/** * @file lldrawpoolalpha.cpp * @brief LLDrawPoolAlpha class implementation * * $LicenseInfo:firstyear=2002&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "lldrawpoolalpha.h" #include "llglheaders.h" #include "llviewercontrol.h" #include "llcriticaldamp.h" #include "llfasttimer.h" #include "llrender.h" #include "llcubemap.h" #include "llsky.h" #include "lldrawable.h" #include "llface.h" #include "llviewercamera.h" #include "llviewertexturelist.h" // For debugging #include "llviewerobjectlist.h" // For debugging #include "llviewerwindow.h" #include "pipeline.h" #include "llviewershadermgr.h" #include "llviewerregion.h" #include "lldrawpoolwater.h" #include "llspatialpartition.h" BOOL LLDrawPoolAlpha::sShowDebugAlpha = FALSE; static BOOL deferred_render = FALSE; LLDrawPoolAlpha::LLDrawPoolAlpha(U32 type) : LLRenderPass(type), current_shader(NULL), target_shader(NULL), simple_shader(NULL), fullbright_shader(NULL), emissive_shader(NULL), mColorSFactor(LLRender::BF_UNDEF), mColorDFactor(LLRender::BF_UNDEF), mAlphaSFactor(LLRender::BF_UNDEF), mAlphaDFactor(LLRender::BF_UNDEF) { } LLDrawPoolAlpha::~LLDrawPoolAlpha() { } void LLDrawPoolAlpha::prerender() { mVertexShaderLevel = LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_OBJECT); } S32 LLDrawPoolAlpha::getNumDeferredPasses() { return 1; } void LLDrawPoolAlpha::beginDeferredPass(S32 pass) { } void LLDrawPoolAlpha::endDeferredPass(S32 pass) { } void LLDrawPoolAlpha::renderDeferred(S32 pass) { LLFastTimer t(FTM_RENDER_GRASS); gDeferredDiffuseAlphaMaskProgram.bind(); gDeferredDiffuseAlphaMaskProgram.setMinimumAlpha(0.33f); //render alpha masked objects LLRenderPass::pushBatches(LLRenderPass::PASS_ALPHA_MASK, getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX, TRUE, TRUE); gDeferredDiffuseAlphaMaskProgram.unbind(); } S32 LLDrawPoolAlpha::getNumPostDeferredPasses() { if (LLPipeline::sImpostorRender) { //skip depth buffer filling pass when rendering impostors return 1; } else if (gSavedSettings.getBOOL("RenderDepthOfField")) { return 2; } else { return 1; } } void LLDrawPoolAlpha::beginPostDeferredPass(S32 pass) { LLFastTimer t(FTM_RENDER_ALPHA); if (pass == 0) { simple_shader = &gDeferredAlphaProgram; fullbright_shader = &gObjectFullbrightAlphaMaskProgram; //prime simple shader (loads shadow relevant uniforms) gPipeline.bindDeferredShader(*simple_shader); } else { //update depth buffer sampler gPipeline.mScreen.flush(); gPipeline.mDeferredDepth.copyContents(gPipeline.mDeferredScreen, 0, 0, gPipeline.mDeferredScreen.getWidth(), gPipeline.mDeferredScreen.getHeight(), 0, 0, gPipeline.mDeferredDepth.getWidth(), gPipeline.mDeferredDepth.getHeight(), GL_DEPTH_BUFFER_BIT, GL_NEAREST); gPipeline.mDeferredDepth.bindTarget(); simple_shader = NULL; fullbright_shader = NULL; gObjectFullbrightAlphaMaskProgram.bind(); gObjectFullbrightAlphaMaskProgram.setMinimumAlpha(0.33f); } deferred_render = TRUE; if (mVertexShaderLevel > 0) { // Start out with no shaders. current_shader = target_shader = NULL; } gPipeline.enableLightsDynamic(); } void LLDrawPoolAlpha::endPostDeferredPass(S32 pass) { if (pass == 1) { gPipeline.mDeferredDepth.flush(); gPipeline.mScreen.bindTarget(); gObjectFullbrightAlphaMaskProgram.unbind(); } deferred_render = FALSE; endRenderPass(pass); } void LLDrawPoolAlpha::renderPostDeferred(S32 pass) { render(pass); } void LLDrawPoolAlpha::beginRenderPass(S32 pass) { LLFastTimer t(FTM_RENDER_ALPHA); if (LLPipeline::sUnderWaterRender) { simple_shader = &gObjectSimpleWaterAlphaMaskProgram; fullbright_shader = &gObjectFullbrightWaterAlphaMaskProgram; emissive_shader = &gObjectEmissiveWaterProgram; } else { simple_shader = &gObjectSimpleAlphaMaskProgram; fullbright_shader = &gObjectFullbrightAlphaMaskProgram; emissive_shader = &gObjectEmissiveProgram; } if (mVertexShaderLevel > 0) { // Start out with no shaders. current_shader = target_shader = NULL; LLGLSLShader::bindNoShader(); } gPipeline.enableLightsDynamic(); } void LLDrawPoolAlpha::endRenderPass( S32 pass ) { LLFastTimer t(FTM_RENDER_ALPHA); LLRenderPass::endRenderPass(pass); if(gPipeline.canUseWindLightShaders()) { LLGLSLShader::bindNoShader(); } } void LLDrawPoolAlpha::render(S32 pass) { LLFastTimer t(FTM_RENDER_ALPHA); LLGLSPipelineAlpha gls_pipeline_alpha; if (deferred_render && pass == 1) { //depth only gGL.setColorMask(false, false); } else { gGL.setColorMask(true, true); } if (LLPipeline::sAutoMaskAlphaNonDeferred) { mColorSFactor = LLRender::BF_ONE; // } mColorDFactor = LLRender::BF_ZERO; // } these are like disabling blend on the color channels, but we're still blending on the alpha channel so that we can suppress glow mAlphaSFactor = LLRender::BF_ZERO; mAlphaDFactor = LLRender::BF_ZERO; // block (zero-out) glow where the alpha test succeeds gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); if (mVertexShaderLevel > 0) { if (!LLPipeline::sRenderDeferred || !deferred_render) { simple_shader->bind(); simple_shader->setMinimumAlpha(0.33f); pushBatches(LLRenderPass::PASS_ALPHA_MASK, getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX, TRUE, TRUE); } if (fullbright_shader) { fullbright_shader->bind(); fullbright_shader->setMinimumAlpha(0.33f); } pushBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX, TRUE, TRUE); //LLGLSLShader::bindNoShader(); } else { gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.33f); //OK gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); pushBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, getVertexDataMask()); gPipeline.enableLightsDynamic(); pushBatches(LLRenderPass::PASS_ALPHA_MASK, getVertexDataMask()); gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT); //OK } } LLGLDepthTest depth(GL_TRUE, LLDrawPoolWater::sSkipScreenCopy || (deferred_render && pass == 1) ? GL_TRUE : GL_FALSE); if (deferred_render && pass == 1) { gGL.blendFunc(LLRender::BF_SOURCE_ALPHA, LLRender::BF_ONE_MINUS_SOURCE_ALPHA); } else { mColorSFactor = LLRender::BF_SOURCE_ALPHA; // } regular alpha blend mColorDFactor = LLRender::BF_ONE_MINUS_SOURCE_ALPHA; // } mAlphaSFactor = LLRender::BF_ZERO; // } glow suppression mAlphaDFactor = LLRender::BF_ONE_MINUS_SOURCE_ALPHA; // } gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); if (mVertexShaderLevel > 0) { if (LLPipeline::sImpostorRender) { fullbright_shader->bind(); fullbright_shader->setMinimumAlpha(0.5f); simple_shader->bind(); simple_shader->setMinimumAlpha(0.5f); } else { fullbright_shader->bind(); fullbright_shader->setMinimumAlpha(0.f); simple_shader->bind(); simple_shader->setMinimumAlpha(0.f); } } else { if (LLPipeline::sImpostorRender) { gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.5f); //OK } else { gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT); //OK } } } if (mVertexShaderLevel > 0) { renderAlpha(getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX); } else { renderAlpha(getVertexDataMask()); } gGL.setColorMask(true, false); if (deferred_render && pass == 1) { gGL.setSceneBlendType(LLRender::BT_ALPHA); } if (sShowDebugAlpha) { BOOL shaders = gPipeline.canUseVertexShaders(); if(shaders) { gHighlightProgram.bind(); } else { gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); } gGL.diffuseColor4f(1,0,0,1); LLViewerFetchedTexture::sSmokeImagep->addTextureStats(1024.f*1024.f); gGL.getTexUnit(0)->bind(LLViewerFetchedTexture::sSmokeImagep, TRUE) ; renderAlphaHighlight(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0); pushBatches(LLRenderPass::PASS_ALPHA_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); if(shaders) { gHighlightProgram.unbind(); } } } void LLDrawPoolAlpha::renderAlphaHighlight(U32 mask) { for (LLCullResult::sg_list_t::iterator i = gPipeline.beginAlphaGroups(); i != gPipeline.endAlphaGroups(); ++i) { LLSpatialGroup* group = *i; if (group->mSpatialPartition->mRenderByGroup && !group->isDead()) { LLSpatialGroup::drawmap_elem_t& draw_info = group->mDrawMap[LLRenderPass::PASS_ALPHA]; for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; if (params.mParticle) { continue; } LLRenderPass::applyModelMatrix(params); if (params.mGroup) { params.mGroup->rebuildMesh(); } params.mVertexBuffer->setBuffer(mask); params.mVertexBuffer->drawRange(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); gPipeline.addTrianglesDrawn(params.mCount, params.mDrawMode); } } } } void LLDrawPoolAlpha::renderAlpha(U32 mask) { BOOL initialized_lighting = FALSE; BOOL light_enabled = TRUE; BOOL use_shaders = gPipeline.canUseVertexShaders(); for (LLCullResult::sg_list_t::iterator i = gPipeline.beginAlphaGroups(); i != gPipeline.endAlphaGroups(); ++i) { LLSpatialGroup* group = *i; llassert(group); llassert(group->mSpatialPartition); if (group->mSpatialPartition->mRenderByGroup && !group->isDead()) { bool draw_glow_for_this_partition = mVertexShaderLevel > 0 && // no shaders = no glow. // All particle systems seem to come off the wire with texture entries which claim that they glow. This is probably a bug in the data. Suppress. group->mSpatialPartition->mPartitionType != LLViewerRegion::PARTITION_PARTICLE && group->mSpatialPartition->mPartitionType != LLViewerRegion::PARTITION_HUD_PARTICLE; LLSpatialGroup::drawmap_elem_t& draw_info = group->mDrawMap[LLRenderPass::PASS_ALPHA]; for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; LLRenderPass::applyModelMatrix(params); if (params.mFullbright) { // Turn off lighting if it hasn't already been so. if (light_enabled || !initialized_lighting) { initialized_lighting = TRUE; if (use_shaders) { target_shader = fullbright_shader; } else { gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); } light_enabled = FALSE; } } // Turn on lighting if it isn't already. else if (!light_enabled || !initialized_lighting) { initialized_lighting = TRUE; if (use_shaders) { target_shader = simple_shader; } else { gPipeline.enableLightsDynamic(); } light_enabled = TRUE; } // If we need shaders, and we're not ALREADY using the proper shader, then bind it // (this way we won't rebind shaders unnecessarily). if(use_shaders && (current_shader != target_shader)) { llassert(target_shader != NULL); current_shader = target_shader; current_shader->bind(); } else if (!use_shaders && current_shader != NULL) { LLGLSLShader::bindNoShader(); current_shader = NULL; } if (params.mGroup) { params.mGroup->rebuildMesh(); } bool tex_setup = false; if (use_shaders && params.mTextureList.size() > 1) { for (U32 i = 0; i < params.mTextureList.size(); ++i) { if (params.mTextureList[i].notNull()) { gGL.getTexUnit(i)->bind(params.mTextureList[i], TRUE); } } } else { //not batching textures or batch has only 1 texture -- might need a texture matrix if (params.mTexture.notNull()) { params.mTexture->addTextureStats(params.mVSize); gGL.getTexUnit(0)->bind(params.mTexture, TRUE) ; if (params.mTextureMatrix) { tex_setup = true; gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadMatrix((GLfloat*) params.mTextureMatrix->mMatrix); gPipeline.mTextureMatrixOps++; } } else { gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); } } params.mVertexBuffer->setBuffer(mask); params.mVertexBuffer->drawRange(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); gPipeline.addTrianglesDrawn(params.mCount, params.mDrawMode); // If this alpha mesh has glow, then draw it a second time to add the destination-alpha (=glow). Interleaving these state-changing calls could be expensive, but glow must be drawn Z-sorted with alpha. if (current_shader && draw_glow_for_this_partition && params.mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_EMISSIVE)) { // install glow-accumulating blend mode gGL.blendFunc(LLRender::BF_ZERO, LLRender::BF_ONE, // don't touch color LLRender::BF_ONE, LLRender::BF_ONE); // add to alpha (glow) emissive_shader->bind(); // glow doesn't use vertex colors from the mesh data params.mVertexBuffer->setBuffer((mask & ~LLVertexBuffer::MAP_COLOR) | LLVertexBuffer::MAP_EMISSIVE); // do the actual drawing, again params.mVertexBuffer->drawRange(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); gPipeline.addTrianglesDrawn(params.mCount, params.mDrawMode); // restore our alpha blend mode gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); current_shader->bind(); } if (tex_setup) { gGL.getTexUnit(0)->activate(); gGL.loadIdentity(); gGL.matrixMode(LLRender::MM_MODELVIEW); } } } } LLVertexBuffer::unbind(); if (!light_enabled) { gPipeline.enableLightsDynamic(); } }