/** * @file lldrawpoolalpha.cpp * @brief LLDrawPoolAlpha class implementation * * $LicenseInfo:firstyear=2002&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "lldrawpoolalpha.h" #include "llglheaders.h" #include "llviewercontrol.h" #include "llcriticaldamp.h" #include "llfasttimer.h" #include "llrender.h" #include "llcubemap.h" #include "llsky.h" #include "lldrawable.h" #include "llface.h" #include "llviewercamera.h" #include "llviewertexturelist.h" // For debugging #include "llviewerobjectlist.h" // For debugging #include "llviewerwindow.h" #include "pipeline.h" #include "llviewershadermgr.h" #include "llviewerregion.h" #include "lldrawpoolwater.h" #include "llspatialpartition.h" #include "llglcommonfunc.h" #include "llvoavatar.h" #include "llenvironment.h" bool LLDrawPoolAlpha::sShowDebugAlpha = false; #define current_shader (LLGLSLShader::sCurBoundShaderPtr) LLVector4 LLDrawPoolAlpha::sWaterPlane; // minimum alpha before discarding a fragment static const F32 MINIMUM_ALPHA = 0.004f; // ~ 1/255 // minimum alpha before discarding a fragment when rendering impostors static const F32 MINIMUM_IMPOSTOR_ALPHA = 0.1f; LLDrawPoolAlpha::LLDrawPoolAlpha(U32 type) : LLRenderPass(type), target_shader(NULL), mColorSFactor(LLRender::BF_UNDEF), mColorDFactor(LLRender::BF_UNDEF), mAlphaSFactor(LLRender::BF_UNDEF), mAlphaDFactor(LLRender::BF_UNDEF) { } LLDrawPoolAlpha::~LLDrawPoolAlpha() { } void LLDrawPoolAlpha::prerender() { mShaderLevel = LLViewerShaderMgr::instance()->getShaderLevel(LLViewerShaderMgr::SHADER_OBJECT); // TODO: is this even necessay? These are probably set to never discard LLViewerFetchedTexture::sFlatNormalImagep->addTextureStats(1024.f*1024.f); LLViewerFetchedTexture::sWhiteImagep->addTextureStats(1024.f * 1024.f); } S32 LLDrawPoolAlpha::getNumPostDeferredPasses() { return 1; } // set some common parameters on the given shader to prepare for alpha rendering static void prepare_alpha_shader(LLGLSLShader* shader, bool textureGamma, bool deferredEnvironment, F32 water_sign) { static LLCachedControl displayGamma(gSavedSettings, "RenderDeferredDisplayGamma"); F32 gamma = displayGamma; static LLStaticHashedString waterSign("waterSign"); // Does this deferred shader need environment uniforms set such as sun_dir, etc. ? // NOTE: We don't actually need a gbuffer since we are doing forward rendering (for transparency) post deferred rendering // TODO: bindDeferredShader() probably should have the updating of the environment uniforms factored out into updateShaderEnvironmentUniforms() // i.e. shaders\class1\deferred\alphaF.glsl if (deferredEnvironment) { shader->mCanBindFast = false; } shader->bind(); shader->uniform1f(LLShaderMgr::DISPLAY_GAMMA, (gamma > 0.1f) ? 1.0f / gamma : (1.0f / 2.2f)); if (LLPipeline::sRenderingHUDs) { // for HUD attachments, only the pre-water pass is executed and we never want to clip anything LLVector4 near_clip(0, 0, -1, 0); shader->uniform1f(waterSign, 1.f); shader->uniform4fv(LLShaderMgr::WATER_WATERPLANE, 1, near_clip.mV); } else { shader->uniform1f(waterSign, water_sign); shader->uniform4fv(LLShaderMgr::WATER_WATERPLANE, 1, LLDrawPoolAlpha::sWaterPlane.mV); } if (LLPipeline::sImpostorRender) { shader->setMinimumAlpha(MINIMUM_IMPOSTOR_ALPHA); } else { shader->setMinimumAlpha(MINIMUM_ALPHA); } if (textureGamma) { shader->uniform1f(LLShaderMgr::TEXTURE_GAMMA, 2.2f); } //also prepare rigged variant if (shader->mRiggedVariant && shader->mRiggedVariant != shader) { prepare_alpha_shader(shader->mRiggedVariant, textureGamma, deferredEnvironment, water_sign); } } extern bool gCubeSnapshot; void LLDrawPoolAlpha::renderPostDeferred(S32 pass) { LL_PROFILE_ZONE_SCOPED_CATEGORY_DRAWPOOL; if (LLPipeline::isWaterClip() && getType() == LLDrawPool::POOL_ALPHA_PRE_WATER) { // don't render alpha objects on the other side of the water plane if water is opaque return; } F32 water_sign = 1.f; if (getType() == LLDrawPool::POOL_ALPHA_PRE_WATER) { water_sign = -1.f; } if (LLPipeline::sUnderWaterRender) { water_sign *= -1.f; } // prepare shaders llassert(LLPipeline::sRenderDeferred); emissive_shader = &gDeferredEmissiveProgram; prepare_alpha_shader(emissive_shader, true, false, water_sign); pbr_emissive_shader = &gPBRGlowProgram; prepare_alpha_shader(pbr_emissive_shader, true, false, water_sign); fullbright_shader = (LLPipeline::sImpostorRender) ? &gDeferredFullbrightAlphaMaskProgram : (LLPipeline::sRenderingHUDs) ? &gHUDFullbrightAlphaMaskAlphaProgram : &gDeferredFullbrightAlphaMaskAlphaProgram; prepare_alpha_shader(fullbright_shader, true, true, water_sign); simple_shader = (LLPipeline::sImpostorRender) ? &gDeferredAlphaImpostorProgram : (LLPipeline::sRenderingHUDs) ? &gHUDAlphaProgram : &gDeferredAlphaProgram; prepare_alpha_shader(simple_shader, false, true, water_sign); //prime simple shader (loads shadow relevant uniforms) LLGLSLShader* materialShader = gDeferredMaterialProgram; for (int i = 0; i < LLMaterial::SHADER_COUNT*2; ++i) { prepare_alpha_shader(&materialShader[i], false, true, water_sign); } pbr_shader = (LLPipeline::sRenderingHUDs) ? &gHUDPBRAlphaProgram : &gDeferredPBRAlphaProgram; prepare_alpha_shader(pbr_shader, false, true, water_sign); // explicitly unbind here so render loop doesn't make assumptions about the last shader // already being setup for rendering LLGLSLShader::unbind(); if (!LLPipeline::sRenderingHUDs) { // first pass, render rigged objects only and render to depth buffer forwardRender(true); } // second pass, regular forward alpha rendering forwardRender(); // final pass, render to depth for depth of field effects if (!LLPipeline::sImpostorRender && gSavedSettings.getBOOL("RenderDepthOfField") && !gCubeSnapshot && !LLPipeline::sRenderingHUDs && getType() == LLDrawPool::POOL_ALPHA_POST_WATER) { //update depth buffer sampler simple_shader = fullbright_shader = &gDeferredFullbrightAlphaMaskProgram; simple_shader->bind(); simple_shader->setMinimumAlpha(0.33f); // mask off color buffer writes as we're only writing to depth buffer gGL.setColorMask(false, false); // If the face is more than 90% transparent, then don't update the Depth buffer for Dof // We don't want the nearly invisible objects to cause of DoF effects renderAlpha(getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX | LLVertexBuffer::MAP_TANGENT | LLVertexBuffer::MAP_TEXCOORD1 | LLVertexBuffer::MAP_TEXCOORD2, true); // <--- discard mostly transparent faces gGL.setColorMask(true, false); } } void LLDrawPoolAlpha::forwardRender(bool rigged) { gPipeline.enableLightsDynamic(); LLGLSPipelineAlpha gls_pipeline_alpha; //enable writing to alpha for emissive effects gGL.setColorMask(true, true); bool write_depth = rigged || LLDrawPoolWater::sSkipScreenCopy // we want depth written so that rendered alpha will // contribute to the alpha mask used for impostors || LLPipeline::sImpostorRenderAlphaDepthPass || getType() == LLDrawPoolAlpha::POOL_ALPHA_PRE_WATER; // needed for accurate water fog LLGLDepthTest depth(GL_TRUE, write_depth ? GL_TRUE : GL_FALSE); mColorSFactor = LLRender::BF_SOURCE_ALPHA; // } regular alpha blend mColorDFactor = LLRender::BF_ONE_MINUS_SOURCE_ALPHA; // } mAlphaSFactor = LLRender::BF_ZERO; // } glow suppression mAlphaDFactor = LLRender::BF_ONE_MINUS_SOURCE_ALPHA; // } gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); // If the face is more than 90% transparent, then don't update the Depth buffer for Dof // We don't want the nearly invisible objects to cause of DoF effects renderAlpha(getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX | LLVertexBuffer::MAP_TANGENT | LLVertexBuffer::MAP_TEXCOORD1 | LLVertexBuffer::MAP_TEXCOORD2, false, rigged); gGL.setColorMask(true, false); if (!rigged) { //render "highlight alpha" on final non-rigged pass // NOTE -- hacky call here protected by !rigged instead of alongside "forwardRender" // so renderDebugAlpha is executed while gls_pipeline_alpha and depth GL state // variables above are still in scope renderDebugAlpha(); } } void LLDrawPoolAlpha::renderDebugAlpha() { if (sShowDebugAlpha) { gHighlightProgram.bind(); gGL.diffuseColor4f(1, 0, 0, 1); gGL.getTexUnit(0)->bindFast(LLViewerFetchedTexture::getSmokeImage()); renderAlphaHighlight(); pushUntexturedBatches(LLRenderPass::PASS_ALPHA_MASK); pushUntexturedBatches(LLRenderPass::PASS_ALPHA_INVISIBLE); // Material alpha mask gGL.diffuseColor4f(0, 0, 1, 1); pushUntexturedBatches(LLRenderPass::PASS_MATERIAL_ALPHA_MASK); pushUntexturedBatches(LLRenderPass::PASS_NORMMAP_MASK); pushUntexturedBatches(LLRenderPass::PASS_SPECMAP_MASK); pushUntexturedBatches(LLRenderPass::PASS_NORMSPEC_MASK); pushUntexturedBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK); pushUntexturedBatches(LLRenderPass::PASS_GLTF_PBR_ALPHA_MASK); gGL.diffuseColor4f(0, 1, 0, 1); pushUntexturedBatches(LLRenderPass::PASS_INVISIBLE); gHighlightProgram.mRiggedVariant->bind(); gGL.diffuseColor4f(1, 0, 0, 1); pushRiggedBatches(LLRenderPass::PASS_ALPHA_MASK_RIGGED, false); pushRiggedBatches(LLRenderPass::PASS_ALPHA_INVISIBLE_RIGGED, false); // Material alpha mask gGL.diffuseColor4f(0, 0, 1, 1); pushRiggedBatches(LLRenderPass::PASS_MATERIAL_ALPHA_MASK_RIGGED, false); pushRiggedBatches(LLRenderPass::PASS_NORMMAP_MASK_RIGGED, false); pushRiggedBatches(LLRenderPass::PASS_SPECMAP_MASK_RIGGED, false); pushRiggedBatches(LLRenderPass::PASS_NORMSPEC_MASK_RIGGED, false); pushRiggedBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK_RIGGED, false); pushRiggedBatches(LLRenderPass::PASS_GLTF_PBR_ALPHA_MASK_RIGGED, false); gGL.diffuseColor4f(0, 1, 0, 1); pushRiggedBatches(LLRenderPass::PASS_INVISIBLE_RIGGED, false); LLGLSLShader::sCurBoundShaderPtr->unbind(); } } void LLDrawPoolAlpha::renderAlphaHighlight() { for (int pass = 0; pass < 2; ++pass) { //two passes, one rigged and one not LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; LLCullResult::sg_iterator begin = pass == 0 ? gPipeline.beginAlphaGroups() : gPipeline.beginRiggedAlphaGroups(); LLCullResult::sg_iterator end = pass == 0 ? gPipeline.endAlphaGroups() : gPipeline.endRiggedAlphaGroups(); for (LLCullResult::sg_iterator i = begin; i != end; ++i) { LLSpatialGroup* group = *i; if (group->getSpatialPartition()->mRenderByGroup && !group->isDead()) { LLSpatialGroup::drawmap_elem_t& draw_info = group->mDrawMap[LLRenderPass::PASS_ALPHA+pass]; // <-- hacky + pass to use PASS_ALPHA_RIGGED on second pass for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; bool rigged = (params.mAvatar != nullptr); gHighlightProgram.bind(rigged); gGL.diffuseColor4f(1, 0, 0, 1); if (rigged) { if (lastAvatar != params.mAvatar || lastMeshId != params.mSkinInfo->mHash) { if (!uploadMatrixPalette(params)) { continue; } lastAvatar = params.mAvatar; lastMeshId = params.mSkinInfo->mHash; } } LLRenderPass::applyModelMatrix(params); params.mVertexBuffer->setBuffer(); params.mVertexBuffer->drawRange(LLRender::TRIANGLES, params.mStart, params.mEnd, params.mCount, params.mOffset); } } } } // make sure static version of highlight shader is bound before returning gHighlightProgram.bind(); } inline bool IsFullbright(LLDrawInfo& params) { return params.mFullbright; } inline bool IsMaterial(LLDrawInfo& params) { return params.mMaterial != nullptr; } inline bool IsEmissive(LLDrawInfo& params) { return params.mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_EMISSIVE); } inline void Draw(LLDrawInfo* draw, U32 mask) { draw->mVertexBuffer->setBuffer(); LLRenderPass::applyModelMatrix(*draw); draw->mVertexBuffer->drawRange(LLRender::TRIANGLES, draw->mStart, draw->mEnd, draw->mCount, draw->mOffset); } bool LLDrawPoolAlpha::TexSetup(LLDrawInfo* draw, bool use_material) { bool tex_setup = false; if (draw->mGLTFMaterial) { if (draw->mTextureMatrix) { tex_setup = true; gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadMatrix((GLfloat*)draw->mTextureMatrix->mMatrix); gPipeline.mTextureMatrixOps++; } } else { if (!LLPipeline::sRenderingHUDs && use_material && current_shader) { if (draw->mNormalMap) { current_shader->bindTexture(LLShaderMgr::BUMP_MAP, draw->mNormalMap); } if (draw->mSpecularMap) { current_shader->bindTexture(LLShaderMgr::SPECULAR_MAP, draw->mSpecularMap); } } else if (current_shader == simple_shader || current_shader == simple_shader->mRiggedVariant) { current_shader->bindTexture(LLShaderMgr::BUMP_MAP, LLViewerFetchedTexture::sFlatNormalImagep); current_shader->bindTexture(LLShaderMgr::SPECULAR_MAP, LLViewerFetchedTexture::sWhiteImagep); } if (draw->mTextureList.size() > 1) { for (U32 i = 0; i < draw->mTextureList.size(); ++i) { if (draw->mTextureList[i].notNull()) { gGL.getTexUnit(i)->bindFast(draw->mTextureList[i]); } } } else { //not batching textures or batch has only 1 texture -- might need a texture matrix if (draw->mTexture.notNull()) { if (use_material) { current_shader->bindTexture(LLShaderMgr::DIFFUSE_MAP, draw->mTexture); } else { gGL.getTexUnit(0)->bindFast(draw->mTexture); } if (draw->mTextureMatrix) { tex_setup = true; gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadMatrix((GLfloat*)draw->mTextureMatrix->mMatrix); gPipeline.mTextureMatrixOps++; } } else { gGL.getTexUnit(0)->unbindFast(LLTexUnit::TT_TEXTURE); } } } return tex_setup; } void LLDrawPoolAlpha::RestoreTexSetup(bool tex_setup) { if (tex_setup) { gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadIdentity(); gGL.matrixMode(LLRender::MM_MODELVIEW); } } void LLDrawPoolAlpha::drawEmissive(LLDrawInfo* draw) { LLGLSLShader::sCurBoundShaderPtr->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, 1.f); draw->mVertexBuffer->setBuffer(); draw->mVertexBuffer->drawRange(LLRender::TRIANGLES, draw->mStart, draw->mEnd, draw->mCount, draw->mOffset); } void LLDrawPoolAlpha::renderEmissives(std::vector& emissives) { emissive_shader->bind(); emissive_shader->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, 1.f); for (LLDrawInfo* draw : emissives) { bool tex_setup = TexSetup(draw, false); drawEmissive(draw); RestoreTexSetup(tex_setup); } } void LLDrawPoolAlpha::renderPbrEmissives(std::vector& emissives) { pbr_emissive_shader->bind(); for (LLDrawInfo* draw : emissives) { llassert(draw->mGLTFMaterial); LLGLDisable cull_face(draw->mGLTFMaterial->mDoubleSided ? GL_CULL_FACE : 0); draw->mGLTFMaterial->bind(draw->mTexture); draw->mVertexBuffer->setBuffer(); draw->mVertexBuffer->drawRange(LLRender::TRIANGLES, draw->mStart, draw->mEnd, draw->mCount, draw->mOffset); } } void LLDrawPoolAlpha::renderRiggedEmissives(std::vector& emissives) { LLGLDepthTest depth(GL_TRUE, GL_FALSE); //disable depth writes since "emissive" is additive so sorting doesn't matter LLGLSLShader* shader = emissive_shader->mRiggedVariant; shader->bind(); shader->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, 1.f); LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; for (LLDrawInfo* draw : emissives) { LL_PROFILE_ZONE_NAMED_CATEGORY_DRAWPOOL("Emissives"); bool tex_setup = TexSetup(draw, false); if (lastAvatar != draw->mAvatar || lastMeshId != draw->mSkinInfo->mHash) { if (!uploadMatrixPalette(*draw)) { // failed to upload matrix palette, skip rendering continue; } lastAvatar = draw->mAvatar; lastMeshId = draw->mSkinInfo->mHash; } drawEmissive(draw); RestoreTexSetup(tex_setup); } } void LLDrawPoolAlpha::renderRiggedPbrEmissives(std::vector& emissives) { LLGLDepthTest depth(GL_TRUE, GL_FALSE); //disable depth writes since "emissive" is additive so sorting doesn't matter pbr_emissive_shader->bind(true); LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; for (LLDrawInfo* draw : emissives) { if (lastAvatar != draw->mAvatar || lastMeshId != draw->mSkinInfo->mHash) { if (!uploadMatrixPalette(*draw)) { // failed to upload matrix palette, skip rendering continue; } lastAvatar = draw->mAvatar; lastMeshId = draw->mSkinInfo->mHash; } LLGLDisable cull_face(draw->mGLTFMaterial->mDoubleSided ? GL_CULL_FACE : 0); draw->mGLTFMaterial->bind(draw->mTexture); draw->mVertexBuffer->setBuffer(); draw->mVertexBuffer->drawRange(LLRender::TRIANGLES, draw->mStart, draw->mEnd, draw->mCount, draw->mOffset); } } void LLDrawPoolAlpha::renderAlpha(U32 mask, bool depth_only, bool rigged) { LL_PROFILE_ZONE_SCOPED_CATEGORY_DRAWPOOL; bool initialized_lighting = false; bool light_enabled = true; LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; LLGLSLShader* lastAvatarShader = nullptr; LLCullResult::sg_iterator begin; LLCullResult::sg_iterator end; if (rigged) { begin = gPipeline.beginRiggedAlphaGroups(); end = gPipeline.endRiggedAlphaGroups(); } else { begin = gPipeline.beginAlphaGroups(); end = gPipeline.endAlphaGroups(); } LLEnvironment& env = LLEnvironment::instance(); F32 water_height = env.getWaterHeight(); bool above_water = getType() == LLDrawPool::POOL_ALPHA_POST_WATER; if (LLPipeline::sUnderWaterRender) { above_water = !above_water; } for (LLCullResult::sg_iterator i = begin; i != end; ++i) { LL_PROFILE_ZONE_NAMED_CATEGORY_DRAWPOOL("renderAlpha - group"); LLSpatialGroup* group = *i; llassert(group); llassert(group->getSpatialPartition()); if (group->getSpatialPartition()->mRenderByGroup && !group->isDead()) { LLSpatialBridge* bridge = group->getSpatialPartition()->asBridge(); const LLVector4a* ext = bridge ? bridge->getSpatialExtents() : group->getExtents(); if (!LLPipeline::sRenderingHUDs) // ignore above/below water for HUD render { if (above_water) { // reject any spatial groups that have no part above water if (ext[1].getF32ptr()[2] < water_height) { continue; } } else { // reject any spatial groups that he no part below water if (ext[0].getF32ptr()[2] > water_height) { continue; } } } static std::vector emissives; static std::vector rigged_emissives; static std::vector pbr_emissives; static std::vector pbr_rigged_emissives; emissives.resize(0); rigged_emissives.resize(0); pbr_emissives.resize(0); pbr_rigged_emissives.resize(0); bool is_particle_or_hud_particle = group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_PARTICLE || group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_HUD_PARTICLE; bool disable_cull = is_particle_or_hud_particle; LLGLDisable cull(disable_cull ? GL_CULL_FACE : 0); LLSpatialGroup::drawmap_elem_t& draw_info = rigged ? group->mDrawMap[LLRenderPass::PASS_ALPHA_RIGGED] : group->mDrawMap[LLRenderPass::PASS_ALPHA]; for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; if ((bool)params.mAvatar != rigged) { continue; } LL_PROFILE_ZONE_NAMED_CATEGORY_DRAWPOOL("ra - push batch"); LLRenderPass::applyModelMatrix(params); LLMaterial* mat = NULL; LLGLTFMaterial *gltf_mat = params.mGLTFMaterial; LLGLDisable cull_face(gltf_mat && gltf_mat->mDoubleSided ? GL_CULL_FACE : 0); if (gltf_mat && gltf_mat->mAlphaMode == LLGLTFMaterial::ALPHA_MODE_BLEND) { target_shader = pbr_shader; if (params.mAvatar != nullptr) { target_shader = target_shader->mRiggedVariant; } // shader must be bound before LLGLTFMaterial::bind if (current_shader != target_shader) { gPipeline.bindDeferredShaderFast(*target_shader); } params.mGLTFMaterial->bind(params.mTexture); } else { mat = LLPipeline::sRenderingHUDs ? nullptr : params.mMaterial; if (params.mFullbright) { // Turn off lighting if it hasn't already been so. if (light_enabled || !initialized_lighting) { initialized_lighting = true; target_shader = fullbright_shader; light_enabled = false; } } // Turn on lighting if it isn't already. else if (!light_enabled || !initialized_lighting) { initialized_lighting = true; target_shader = simple_shader; light_enabled = true; } if (LLPipeline::sRenderingHUDs) { target_shader = fullbright_shader; } else if (mat) { U32 mask = params.mShaderMask; llassert(mask < LLMaterial::SHADER_COUNT); target_shader = &(gDeferredMaterialProgram[mask]); } else if (!params.mFullbright) { target_shader = simple_shader; } else { target_shader = fullbright_shader; } if (params.mAvatar != nullptr) { llassert(target_shader->mRiggedVariant != nullptr); target_shader = target_shader->mRiggedVariant; } if (current_shader != target_shader) {// If we need shaders, and we're not ALREADY using the proper shader, then bind it // (this way we won't rebind shaders unnecessarily). gPipeline.bindDeferredShaderFast(*target_shader); if (params.mFullbright) { // make sure the bind the exposure map for fullbright shaders so they can cancel out exposure S32 channel = target_shader->enableTexture(LLShaderMgr::EXPOSURE_MAP); if (channel > -1) { gGL.getTexUnit(channel)->bind(&gPipeline.mExposureMap); } } } LLVector4 spec_color(1, 1, 1, 1); F32 env_intensity = 0.0f; F32 brightness = 1.0f; // We have a material. Supply the appropriate data here. if (mat) { spec_color = params.mSpecColor; env_intensity = params.mEnvIntensity; brightness = params.mFullbright ? 1.f : 0.f; } if (current_shader) { current_shader->uniform4f(LLShaderMgr::SPECULAR_COLOR, spec_color.mV[0], spec_color.mV[1], spec_color.mV[2], spec_color.mV[3]); current_shader->uniform1f(LLShaderMgr::ENVIRONMENT_INTENSITY, env_intensity); current_shader->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, brightness); } } if (params.mAvatar != nullptr) { if (lastAvatar != params.mAvatar || lastMeshId != params.mSkinInfo->mHash || lastAvatarShader != LLGLSLShader::sCurBoundShaderPtr) { if (!uploadMatrixPalette(params)) { continue; } lastAvatar = params.mAvatar; lastMeshId = params.mSkinInfo->mHash; lastAvatarShader = LLGLSLShader::sCurBoundShaderPtr; } } bool tex_setup = TexSetup(¶ms, (mat != nullptr)); { gGL.blendFunc((LLRender::eBlendFactor) params.mBlendFuncSrc, (LLRender::eBlendFactor) params.mBlendFuncDst, mAlphaSFactor, mAlphaDFactor); bool reset_minimum_alpha = false; if (!LLPipeline::sImpostorRender && params.mBlendFuncDst != LLRender::BF_SOURCE_ALPHA && params.mBlendFuncSrc != LLRender::BF_SOURCE_ALPHA) { // this draw call has a custom blend function that may require rendering of "invisible" fragments current_shader->setMinimumAlpha(0.f); reset_minimum_alpha = true; } params.mVertexBuffer->setBuffer(); params.mVertexBuffer->drawRange(LLRender::TRIANGLES, params.mStart, params.mEnd, params.mCount, params.mOffset); if (reset_minimum_alpha) { current_shader->setMinimumAlpha(MINIMUM_ALPHA); } } // If this alpha mesh has glow, then draw it a second time to add the destination-alpha (=glow). Interleaving these state-changing calls is expensive, but glow must be drawn Z-sorted with alpha. if (getType() != LLDrawPool::POOL_ALPHA_PRE_WATER && params.mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_EMISSIVE)) { if (params.mAvatar != nullptr) { if (params.mGLTFMaterial.isNull()) { rigged_emissives.push_back(¶ms); } else { pbr_rigged_emissives.push_back(¶ms); } } else { if (params.mGLTFMaterial.isNull()) { emissives.push_back(¶ms); } else { pbr_emissives.push_back(¶ms); } } } if (tex_setup) { gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadIdentity(); gGL.matrixMode(LLRender::MM_MODELVIEW); } } // render emissive faces into alpha channel for bloom effects if (!depth_only) { gPipeline.enableLightsDynamic(); // install glow-accumulating blend mode // don't touch color, add to alpha (glow) gGL.blendFunc(LLRender::BF_ZERO, LLRender::BF_ONE, LLRender::BF_ONE, LLRender::BF_ONE); bool rebind = false; LLGLSLShader* lastShader = current_shader; if (!emissives.empty()) { light_enabled = true; renderEmissives(emissives); rebind = true; } if (!pbr_emissives.empty()) { light_enabled = true; renderPbrEmissives(pbr_emissives); rebind = true; } if (!rigged_emissives.empty()) { light_enabled = true; renderRiggedEmissives(rigged_emissives); rebind = true; } if (!pbr_rigged_emissives.empty()) { light_enabled = true; renderRiggedPbrEmissives(pbr_rigged_emissives); rebind = true; } // restore our alpha blend mode gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); if (lastShader && rebind) { lastShader->bind(); } } } } gGL.setSceneBlendType(LLRender::BT_ALPHA); LLVertexBuffer::unbind(); if (!light_enabled) { gPipeline.enableLightsDynamic(); } } bool LLDrawPoolAlpha::uploadMatrixPalette(const LLDrawInfo& params) { if (params.mAvatar.isNull()) { return false; } const LLVOAvatar::MatrixPaletteCache& mpc = params.mAvatar.get()->updateSkinInfoMatrixPalette(params.mSkinInfo); U32 count = static_cast(mpc.mMatrixPalette.size()); if (count == 0) { //skin info not loaded yet, don't render return false; } LLGLSLShader::sCurBoundShaderPtr->uniformMatrix3x4fv(LLViewerShaderMgr::AVATAR_MATRIX, count, false, (GLfloat*)&(mpc.mGLMp[0])); return true; }