/** * @file lldrawpoolalpha.cpp * @brief LLDrawPoolAlpha class implementation * * $LicenseInfo:firstyear=2002&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "lldrawpoolalpha.h" #include "llglheaders.h" #include "llviewercontrol.h" #include "llcriticaldamp.h" #include "llfasttimer.h" #include "llrender.h" #include "llcubemap.h" #include "llsky.h" #include "lldrawable.h" #include "llface.h" #include "llviewercamera.h" #include "llviewertexturelist.h" // For debugging #include "llviewerobjectlist.h" // For debugging #include "llviewerwindow.h" #include "pipeline.h" #include "llviewershadermgr.h" #include "llviewerregion.h" #include "lldrawpoolwater.h" #include "llspatialpartition.h" #include "llglcommonfunc.h" #include "llvoavatar.h" #include "llperfstats.h" BOOL LLDrawPoolAlpha::sShowDebugAlpha = FALSE; #define current_shader (LLGLSLShader::sCurBoundShaderPtr) static BOOL deferred_render = FALSE; // minimum alpha before discarding a fragment static const F32 MINIMUM_ALPHA = 0.004f; // ~ 1/255 // minimum alpha before discarding a fragment when rendering impostors static const F32 MINIMUM_IMPOSTOR_ALPHA = 0.1f; LLDrawPoolAlpha::LLDrawPoolAlpha(U32 type) : LLRenderPass(type), target_shader(NULL), mColorSFactor(LLRender::BF_UNDEF), mColorDFactor(LLRender::BF_UNDEF), mAlphaSFactor(LLRender::BF_UNDEF), mAlphaDFactor(LLRender::BF_UNDEF) { } LLDrawPoolAlpha::~LLDrawPoolAlpha() { } void LLDrawPoolAlpha::prerender() { mShaderLevel = LLViewerShaderMgr::instance()->getShaderLevel(LLViewerShaderMgr::SHADER_OBJECT); // TODO: is this even necessay? These are probably set to never discard LLViewerFetchedTexture::sFlatNormalImagep->addTextureStats(1024.f*1024.f); LLViewerFetchedTexture::sWhiteImagep->addTextureStats(1024.f * 1024.f); } S32 LLDrawPoolAlpha::getNumPostDeferredPasses() { return 1; } // set some common parameters on the given shader to prepare for alpha rendering static void prepare_alpha_shader(LLGLSLShader* shader, bool textureGamma, bool deferredEnvironment) { static LLCachedControl displayGamma(gSavedSettings, "RenderDeferredDisplayGamma"); F32 gamma = displayGamma; // Does this deferred shader need environment uniforms set such as sun_dir, etc. ? // NOTE: We don't actually need a gbuffer since we are doing forward rendering (for transparency) post deferred rendering // TODO: bindDeferredShader() probably should have the updating of the environment uniforms factored out into updateShaderEnvironmentUniforms() // i.e. shaders\class1\deferred\alphaF.glsl if (deferredEnvironment) { gPipeline.bindDeferredShader( *shader ); } else { shader->bind(); } shader->uniform1i(LLShaderMgr::NO_ATMO, (LLPipeline::sRenderingHUDs) ? 1 : 0); shader->uniform1f(LLShaderMgr::DISPLAY_GAMMA, (gamma > 0.1f) ? 1.0f / gamma : (1.0f / 2.2f)); if (LLPipeline::sImpostorRender) { shader->setMinimumAlpha(MINIMUM_IMPOSTOR_ALPHA); } else { shader->setMinimumAlpha(MINIMUM_ALPHA); } if (textureGamma) { shader->uniform1f(LLShaderMgr::TEXTURE_GAMMA, 2.2f); } //also prepare rigged variant if (shader->mRiggedVariant && shader->mRiggedVariant != shader) { prepare_alpha_shader(shader->mRiggedVariant, textureGamma, deferredEnvironment); } } void LLDrawPoolAlpha::renderPostDeferred(S32 pass) { LL_PROFILE_ZONE_SCOPED_CATEGORY_DRAWPOOL; deferred_render = TRUE; // prepare shaders emissive_shader = (LLPipeline::sRenderDeferred) ? &gDeferredEmissiveProgram : (LLPipeline::sUnderWaterRender) ? &gObjectEmissiveWaterProgram : &gObjectEmissiveProgram; prepare_alpha_shader(emissive_shader, true, false); fullbright_shader = (LLPipeline::sImpostorRender) ? &gDeferredFullbrightAlphaMaskProgram : (LLPipeline::sUnderWaterRender) ? &gDeferredFullbrightWaterProgram : &gDeferredFullbrightAlphaMaskProgram; prepare_alpha_shader(fullbright_shader, true, false); simple_shader = (LLPipeline::sImpostorRender) ? &gDeferredAlphaImpostorProgram : (LLPipeline::sUnderWaterRender) ? &gDeferredAlphaWaterProgram : &gDeferredAlphaProgram; prepare_alpha_shader(simple_shader, false, true); //prime simple shader (loads shadow relevant uniforms) // first pass, render rigged objects only and render to depth buffer forwardRender(true); // second pass, regular forward alpha rendering forwardRender(); // final pass, render to depth for depth of field effects if (!LLPipeline::sImpostorRender && gSavedSettings.getBOOL("RenderDepthOfField")) { //update depth buffer sampler gPipeline.mScreen.flush(); gPipeline.mDeferredDepth.copyContents(gPipeline.mDeferredScreen, 0, 0, gPipeline.mDeferredScreen.getWidth(), gPipeline.mDeferredScreen.getHeight(), 0, 0, gPipeline.mDeferredDepth.getWidth(), gPipeline.mDeferredDepth.getHeight(), GL_DEPTH_BUFFER_BIT, GL_NEAREST); gPipeline.mDeferredDepth.bindTarget(); simple_shader = fullbright_shader = &gObjectFullbrightAlphaMaskProgram; simple_shader->bind(); simple_shader->setMinimumAlpha(0.33f); // mask off color buffer writes as we're only writing to depth buffer gGL.setColorMask(false, false); // If the face is more than 90% transparent, then don't update the Depth buffer for Dof // We don't want the nearly invisible objects to cause of DoF effects renderAlpha(getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX | LLVertexBuffer::MAP_TANGENT | LLVertexBuffer::MAP_TEXCOORD1 | LLVertexBuffer::MAP_TEXCOORD2, true); // <--- discard mostly transparent faces gPipeline.mDeferredDepth.flush(); gPipeline.mScreen.bindTarget(); gGL.setColorMask(true, false); } deferred_render = FALSE; } //set some generic parameters for forward (non-deferred) rendering static void prepare_forward_shader(LLGLSLShader* shader, F32 minimum_alpha) { shader->bind(); shader->setMinimumAlpha(minimum_alpha); shader->uniform1i(LLShaderMgr::NO_ATMO, LLPipeline::sRenderingHUDs ? 1 : 0); //also prepare rigged variant if (shader->mRiggedVariant && shader->mRiggedVariant != shader) { prepare_forward_shader(shader->mRiggedVariant, minimum_alpha); } } void LLDrawPoolAlpha::render(S32 pass) { LL_PROFILE_ZONE_SCOPED_CATEGORY_DRAWPOOL; simple_shader = (LLPipeline::sImpostorRender) ? &gObjectSimpleImpostorProgram : (LLPipeline::sUnderWaterRender) ? &gObjectSimpleWaterProgram : &gObjectSimpleAlphaMaskProgram; fullbright_shader = (LLPipeline::sImpostorRender) ? &gObjectFullbrightAlphaMaskProgram : (LLPipeline::sUnderWaterRender) ? &gObjectFullbrightWaterProgram : &gObjectFullbrightAlphaMaskProgram; emissive_shader = (LLPipeline::sImpostorRender) ? &gObjectEmissiveProgram : (LLPipeline::sUnderWaterRender) ? &gObjectEmissiveWaterProgram : &gObjectEmissiveProgram; F32 minimum_alpha = MINIMUM_ALPHA; if (LLPipeline::sImpostorRender) { minimum_alpha = MINIMUM_IMPOSTOR_ALPHA; } prepare_forward_shader(fullbright_shader, minimum_alpha); prepare_forward_shader(simple_shader, minimum_alpha); //first pass -- rigged only and drawn to depth buffer forwardRender(true); //second pass -- non-rigged, no depth buffer writes forwardRender(); } void LLDrawPoolAlpha::forwardRender(bool rigged) { gPipeline.enableLightsDynamic(); LLGLSPipelineAlpha gls_pipeline_alpha; //enable writing to alpha for emissive effects gGL.setColorMask(true, true); bool write_depth = rigged || LLDrawPoolWater::sSkipScreenCopy // we want depth written so that rendered alpha will // contribute to the alpha mask used for impostors || LLPipeline::sImpostorRenderAlphaDepthPass; LLGLDepthTest depth(GL_TRUE, write_depth ? GL_TRUE : GL_FALSE); mColorSFactor = LLRender::BF_SOURCE_ALPHA; // } regular alpha blend mColorDFactor = LLRender::BF_ONE_MINUS_SOURCE_ALPHA; // } mAlphaSFactor = LLRender::BF_ZERO; // } glow suppression mAlphaDFactor = LLRender::BF_ONE_MINUS_SOURCE_ALPHA; // } gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); // If the face is more than 90% transparent, then don't update the Depth buffer for Dof // We don't want the nearly invisible objects to cause of DoF effects renderAlpha(getVertexDataMask() | LLVertexBuffer::MAP_TEXTURE_INDEX | LLVertexBuffer::MAP_TANGENT | LLVertexBuffer::MAP_TEXCOORD1 | LLVertexBuffer::MAP_TEXCOORD2, false, rigged); gGL.setColorMask(true, false); if (!rigged) { //render "highlight alpha" on final non-rigged pass // NOTE -- hacky call here protected by !rigged instead of alongside "forwardRender" // so renderDebugAlpha is executed while gls_pipeline_alpha and depth GL state // variables above are still in scope renderDebugAlpha(); } } void LLDrawPoolAlpha::renderDebugAlpha() { if (sShowDebugAlpha) { gHighlightProgram.bind(); gGL.diffuseColor4f(1, 0, 0, 1); LLViewerFetchedTexture::sSmokeImagep->addTextureStats(1024.f * 1024.f); gGL.getTexUnit(0)->bindFast(LLViewerFetchedTexture::sSmokeImagep); renderAlphaHighlight(LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0); pushBatches(LLRenderPass::PASS_ALPHA_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushBatches(LLRenderPass::PASS_ALPHA_INVISIBLE, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); // Material alpha mask gGL.diffuseColor4f(0, 0, 1, 1); pushBatches(LLRenderPass::PASS_MATERIAL_ALPHA_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushBatches(LLRenderPass::PASS_NORMMAP_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushBatches(LLRenderPass::PASS_SPECMAP_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushBatches(LLRenderPass::PASS_NORMSPEC_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); gGL.diffuseColor4f(0, 1, 0, 1); pushBatches(LLRenderPass::PASS_INVISIBLE, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); gHighlightProgram.mRiggedVariant->bind(); gGL.diffuseColor4f(1, 0, 0, 1); pushRiggedBatches(LLRenderPass::PASS_ALPHA_MASK_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushRiggedBatches(LLRenderPass::PASS_ALPHA_INVISIBLE_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); // Material alpha mask gGL.diffuseColor4f(0, 0, 1, 1); pushRiggedBatches(LLRenderPass::PASS_MATERIAL_ALPHA_MASK_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushRiggedBatches(LLRenderPass::PASS_NORMMAP_MASK_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushRiggedBatches(LLRenderPass::PASS_SPECMAP_MASK_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushRiggedBatches(LLRenderPass::PASS_NORMSPEC_MASK_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); pushRiggedBatches(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); gGL.diffuseColor4f(0, 1, 0, 1); pushRiggedBatches(LLRenderPass::PASS_INVISIBLE_RIGGED, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, FALSE); LLGLSLShader::sCurBoundShaderPtr->unbind(); } } void LLDrawPoolAlpha::renderAlphaHighlight(U32 mask) { for (int pass = 0; pass < 2; ++pass) { //two passes, one rigged and one not LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; LLCullResult::sg_iterator begin = pass == 0 ? gPipeline.beginAlphaGroups() : gPipeline.beginRiggedAlphaGroups(); LLCullResult::sg_iterator end = pass == 0 ? gPipeline.endAlphaGroups() : gPipeline.endRiggedAlphaGroups(); for (LLCullResult::sg_iterator i = begin; i != end; ++i) { LLSpatialGroup* group = *i; if (group->getSpatialPartition()->mRenderByGroup && !group->isDead()) { LLSpatialGroup::drawmap_elem_t& draw_info = group->mDrawMap[LLRenderPass::PASS_ALPHA+pass]; // <-- hacky + pass to use PASS_ALPHA_RIGGED on second pass std::unique_ptr ratPtr{}; // Render time Stats collection for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; if(params.mFace) { LLViewerObject* vobj = (LLViewerObject *)params.mFace->getViewerObject(); if(vobj->isAttachment()) { trackAttachments( vobj, params.mFace->isState(LLFace::RIGGED), &ratPtr ); } } if (params.mParticle) { continue; } bool rigged = (params.mAvatar != nullptr); gHighlightProgram.bind(rigged); gGL.diffuseColor4f(1, 0, 0, 1); if (rigged) { if (lastAvatar != params.mAvatar || lastMeshId != params.mSkinInfo->mHash) { if (!uploadMatrixPalette(params)) { continue; } lastAvatar = params.mAvatar; lastMeshId = params.mSkinInfo->mHash; } } LLRenderPass::applyModelMatrix(params); if (params.mGroup) { params.mGroup->rebuildMesh(); } params.mVertexBuffer->setBufferFast(rigged ? mask | LLVertexBuffer::MAP_WEIGHT4 : mask); params.mVertexBuffer->drawRangeFast(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); } } } } // make sure static version of highlight shader is bound before returning gHighlightProgram.bind(); } inline bool IsFullbright(LLDrawInfo& params) { return params.mFullbright; } inline bool IsMaterial(LLDrawInfo& params) { return params.mMaterial != nullptr; } inline bool IsEmissive(LLDrawInfo& params) { return params.mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_EMISSIVE); } inline void Draw(LLDrawInfo* draw, U32 mask) { draw->mVertexBuffer->setBufferFast(mask); LLRenderPass::applyModelMatrix(*draw); draw->mVertexBuffer->drawRangeFast(draw->mDrawMode, draw->mStart, draw->mEnd, draw->mCount, draw->mOffset); } bool LLDrawPoolAlpha::TexSetup(LLDrawInfo* draw, bool use_material) { bool tex_setup = false; if (deferred_render && use_material && current_shader) { if (draw->mNormalMap) { draw->mNormalMap->addTextureStats(draw->mVSize); current_shader->bindTexture(LLShaderMgr::BUMP_MAP, draw->mNormalMap); } if (draw->mSpecularMap) { draw->mSpecularMap->addTextureStats(draw->mVSize); current_shader->bindTexture(LLShaderMgr::SPECULAR_MAP, draw->mSpecularMap); } } else if (current_shader == simple_shader || current_shader == simple_shader->mRiggedVariant) { current_shader->bindTexture(LLShaderMgr::BUMP_MAP, LLViewerFetchedTexture::sFlatNormalImagep); current_shader->bindTexture(LLShaderMgr::SPECULAR_MAP, LLViewerFetchedTexture::sWhiteImagep); } if (draw->mTextureList.size() > 1) { for (U32 i = 0; i < draw->mTextureList.size(); ++i) { if (draw->mTextureList[i].notNull()) { gGL.getTexUnit(i)->bindFast(draw->mTextureList[i]); } } } else { //not batching textures or batch has only 1 texture -- might need a texture matrix if (draw->mTexture.notNull()) { if (use_material) { current_shader->bindTexture(LLShaderMgr::DIFFUSE_MAP, draw->mTexture); } else { gGL.getTexUnit(0)->bindFast(draw->mTexture); } if (draw->mTextureMatrix) { tex_setup = true; gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadMatrix((GLfloat*) draw->mTextureMatrix->mMatrix); gPipeline.mTextureMatrixOps++; } } else { gGL.getTexUnit(0)->unbindFast(LLTexUnit::TT_TEXTURE); } } return tex_setup; } void LLDrawPoolAlpha::RestoreTexSetup(bool tex_setup) { if (tex_setup) { gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadIdentity(); gGL.matrixMode(LLRender::MM_MODELVIEW); } } void LLDrawPoolAlpha::drawEmissive(U32 mask, LLDrawInfo* draw) { LLGLSLShader::sCurBoundShaderPtr->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, 1.f); draw->mVertexBuffer->setBufferFast((mask & ~LLVertexBuffer::MAP_COLOR) | LLVertexBuffer::MAP_EMISSIVE); draw->mVertexBuffer->drawRangeFast(draw->mDrawMode, draw->mStart, draw->mEnd, draw->mCount, draw->mOffset); } void LLDrawPoolAlpha::renderEmissives(U32 mask, std::vector& emissives) { emissive_shader->bind(); emissive_shader->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, 1.f); for (LLDrawInfo* draw : emissives) { bool tex_setup = TexSetup(draw, false); drawEmissive(mask, draw); RestoreTexSetup(tex_setup); } } void LLDrawPoolAlpha::renderRiggedEmissives(U32 mask, std::vector& emissives) { LLGLDepthTest depth(GL_TRUE, GL_FALSE); //disable depth writes since "emissive" is additive so sorting doesn't matter LLGLSLShader* shader = emissive_shader->mRiggedVariant; shader->bind(); shader->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, 1.f); LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; mask |= LLVertexBuffer::MAP_WEIGHT4; std::unique_ptr ratPtr{}; // Render time Stats collection for (LLDrawInfo* draw : emissives) { LL_PROFILE_ZONE_NAMED_CATEGORY_DRAWPOOL("Emissives"); auto vobj = draw->mFace?draw->mFace->getViewerObject():nullptr; if(vobj && vobj->isAttachment()) { trackAttachments( vobj, draw->mFace->isState(LLFace::RIGGED), &ratPtr ); } bool tex_setup = TexSetup(draw, false); if (lastAvatar != draw->mAvatar || lastMeshId != draw->mSkinInfo->mHash) { if (!uploadMatrixPalette(*draw)) { // failed to upload matrix palette, skip rendering continue; } lastAvatar = draw->mAvatar; lastMeshId = draw->mSkinInfo->mHash; } drawEmissive(mask, draw); RestoreTexSetup(tex_setup); } } void LLDrawPoolAlpha::renderAlpha(U32 mask, bool depth_only, bool rigged) { LL_PROFILE_ZONE_SCOPED_CATEGORY_DRAWPOOL; BOOL initialized_lighting = FALSE; BOOL light_enabled = TRUE; LLVOAvatar* lastAvatar = nullptr; U64 lastMeshId = 0; LLGLSLShader* lastAvatarShader = nullptr; LLCullResult::sg_iterator begin; LLCullResult::sg_iterator end; if (rigged) { begin = gPipeline.beginRiggedAlphaGroups(); end = gPipeline.endRiggedAlphaGroups(); } else { begin = gPipeline.beginAlphaGroups(); end = gPipeline.endAlphaGroups(); } for (LLCullResult::sg_iterator i = begin; i != end; ++i) { LL_PROFILE_ZONE_NAMED_CATEGORY_DRAWPOOL("renderAlpha - group"); LLSpatialGroup* group = *i; llassert(group); llassert(group->getSpatialPartition()); if (group->getSpatialPartition()->mRenderByGroup && !group->isDead()) { static std::vector emissives; static std::vector rigged_emissives; emissives.resize(0); rigged_emissives.resize(0); bool is_particle_or_hud_particle = group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_PARTICLE || group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_HUD_PARTICLE; bool draw_glow_for_this_partition = mShaderLevel > 0; // no shaders = no glow. bool disable_cull = is_particle_or_hud_particle; LLGLDisable cull(disable_cull ? GL_CULL_FACE : 0); LLSpatialGroup::drawmap_elem_t& draw_info = rigged ? group->mDrawMap[LLRenderPass::PASS_ALPHA_RIGGED] : group->mDrawMap[LLRenderPass::PASS_ALPHA]; std::unique_ptr ratPtr{}; // Render time Stats collection for (LLSpatialGroup::drawmap_elem_t::iterator k = draw_info.begin(); k != draw_info.end(); ++k) { LLDrawInfo& params = **k; if ((bool)params.mAvatar != rigged) { continue; } LL_PROFILE_ZONE_NAMED_CATEGORY_DRAWPOOL("ra - push batch") U32 have_mask = params.mVertexBuffer->getTypeMask() & mask; if (have_mask != mask) { //FIXME! LL_WARNS_ONCE() << "Missing required components, expected mask: " << mask << " present: " << have_mask << ". Skipping render batch." << LL_ENDL; continue; } if(params.mFace) { LLViewerObject* vobj = (LLViewerObject *)params.mFace->getViewerObject(); if(vobj->isAttachment()) { trackAttachments( vobj, params.mFace->isState(LLFace::RIGGED), &ratPtr ); } } if(depth_only) { // when updating depth buffer, discard faces that are more than 90% transparent LLFace* face = params.mFace; if(face) { const LLTextureEntry* tep = face->getTextureEntry(); if(tep) { // don't render faces that are more than 90% transparent if(tep->getColor().mV[3] < MINIMUM_IMPOSTOR_ALPHA) continue; } } } LLRenderPass::applyModelMatrix(params); LLMaterial* mat = NULL; if (deferred_render) { mat = params.mMaterial; } if (params.mFullbright) { // Turn off lighting if it hasn't already been so. if (light_enabled || !initialized_lighting) { initialized_lighting = TRUE; target_shader = fullbright_shader; light_enabled = FALSE; } } // Turn on lighting if it isn't already. else if (!light_enabled || !initialized_lighting) { initialized_lighting = TRUE; target_shader = simple_shader; light_enabled = TRUE; } if (deferred_render && mat) { U32 mask = params.mShaderMask; llassert(mask < LLMaterial::SHADER_COUNT); target_shader = &(gDeferredMaterialProgram[mask]); if (LLPipeline::sUnderWaterRender) { target_shader = &(gDeferredMaterialWaterProgram[mask]); } if (params.mAvatar != nullptr) { llassert(target_shader->mRiggedVariant != nullptr); target_shader = target_shader->mRiggedVariant; } if (current_shader != target_shader) { gPipeline.bindDeferredShader(*target_shader); } } else if (!params.mFullbright) { target_shader = simple_shader; } else { target_shader = fullbright_shader; } if (params.mAvatar != nullptr) { target_shader = target_shader->mRiggedVariant; } if (current_shader != target_shader) {// If we need shaders, and we're not ALREADY using the proper shader, then bind it // (this way we won't rebind shaders unnecessarily). target_shader->bind(); } LLVector4 spec_color(1, 1, 1, 1); F32 env_intensity = 0.0f; F32 brightness = 1.0f; // We have a material. Supply the appropriate data here. if (mat && deferred_render) { spec_color = params.mSpecColor; env_intensity = params.mEnvIntensity; brightness = params.mFullbright ? 1.f : 0.f; } if (current_shader) { current_shader->uniform4f(LLShaderMgr::SPECULAR_COLOR, spec_color.mV[0], spec_color.mV[1], spec_color.mV[2], spec_color.mV[3]); current_shader->uniform1f(LLShaderMgr::ENVIRONMENT_INTENSITY, env_intensity); current_shader->uniform1f(LLShaderMgr::EMISSIVE_BRIGHTNESS, brightness); } if (params.mGroup) { params.mGroup->rebuildMesh(); } if (params.mAvatar != nullptr) { if (lastAvatar != params.mAvatar || lastMeshId != params.mSkinInfo->mHash || lastAvatarShader != LLGLSLShader::sCurBoundShaderPtr) { if (!uploadMatrixPalette(params)) { continue; } lastAvatar = params.mAvatar; lastMeshId = params.mSkinInfo->mHash; lastAvatarShader = LLGLSLShader::sCurBoundShaderPtr; } } bool tex_setup = TexSetup(¶ms, (mat != nullptr)); { LLGLEnableFunc stencil_test(GL_STENCIL_TEST, params.mSelected, &LLGLCommonFunc::selected_stencil_test); gGL.blendFunc((LLRender::eBlendFactor) params.mBlendFuncSrc, (LLRender::eBlendFactor) params.mBlendFuncDst, mAlphaSFactor, mAlphaDFactor); bool reset_minimum_alpha = false; if (!LLPipeline::sImpostorRender && params.mBlendFuncDst != LLRender::BF_SOURCE_ALPHA && params.mBlendFuncSrc != LLRender::BF_SOURCE_ALPHA) { // this draw call has a custom blend function that may require rendering of "invisible" fragments current_shader->setMinimumAlpha(0.f); reset_minimum_alpha = true; } U32 drawMask = mask; if (params.mFullbright) { drawMask &= ~(LLVertexBuffer::MAP_TANGENT | LLVertexBuffer::MAP_TEXCOORD1 | LLVertexBuffer::MAP_TEXCOORD2); } if (params.mAvatar != nullptr) { drawMask |= LLVertexBuffer::MAP_WEIGHT4; } params.mVertexBuffer->setBufferFast(drawMask); params.mVertexBuffer->drawRangeFast(params.mDrawMode, params.mStart, params.mEnd, params.mCount, params.mOffset); if (reset_minimum_alpha) { current_shader->setMinimumAlpha(MINIMUM_ALPHA); } } // If this alpha mesh has glow, then draw it a second time to add the destination-alpha (=glow). Interleaving these state-changing calls is expensive, but glow must be drawn Z-sorted with alpha. if (draw_glow_for_this_partition && params.mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_EMISSIVE)) { if (params.mAvatar != nullptr) { rigged_emissives.push_back(¶ms); } else { emissives.push_back(¶ms); } } if (tex_setup) { gGL.getTexUnit(0)->activate(); gGL.matrixMode(LLRender::MM_TEXTURE); gGL.loadIdentity(); gGL.matrixMode(LLRender::MM_MODELVIEW); } } ratPtr.reset(); // force the final batch to terminate to avoid double counting on the subsidiary batches for FB and Emmissives // render emissive faces into alpha channel for bloom effects if (!depth_only) { gPipeline.enableLightsDynamic(); // install glow-accumulating blend mode // don't touch color, add to alpha (glow) gGL.blendFunc(LLRender::BF_ZERO, LLRender::BF_ONE, LLRender::BF_ONE, LLRender::BF_ONE); bool rebind = false; LLGLSLShader* lastShader = current_shader; if (!emissives.empty()) { light_enabled = true; renderEmissives(mask, emissives); rebind = true; } if (!rigged_emissives.empty()) { light_enabled = true; renderRiggedEmissives(mask, rigged_emissives); rebind = true; } // restore our alpha blend mode gGL.blendFunc(mColorSFactor, mColorDFactor, mAlphaSFactor, mAlphaDFactor); if (lastShader && rebind) { lastShader->bind(); } } } } gGL.setSceneBlendType(LLRender::BT_ALPHA); LLVertexBuffer::unbind(); if (!light_enabled) { gPipeline.enableLightsDynamic(); } } bool LLDrawPoolAlpha::uploadMatrixPalette(const LLDrawInfo& params) { if (params.mAvatar.isNull()) { return false; } const LLVOAvatar::MatrixPaletteCache& mpc = params.mAvatar.get()->updateSkinInfoMatrixPalette(params.mSkinInfo); U32 count = mpc.mMatrixPalette.size(); if (count == 0) { //skin info not loaded yet, don't render return false; } LLGLSLShader::sCurBoundShaderPtr->uniformMatrix3x4fv(LLViewerShaderMgr::AVATAR_MATRIX, count, FALSE, (GLfloat*)&(mpc.mGLMp[0])); return true; }