1] < -1.f) tc.mV[1] -= (S32)(tc.mV[1] + 0.00001f) ; if(tc.mV[0] < 0.f) { tc.mV[0] = 1.0f + tc.mV[0] ; } if(tc.mV[1] < 0.f) { tc.mV[1] = 1.0f + tc.mV[1] ; } break; default: break; } tc.mV[0] = tcoord_xoffset + tcoord_xscale * tc.mV[0] ; tc.mV[1] = tcoord_yoffset + tcoord_yscale * tc.mV[1] ; } *tex_coords++ = tc; if (do_bump) { bump_tc.push_back(tc); } } if (map_range) { mVertexBuffer->setBuffer(0); } if (do_bump) { mVertexBuffer->getTexCoord1Strider(tex_coords2, mGeomIndex, mGeomCount, map_range); for (S32 i = 0; i < num_vertices; i++) { LLVector4a tangent; tangent.setCross3(vf.mBinormals[i], vf.mNormals[i]); LLMatrix4a tangent_to_object; tangent_to_object.setRows(tangent, vf.mBinormals[i], vf.mNormals[i]); LLVector4a t; tangent_to_object.rotate(binormal_dir, t); LLVector4a binormal; mat_normal.rotate(t, binormal); //VECTORIZE THIS if (mDrawablep->isActive()) { LLVector3 t; t.set(binormal.getF32ptr()); t *= bump_quat; binormal.load3(t.mV); } binormal.normalize3fast(); LLVector2 tc = bump_tc[i]; tc += LLVector2( bump_s_primary_light_ray.dot3(tangent).getF32(), bump_t_primary_light_ray.dot3(binormal).getF32() ); *tex_coords2++ = tc; } if (map_range) { mVertexBuffer->setBuffer(0); } } } } if (rebuild_pos) { LLFastTimer t(FTM_FACE_GEOM_POSITION); llassert(num_vertices > 0); mVertexBuffer->getVertexStrider(vert, mGeomIndex, mGeomCount, map_range); vertices = (LLVector4a*) vert.get(); LLMatrix4a mat_vert; mat_vert.loadu(mat_vert_in); LLVector4a* src = vf.mPositions; LLVector4a* dst = vertices; LLVector4a* end = dst+num_vertices; do { mat_vert.affineTransform(*src++, *dst++); } while(dst < end); F32 index = (F32) (mTextureIndex < 255 ? mTextureIndex : 0); F32 *index_dst = (F32*) vertices; F32 *index_end = (F32*) end; index_dst += 3; index_end += 3; do { *index_dst = index; index_dst += 4; } while (index_dst < index_end); S32 aligned_pad_vertices = mGeomCount - num_vertices; LLVector4a* last_vec = end - 1; while (aligned_pad_vertices > 0) { --aligned_pad_vertices; *dst++ = *last_vec; } if (map_range) { mVertexBuffer->setBuffer(0); } } if (rebuild_normal) { LLFastTimer t(FTM_FACE_GEOM_NORMAL); mVertexBuffer->getNormalStrider(norm, mGeomIndex, mGeomCount, map_range); normals = (LLVector4a*) norm.get(); for (S32 i = 0; i < num_vertices; i++) { LLVector4a normal; mat_normal.rotate(vf.mNormals[i], normal); normal.normalize3fast(); normals[i] = normal; } if (map_range) { mVertexBuffer->setBuffer(0); } } if (rebuild_binormal) { LLFastTimer t(FTM_FACE_GEOM_BINORMAL); mVertexBuffer->getBinormalStrider(binorm, mGeomIndex, mGeomCount, map_range); binormals = (LLVector4a*) binorm.get(); for (S32 i = 0; i < num_vertices; i++) { LLVector4a binormal; mat_normal.rotate(vf.mBinormals[i], binormal); binormal.normalize3fast(); binormals[i] = binormal; } if (map_range) { mVertexBuffer->setBuffer(0); } } if (rebuild_weights && vf.mWeights) { LLFastTimer t(FTM_FACE_GEOM_WEIGHTS); mVertexBuffer->getWeight4Strider(wght, mGeomIndex, mGeomCount, map_range); weights = (LLVector4a*) wght.get(); LLVector4a::memcpyNonAliased16((F32*) weights, (F32*) vf.mWeights, num_vertices*4*sizeof(F32)); if (map_range) { mVertexBuffer->setBuffer(0); } } if (rebuild_color) { LLFastTimer t(FTM_FACE_GEOM_COLOR); mVertexBuffer->getColorStrider(colors, mGeomIndex, mGeomCount, map_range); LLVector4a src; U32 vec[4]; vec[0] = vec[1] = vec[2] = vec[3] = color.mAll; src.loadua((F32*) vec); LLVector4a* dst = (LLVector4a*) colors.get(); S32 num_vecs = num_vertices/4; if (num_vertices%4 > 0) { ++num_vecs; } for (S32 i = 0; i < num_vecs; i++) { dst[i] = src; } if (map_range) { mVertexBuffer->setBuffer(0); } } if (rebuild_emissive) { LLFastTimer t(FTM_FACE_GEOM_EMISSIVE); LLStrider emissive; mVertexBuffer->getEmissiveStrider(emissive, mGeomIndex, mGeomCount, map_range); U8 glow = (U8) llclamp((S32) (getTextureEntry()->getGlow()*255), 0, 255); LLVector4a src; U32 glow32 = glow | (glow << 8) | (glow << 16) | (glow << 24); U32 vec[4]; vec[0] = vec[1] = vec[2] = vec[3] = glow32; src.loadua((F32*) vec); LLVector4a* dst = (LLVector4a*) emissive.get(); S32 num_vecs = num_vertices/16; if (num_vertices%16 > 0) { ++num_vecs; } for (S32 i = 0; i < num_vecs; i++) { dst[i] = src; } if (map_range) { mVertexBuffer->setBuffer(0); } } if (rebuild_tcoord) { mTexExtents[0].setVec(0,0); mTexExtents[1].setVec(1,1); xform(mTexExtents[0], cos_ang, sin_ang, os, ot, ms, mt); xform(mTexExtents[1], cos_ang, sin_ang, os, ot, ms, mt); F32 es = vf.mTexCoordExtents[1].mV[0] - vf.mTexCoordExtents[0].mV[0] ; F32 et = vf.mTexCoordExtents[1].mV[1] - vf.mTexCoordExtents[0].mV[1] ; mTexExtents[0][0] *= es ; mTexExtents[1][0] *= es ; mTexExtents[0][1] *= et ; mTexExtents[1][1] *= et ; } mLastVertexBuffer = mVertexBuffer; mLastGeomCount = mGeomCount; mLastGeomIndex = mGeomIndex; mLastIndicesCount = mIndicesCount; mLastIndicesIndex = mIndicesIndex; return TRUE; } //check if the face has a media BOOL LLFace::hasMedia() const { if(mHasMedia) { return TRUE ; } if(mTexture.notNull()) { return mTexture->hasParcelMedia() ; //if has a parcel media } return FALSE ; //no media. } const F32 LEAST_IMPORTANCE = 0.05f ; const F32 LEAST_IMPORTANCE_FOR_LARGE_IMAGE = 0.3f ; F32 LLFace::getTextureVirtualSize() { F32 radius; F32 cos_angle_to_view_dir; BOOL in_frustum = calcPixelArea(cos_angle_to_view_dir, radius); if (mPixelArea < F_ALMOST_ZERO || !in_frustum) { setVirtualSize(0.f) ; return 0.f; } //get area of circle in texture space LLVector2 tdim = mTexExtents[1] - mTexExtents[0]; F32 texel_area = (tdim * 0.5f).lengthSquared()*3.14159f; if (texel_area <= 0) { // Probably animated, use default texel_area = 1.f; } F32 face_area; if (mVObjp->isSculpted() && texel_area > 1.f) { //sculpts can break assumptions about texel area face_area = mPixelArea; } else { //apply texel area to face area to get accurate ratio //face_area /= llclamp(texel_area, 1.f/64.f, 16.f); face_area = mPixelArea / llclamp(texel_area, 0.015625f, 128.f); } face_area = LLFace::adjustPixelArea(mImportanceToCamera, face_area) ; if(face_area > LLViewerTexture::sMinLargeImageSize) //if is large image, shrink face_area by considering the partial overlapping. { if(mImportanceToCamera > LEAST_IMPORTANCE_FOR_LARGE_IMAGE && mTexture.notNull() && mTexture->isLargeImage()) { face_area *= adjustPartialOverlapPixelArea(cos_angle_to_view_dir, radius ); } } setVirtualSize(face_area) ; return face_area; } BOOL LLFace::calcPixelArea(F32& cos_angle_to_view_dir, F32& radius) { //VECTORIZE THIS //get area of circle around face LLVector4a center; center.load3(getPositionAgent().mV); LLVector4a size; size.setSub(mExtents[1], mExtents[0]); size.mul(0.5f); LLViewerCamera* camera = LLViewerCamera::getInstance(); F32 size_squared = size.dot3(size).getF32(); LLVector4a lookAt; LLVector4a t; t.load3(camera->getOrigin().mV); lookAt.setSub(center, t); F32 dist = lookAt.getLength3().getF32(); dist = llmax(dist-size.getLength3().getF32(), 0.f); lookAt.normalize3fast() ; //get area of circle around node F32 app_angle = atanf((F32) sqrt(size_squared) / dist); radius = app_angle*LLDrawable::sCurPixelAngle; mPixelArea = radius*radius * 3.14159f; LLVector4a x_axis; x_axis.load3(camera->getXAxis().mV); cos_angle_to_view_dir = lookAt.dot3(x_axis).getF32(); //if has media, check if the face is out of the view frustum. if(hasMedia()) { if(!camera->AABBInFrustum(center, size)) { mImportanceToCamera = 0.f ; return false ; } if(cos_angle_to_view_dir > camera->getCosHalfFov()) //the center is within the view frustum { cos_angle_to_view_dir = 1.0f ; } else { LLVector4a d; d.setSub(lookAt, x_axis); if(dist * dist * d.dot3(d) < size_squared) { cos_angle_to_view_dir = 1.0f ; } } } if(dist < mBoundingSphereRadius) //camera is very close { cos_angle_to_view_dir = 1.0f ; mImportanceToCamera = 1.0f ; } else { mImportanceToCamera = LLFace::calcImportanceToCamera(cos_angle_to_view_dir, dist) ; } return true ; } //the projection of the face partially overlaps with the screen F32 LLFace::adjustPartialOverlapPixelArea(F32 cos_angle_to_view_dir, F32 radius ) { F32 screen_radius = (F32)llmax(gViewerWindow->getWindowWidthRaw(), gViewerWindow->getWindowHeightRaw()) ; F32 center_angle = acosf(cos_angle_to_view_dir) ; F32 d = center_angle * LLDrawable::sCurPixelAngle ; if(d + radius > screen_radius + 5.f) { //---------------------------------------------- //calculate the intersection area of two circles //F32 radius_square = radius * radius ; //F32 d_square = d * d ; //F32 screen_radius_square = screen_radius * screen_radius ; //face_area = // radius_square * acosf((d_square + radius_square - screen_radius_square)/(2 * d * radius)) + // screen_radius_square * acosf((d_square + screen_radius_square - radius_square)/(2 * d * screen_radius)) - // 0.5f * sqrtf((-d + radius + screen_radius) * (d + radius - screen_radius) * (d - radius + screen_radius) * (d + radius + screen_radius)) ; //---------------------------------------------- //the above calculation is too expensive //the below is a good estimation: bounding box of the bounding sphere: F32 alpha = 0.5f * (radius + screen_radius - d) / radius ; alpha = llclamp(alpha, 0.f, 1.f) ; return alpha * alpha ; } return 1.0f ; } const S8 FACE_IMPORTANCE_LEVEL = 4 ; const F32 FACE_IMPORTANCE_TO_CAMERA_OVER_DISTANCE[FACE_IMPORTANCE_LEVEL][2] = //{distance, importance_weight} {{16.1f, 1.0f}, {32.1f, 0.5f}, {48.1f, 0.2f}, {96.1f, 0.05f} } ; const F32 FACE_IMPORTANCE_TO_CAMERA_OVER_ANGLE[FACE_IMPORTANCE_LEVEL][2] = //{cos(angle), importance_weight} {{0.985f /*cos(10 degrees)*/, 1.0f}, {0.94f /*cos(20 degrees)*/, 0.8f}, {0.866f /*cos(30 degrees)*/, 0.64f}, {0.0f, 0.36f}} ; //static F32 LLFace::calcImportanceToCamera(F32 cos_angle_to_view_dir, F32 dist) { F32 importance = 0.f ; if(cos_angle_to_view_dir > LLViewerCamera::getInstance()->getCosHalfFov() && dist < FACE_IMPORTANCE_TO_CAMERA_OVER_DISTANCE[FACE_IMPORTANCE_LEVEL - 1][0]) { LLViewerCamera* camera = LLViewerCamera::getInstance(); F32 camera_moving_speed = camera->getAverageSpeed() ; F32 camera_angular_speed = camera->getAverageAngularSpeed(); if(camera_moving_speed > 10.0f || camera_angular_speed > 1.0f) { //if camera moves or rotates too fast, ignore the importance factor return 0.f ; } //F32 camera_relative_speed = camera_moving_speed * (lookAt * LLViewerCamera::getInstance()->getVelocityDir()) ; S32 i = 0 ; for(i = 0; i < FACE_IMPORTANCE_LEVEL && dist > FACE_IMPORTANCE_TO_CAMERA_OVER_DISTANCE[i][0]; ++i); i = llmin(i, FACE_IMPORTANCE_LEVEL - 1) ; F32 dist_factor = FACE_IMPORTANCE_TO_CAMERA_OVER_DISTANCE[i][1] ; for(i = 0; i < FACE_IMPORTANCE_LEVEL && cos_angle_to_view_dir < FACE_IMPORTANCE_TO_CAMERA_OVER_ANGLE[i][0] ; ++i) ; i = llmin(i, FACE_IMPORTANCE_LEVEL - 1) ; importance = dist_factor * FACE_IMPORTANCE_TO_CAMERA_OVER_ANGLE[i][1] ; } return importance ; } //static F32 LLFace::adjustPixelArea(F32 importance, F32 pixel_area) { if(pixel_area > LLViewerTexture::sMaxSmallImageSize) { if(importance < LEAST_IMPORTANCE) //if the face is not important, do not load hi-res. { static const F32 MAX_LEAST_IMPORTANCE_IMAGE_SIZE = 128.0f * 128.0f ; pixel_area = llmin(pixel_area * 0.5f, MAX_LEAST_IMPORTANCE_IMAGE_SIZE) ; } else if(pixel_area > LLViewerTexture::sMinLargeImageSize) //if is large image, shrink face_area by considering the partial overlapping. { if(importance < LEAST_IMPORTANCE_FOR_LARGE_IMAGE)//if the face is not important, do not load hi-res. { pixel_area = LLViewerTexture::sMinLargeImageSize ; } } } return pixel_area ; } BOOL LLFace::verify(const U32* indices_array) const { BOOL ok = TRUE; if( mVertexBuffer.isNull() ) { //no vertex buffer, face is implicitly valid return TRUE; } // First, check whether the face data fits within the pool's range. if ((mGeomIndex + mGeomCount) > mVertexBuffer->getRequestedVerts()) { ok = FALSE; llinfos << "Face references invalid vertices!" << llendl; } S32 indices_count = (S32)getIndicesCount(); if (!indices_count) { return TRUE; } if (indices_count > LL_MAX_INDICES_COUNT) { ok = FALSE; llinfos << "Face has bogus indices count" << llendl; } if (mIndicesIndex + mIndicesCount > mVertexBuffer->getRequestedIndices()) { ok = FALSE; llinfos << "Face references invalid indices!" << llendl; } #if 0 S32 geom_start = getGeomStart(); S32 geom_count = mGeomCount; const U32 *indicesp = indices_array ? indices_array + mIndicesIndex : getRawIndices(); for (S32 i = 0; i < indices_count; i++) { S32 delta = indicesp[i] - geom_start; if (0 > delta) { llwarns << "Face index too low!" << llendl; llinfos << "i:" << i << " Index:" << indicesp[i] << " GStart: " << geom_start << llendl; ok = FALSE; } else if (delta >= geom_count) { llwarns << "Face index too high!" << llendl; llinfos << "i:" << i << " Index:" << indicesp[i] << " GEnd: " << geom_start + geom_count << llendl; ok = FALSE; } } #endif if (!ok) { printDebugInfo(); } return ok; } void LLFace::setViewerObject(LLViewerObject* objp) { mVObjp = objp; } const LLColor4& LLFace::getRenderColor() const { if (isState(USE_FACE_COLOR)) { return mFaceColor; // Face Color } else { const LLTextureEntry* tep = getTextureEntry(); return (tep ? tep->getColor() : LLColor4::white); } } void LLFace::renderSetColor() const { if (!LLFacePool::LLOverrideFaceColor::sOverrideFaceColor) { const LLColor4* color = &(getRenderColor()); gGL.diffuseColor4fv(color->mV); } } S32 LLFace::pushVertices(const U16* index_array) const { if (mIndicesCount) { U32 render_type = LLRender::TRIANGLES; if (mDrawInfo) { render_type = mDrawInfo->mDrawMode; } mVertexBuffer->drawRange(render_type, mGeomIndex, mGeomIndex+mGeomCount-1, mIndicesCount, mIndicesIndex); gPipeline.addTrianglesDrawn(mIndicesCount, render_type); } return mIndicesCount; } const LLMatrix4& LLFace::getRenderMatrix() const { return mDrawablep->getRenderMatrix(); } S32 LLFace::renderElements(const U16 *index_array) const { S32 ret = 0; if (isState(GLOBAL)) { ret = pushVertices(index_array); } else { gGL.pushMatrix(); gGL.multMatrix((float*)getRenderMatrix().mMatrix); ret = pushVertices(index_array); gGL.popMatrix(); } return ret; } S32 LLFace::renderIndexed() { if(mDrawablep.isNull() || mDrawPoolp == NULL) { return 0; } return renderIndexed(mDrawPoolp->getVertexDataMask()); } S32 LLFace::renderIndexed(U32 mask) { if (mVertexBuffer.isNull()) { return 0; } mVertexBuffer->setBuffer(mask); U16* index_array = (U16*) mVertexBuffer->getIndicesPointer(); return renderElements(index_array); } //============================================================================ // From llface.inl S32 LLFace::getColors(LLStrider &colors) { if (!mGeomCount) { return -1; } // llassert(mGeomIndex >= 0); mVertexBuffer->getColorStrider(colors, mGeomIndex, mGeomCount); return mGeomIndex; } S32 LLFace::getIndices(LLStrider &indicesp) { mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex, mIndicesCount); llassert(indicesp[0] != indicesp[1]); return mIndicesIndex; } LLVector3 LLFace::getPositionAgent() const { if (mDrawablep->isStatic()) { return mCenterAgent; } else { return mCenterLocal * getRenderMatrix(); } } // //atlas // void LLFace::removeAtlas() { setAtlasInUse(FALSE) ; mAtlasInfop = NULL ; } const LLTextureAtlas* LLFace::getAtlas()const { if(mAtlasInfop) { return mAtlasInfop->getAtlas() ; } return NULL ; } const LLVector2* LLFace::getTexCoordOffset()const { if(isAtlasInUse()) { return mAtlasInfop->getTexCoordOffset() ; } return NULL ; } const LLVector2* LLFace::getTexCoordScale() const { if(isAtlasInUse()) { return mAtlasInfop->getTexCoordScale() ; } return NULL ; } BOOL LLFace::isAtlasInUse()const { return mUsingAtlas ; } BOOL LLFace::canUseAtlas()const { //no drawable or no spatial group, do not use atlas if(!mDrawablep || !mDrawablep->getSpatialGroup()) { return FALSE ; } //if bump face, do not use atlas if(getTextureEntry() && getTextureEntry()->getBumpmap()) { return FALSE ; } //if animated texture, do not use atlas if(isState(TEXTURE_ANIM)) { return FALSE ; } return TRUE ; } void LLFace::setAtlasInUse(BOOL flag) { //no valid atlas to use. if(flag && (!mAtlasInfop || !mAtlasInfop->isValid())) { flag = FALSE ; } if(!flag && !mUsingAtlas) { return ; } // //at this stage (flag || mUsingAtlas) is always true. // //rebuild the tex coords if(mDrawablep) { gPipeline.markRebuild(mDrawablep, LLDrawable::REBUILD_TCOORD); mUsingAtlas = flag ; } else { mUsingAtlas = FALSE ; } } LLTextureAtlasSlot* LLFace::getAtlasInfo() { return mAtlasInfop ; } void LLFace::setAtlasInfo(LLTextureAtlasSlot* atlasp) { if(mAtlasInfop != atlasp) { if(mAtlasInfop) { //llerrs << "Atlas slot changed!" << llendl ; } mAtlasInfop = atlasp ; } } LLViewerTexture* LLFace::getTexture() const { if(isAtlasInUse()) { return (LLViewerTexture*)mAtlasInfop->getAtlas() ; } return mTexture ; } //switch to atlas or switch back to gl texture //return TRUE if using atlas. BOOL LLFace::switchTexture() { //no valid atlas or texture if(!mAtlasInfop || !mAtlasInfop->isValid() || !mTexture) { return FALSE ; } if(mTexture->getTexelsInAtlas() >= (U32)mVSize || mTexture->getTexelsInAtlas() >= mTexture->getTexelsInGLTexture()) { //switch to use atlas //atlas resolution is qualified, use it. if(!mUsingAtlas) { setAtlasInUse(TRUE) ; } } else //if atlas not qualified. { //switch back to GL texture if(mUsingAtlas && mTexture->isGLTextureCreated() && mTexture->getDiscardLevel() < mTexture->getDiscardLevelInAtlas()) { setAtlasInUse(FALSE) ; } } return mUsingAtlas ; } void LLFace::setVertexBuffer(LLVertexBuffer* buffer) { mVertexBuffer = buffer; llassert(verify()); } void LLFace::clearVertexBuffer() { mVertexBuffer = NULL; mLastVertexBuffer = NULL; } //static U32 LLFace::getRiggedDataMask(U32 type) { static const U32 rigged_data_mask[] = { LLDrawPoolAvatar::RIGGED_SIMPLE_MASK, LLDrawPoolAvatar::RIGGED_FULLBRIGHT_MASK, LLDrawPoolAvatar::RIGGED_SHINY_MASK, LLDrawPoolAvatar::RIGGED_FULLBRIGHT_SHINY_MASK, LLDrawPoolAvatar::RIGGED_GLOW_MASK, LLDrawPoolAvatar::RIGGED_ALPHA_MASK, LLDrawPoolAvatar::RIGGED_FULLBRIGHT_ALPHA_MASK, LLDrawPoolAvatar::RIGGED_DEFERRED_BUMP_MASK, LLDrawPoolAvatar::RIGGED_DEFERRED_SIMPLE_MASK, }; llassert(type < sizeof(rigged_data_mask)/sizeof(U32)); return rigged_data_mask[type]; } U32 LLFace::getRiggedVertexBufferDataMask() const { U32 data_mask = 0; for (U32 i = 0; i < mRiggedIndex.size(); ++i) { if (mRiggedIndex[i] > -1) { data_mask |= LLFace::getRiggedDataMask(i); } } return data_mask; } S32 LLFace::getRiggedIndex(U32 type) const { if (mRiggedIndex.empty()) { return -1; } llassert(type < mRiggedIndex.size()); return mRiggedIndex[type]; } void LLFace::setRiggedIndex(U32 type, S32 index) { if (mRiggedIndex.empty()) { mRiggedIndex.resize(LLDrawPoolAvatar::NUM_RIGGED_PASSES); for (U32 i = 0; i < mRiggedIndex.size(); ++i) { mRiggedIndex[i] = -1; } } llassert(type < mRiggedIndex.size()); mRiggedIndex[type] = index; }