/** * @file lldrawpoolalpha.cpp * @brief LLDrawPoolAlpha class implementation * * $LicenseInfo:firstyear=2002&license=viewergpl$ * * Copyright (c) 2002-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "lldrawpoolalpha.h" #include "llglheaders.h" #include "llviewercontrol.h" #include "llcriticaldamp.h" #include "llfasttimer.h" #include "llrender.h" #include "llcubemap.h" #include "llsky.h" #include "lldrawable.h" #include "llface.h" #include "llviewercamera.h" #include "llviewertexturelist.h" // For debugging #include "llviewerobjectlist.h" // For debugging #include "llviewerwindow.h" #include "pipeline.h" #include "llviewershadermgr.h" #include "llviewerregion.h" #include "lldrawpoolwater.h" #include "llspatialpartition.h" BOOL LLDrawPoolAlpha::sShowDebugAlpha = FALSE; static BOOL deferred_render = FALSE; LLDrawPoolAlpha::LLDrawPoolAlpha(U32 type) : LLRenderPass(type), current_shader(NULL), target_shader(NULL), simple_shader(NULL), fullbright_shader(NULL) { } LLDrawPoolAlpha::~LLDrawPoolAlpha() { } void LLDrawPoolAlpha::prerender() { mVertexShaderLevel = LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_OBJECT); } S32 LLDrawPoolAlpha::getNumDeferredPasses() { return 1; } void LLDrawPoolAlpha::beginDeferredPass(S32 pass) { } void LLDrawPoolAlpha::endDeferredPass(S32 pass) { } void LLDrawPoolAlpha::renderDeferred(S32 pass) { gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.f); { LLFastTimer t(FTM_RENDER_GRASS); gDeferredTreeProgram.bind(); LLGLEnable test(GL_ALPHA_TEST); //render alpha masked objects LLRenderPass::renderTexture(LLRenderPass::PASS_ALPHA_MASK, getVertexDataMask()); gDeferredTreeProgram.unbind(); } gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT); } S32 LLDrawPoolAlpha::getNumPostDeferredPasses() { return 1; } void LLDrawPoolAlpha::beginPostDeferredPass(S32 pass) { LLFastTimer t(FTM_RENDER_ALPHA); simple_shader = &gDeferredAlphaProgram; fullbright_shader = &gDeferredFullbrightProgram; deferred_render = TRUE; if (mVertexShaderLevel > 0) { // Start out with no shaders. current_shader = target_shader = NULL; } gPipeline.enableLightsDynamic(); } void LLDrawPoolAlpha::endPostDeferredPass(S32 pass) { deferred_render = FALSE; endRenderPass(pass); } void LLDrawPoolAlpha::renderPostDeferred(S32 pass) { render(pass); } void LLDrawPoolAlpha::beginRenderPass(S32 pass) { LLFastTimer t(FTM_RENDER_ALPHA); if (LLPipeline::sUnderWaterRender) { simple_shader = &gObjectSimpleWaterProgram; fullbright_shader = &gObjectFullbrightWaterProgram; } else { simple_shader = &gObjectSimpleProgram; fullbright_shader = &gObjectFullbrightProgram; } if (mVertexShaderLevel > 0) { // Start out with no shaders. current_shader = target_shader = NULL; LLGLSLShader::bindNoShader(); } gPipeline.enableLightsDynamic(); } void LLDrawPoolAlpha::endRenderPass( S32 pass ) { LLFastTimer t(FTM_RENDER_ALPHA); LLRenderPass::endRenderPass(pass); if(gPipeline.canUseWindLightShaders()) { LLGLSLShader::bindNoShader(); } } void LLDrawPoolAlpha::render(S32 pass) { LLFastTimer t(FTM_RENDER_ALPHA); LLGLSPipelineAlpha gls_pipeline_alpha; if (LLPipeline::sFastAlpha && !deferred_render) { gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.33f); if (mVertexShaderLevel > 0) { if (!LLPipeline::sRenderDeferred) { simple_shader->bind(); pushBatches(LLRenderPass::PASS_ALPHA_MASK, getVertexDataMask()); } fullbright_shader->bind(); pushBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, getVertexDataMask()); LLGLSLShader::bindNoShader(); } else { gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); pushBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, getVertexDataMask()); gPipeline.enableLightsDynamic(); pushBatches(LLRenderPass::PASS_ALPHA_MASK, getVertexDataMask()); } gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT); } LLGLDepthTest depth(GL_TRUE, LLDrawPoolWater::sSkipScreenCopy ? GL_TRUE : GL_FALSE); renderAlpha(getVertexDataMask()); if (deferred_render && current_shader != NULL) { gPipeline.unbindDeferredShader(*current_shader); } if (sShowDebugAlpha) { if(gPipeline.canUseWindLightShaders()) { LLGLSLShader::bindNoShader(); } gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); glColor4f(1,0,0,1); LLViewerFetchedTexture::sSmokeImagep->addTextureStats(1024.f*1024.f); gGL.getTexUnit(0)->bind(LLViewerFetchedTexture::sSmokeImagep, TRUE) ; renderAlphaHighlight(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0); } } void LLDrawPoolAlpha::renderAlphaHighlight(U32 mask) { for (LLCullResult::sg_list_t::iterator i = gPipeline.beginAlphaGroups(); i != gPipeline.endAlphaGroups(); ++i) { LLSpatialGroup* group = *i; if (group->mSpatialPartition->mRenderByGroup && !group->isDead()) { LLSpatialGroup::drawmap_elem_t& draw_info = group->mDrawMap[LLRenderPass::PASS_ALPHA]; for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; if (params.mParticle) { continue; } LLRenderPass::applyModelMatrix(params); if (params.mGroup) { params.mGroup->rebuildMesh(); } params.mVertexBuffer->setBuffer(mask); params.mVertexBuffer->drawRange(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); gPipeline.addTrianglesDrawn(params.mCount, params.mDrawMode); } } } } void LLDrawPoolAlpha::renderAlpha(U32 mask) { BOOL initialized_lighting = FALSE; BOOL light_enabled = TRUE; S32 diffuse_channel = 0; //BOOL is_particle = FALSE; BOOL use_shaders = (LLPipeline::sUnderWaterRender && gPipeline.canUseVertexShaders()) || gPipeline.canUseWindLightShadersOnObjects(); // check to see if it's a particle and if it's "close" { if (LLPipeline::sImpostorRender) { gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.5f); } else { gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT); } } for (LLCullResult::sg_list_t::iterator i = gPipeline.beginAlphaGroups(); i != gPipeline.endAlphaGroups(); ++i) { LLSpatialGroup* group = *i; if (group->mSpatialPartition->mRenderByGroup && !group->isDead()) { LLSpatialGroup::drawmap_elem_t& draw_info = group->mDrawMap[LLRenderPass::PASS_ALPHA]; for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; LLRenderPass::applyModelMatrix(params); if (params.mFullbright) { // Turn off lighting if it hasn't already been so. if (light_enabled || !initialized_lighting) { initialized_lighting = TRUE; if (use_shaders) { target_shader = fullbright_shader; } else { gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); } light_enabled = FALSE; } } // Turn on lighting if it isn't already. else if (!light_enabled || !initialized_lighting) { initialized_lighting = TRUE; if (use_shaders) { target_shader = simple_shader; } else { gPipeline.enableLightsDynamic(); } light_enabled = TRUE; } // If we need shaders, and we're not ALREADY using the proper shader, then bind it // (this way we won't rebind shaders unnecessarily). if(use_shaders && (current_shader != target_shader)) { llassert(target_shader != NULL); if (deferred_render && current_shader != NULL) { gPipeline.unbindDeferredShader(*current_shader); diffuse_channel = 0; } current_shader = target_shader; if (deferred_render) { gPipeline.bindDeferredShader(*current_shader); diffuse_channel = current_shader->enableTexture(LLViewerShaderMgr::DIFFUSE_MAP); } else { current_shader->bind(); } } else if (!use_shaders && current_shader != NULL) { if (deferred_render) { gPipeline.unbindDeferredShader(*current_shader); diffuse_channel = 0; } LLGLSLShader::bindNoShader(); current_shader = NULL; } if (params.mGroup) { params.mGroup->rebuildMesh(); } if (params.mTexture.notNull()) { gGL.getTexUnit(diffuse_channel)->bind(params.mTexture.get()); if(params.mTexture.notNull()) { params.mTexture->addTextureStats(params.mVSize); } if (params.mTextureMatrix) { gGL.getTexUnit(0)->activate(); glMatrixMode(GL_TEXTURE); glLoadMatrixf((GLfloat*) params.mTextureMatrix->mMatrix); gPipeline.mTextureMatrixOps++; } } params.mVertexBuffer->setBuffer(mask); params.mVertexBuffer->drawRange(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); gPipeline.addTrianglesDrawn(params.mCount, params.mDrawMode); if (params.mTextureMatrix && params.mTexture.notNull()) { gGL.getTexUnit(0)->activate(); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); } } } } if (deferred_render && current_shader != NULL) { gPipeline.unbindDeferredShader(*current_shader); LLVertexBuffer::unbind(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); } if (!light_enabled) { gPipeline.enableLightsDynamic(); } }