/** * @file primitive.cpp * @brief LL GLTF Implementation * * $LicenseInfo:firstyear=2024&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2024, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "../llviewerprecompiledheaders.h" #include "asset.h" #include "buffer_util.h" #include "../lltinygltfhelper.h" using namespace LL::GLTF; void Primitive::allocateGLResources(Asset& asset) { // allocate vertex buffer // We diverge from the intent of the GLTF format here to work with our existing render pipeline // GLTF wants us to copy the buffer views into GPU storage as is and build render commands that source that data. // For our engine, though, it's better to rearrange the buffers at load time into a layout that's more consistent. // The GLTF native approach undoubtedly works well if you can count on VAOs, but VAOs perform much worse with our scenes. // load vertex data for (auto& it : mAttributes) { const std::string& attribName = it.first; Accessor& accessor = asset.mAccessors[it.second]; // load vertex data if (attribName == "POSITION") { copy(asset, accessor, mPositions); } else if (attribName == "NORMAL") { copy(asset, accessor, mNormals); } else if (attribName == "TANGENT") { copy(asset, accessor, mTangents); } else if (attribName == "COLOR_0") { copy(asset, accessor, mColors); } else if (attribName == "TEXCOORD_0") { copy(asset, accessor, mTexCoords); } else if (attribName == "JOINTS_0") { copy(asset, accessor, mJoints); } else if (attribName == "WEIGHTS_0") { copy(asset, accessor, mWeights); } } // copy index buffer if (mIndices != INVALID_INDEX) { Accessor& accessor = asset.mAccessors[mIndices]; copy(asset, accessor, mIndexArray); } U32 mask = ATTRIBUTE_MASK; if (!mWeights.empty()) { mask |= LLVertexBuffer::MAP_WEIGHT4; } mVertexBuffer = new LLVertexBuffer(mask); mVertexBuffer->allocateBuffer(mPositions.size(), mIndexArray.size()*2); // double the size of the index buffer for 32-bit indices mVertexBuffer->setBuffer(); mVertexBuffer->setPositionData(mPositions.data()); if (!mIndexArray.empty()) { mVertexBuffer->setIndexData(mIndexArray.data()); } if (mTexCoords.empty()) { mTexCoords.resize(mPositions.size()); } // flip texcoord y, upload, then flip back (keep the off-spec data in vram only) for (auto& tc : mTexCoords) { tc[1] = 1.f - tc[1]; } mVertexBuffer->setTexCoord0Data(mTexCoords.data()); for (auto& tc : mTexCoords) { tc[1] = 1.f - tc[1]; } if (mColors.empty()) { mColors.resize(mPositions.size(), LLColor4U::white); } // bake material basecolor into color array if (mMaterial != INVALID_INDEX) { const Material& material = asset.mMaterials[mMaterial]; LLColor4 baseColor = material.mMaterial->mBaseColor; for (auto& dst : mColors) { dst = LLColor4U(baseColor * LLColor4(dst)); } } mVertexBuffer->setColorData(mColors.data()); if (mNormals.empty()) { mNormals.resize(mPositions.size(), LLVector4a(0, 0, 1, 0)); } mVertexBuffer->setNormalData(mNormals.data()); if (mTangents.empty()) { // TODO: generate tangents if needed mTangents.resize(mPositions.size(), LLVector4a(1, 0, 0, 1)); } mVertexBuffer->setTangentData(mTangents.data()); if (!mWeights.empty()) { std::vector weight_data; weight_data.resize(mWeights.size()); F32 max_weight = 1.f - FLT_EPSILON*100.f; LLVector4a maxw(max_weight, max_weight, max_weight, max_weight); for (U32 i = 0; i < mWeights.size(); ++i) { LLVector4a& w = weight_data[i]; w.setMin(mWeights[i], maxw); w.add(mJoints[i]); }; mVertexBuffer->setWeight4Data(weight_data.data()); } createOctree(); mVertexBuffer->unbind(); } void initOctreeTriangle(LLVolumeTriangle* tri, F32 scaler, S32 i0, S32 i1, S32 i2, const LLVector4a& v0, const LLVector4a& v1, const LLVector4a& v2) { //store pointers to vertex data tri->mV[0] = &v0; tri->mV[1] = &v1; tri->mV[2] = &v2; //store indices tri->mIndex[0] = i0; tri->mIndex[1] = i1; tri->mIndex[2] = i2; //get minimum point LLVector4a min = v0; min.setMin(min, v1); min.setMin(min, v2); //get maximum point LLVector4a max = v0; max.setMax(max, v1); max.setMax(max, v2); //compute center LLVector4a center; center.setAdd(min, max); center.mul(0.5f); tri->mPositionGroup = center; //compute "radius" LLVector4a size; size.setSub(max, min); tri->mRadius = size.getLength3().getF32() * scaler; } void Primitive::createOctree() { // create octree mOctree = new LLVolumeOctree(); F32 scaler = 0.25f; if (mMode == TINYGLTF_MODE_TRIANGLES) { const U32 num_triangles = mVertexBuffer->getNumIndices() / 3; // Initialize all the triangles we need mOctreeTriangles.resize(num_triangles); for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index) { //for each triangle const U32 index = triangle_index * 3; LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index]; S32 i0 = mIndexArray[index]; S32 i1 = mIndexArray[index + 1]; S32 i2 = mIndexArray[index + 2]; const LLVector4a& v0 = mPositions[i0]; const LLVector4a& v1 = mPositions[i1]; const LLVector4a& v2 = mPositions[i2]; initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2); //insert mOctree->insert(tri); } } else if (mMode == TINYGLTF_MODE_TRIANGLE_STRIP) { const U32 num_triangles = mVertexBuffer->getNumIndices() - 2; // Initialize all the triangles we need mOctreeTriangles.resize(num_triangles); for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index) { //for each triangle const U32 index = triangle_index + 2; LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index]; S32 i0 = mIndexArray[index]; S32 i1 = mIndexArray[index - 1]; S32 i2 = mIndexArray[index - 2]; const LLVector4a& v0 = mPositions[i0]; const LLVector4a& v1 = mPositions[i1]; const LLVector4a& v2 = mPositions[i2]; initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2); //insert mOctree->insert(tri); } } else if (mMode == TINYGLTF_MODE_TRIANGLE_FAN) { const U32 num_triangles = mVertexBuffer->getNumIndices() - 2; // Initialize all the triangles we need mOctreeTriangles.resize(num_triangles); for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index) { //for each triangle const U32 index = triangle_index + 2; LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index]; S32 i0 = mIndexArray[0]; S32 i1 = mIndexArray[index - 1]; S32 i2 = mIndexArray[index - 2]; const LLVector4a& v0 = mPositions[i0]; const LLVector4a& v1 = mPositions[i1]; const LLVector4a& v2 = mPositions[i2]; initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2); //insert mOctree->insert(tri); } } else if (mMode == TINYGLTF_MODE_POINTS || mMode == TINYGLTF_MODE_LINE || mMode == TINYGLTF_MODE_LINE_LOOP || mMode == TINYGLTF_MODE_LINE_STRIP) { // nothing to do, no volume... maybe add some collision geometry around these primitive types? } else { LL_ERRS() << "Unsupported Primitive mode" << LL_ENDL; } //remove unneeded octree layers while (!mOctree->balance()) {} //calculate AABB for each node LLVolumeOctreeRebound rebound; rebound.traverse(mOctree); } const LLVolumeTriangle* Primitive::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, LLVector4a* intersection, LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent_out) { if (mOctree.isNull()) { return nullptr; } LLVector4a dir; dir.setSub(end, start); F32 closest_t = 2.f; // must be larger than 1 //create a proxy LLVolumeFace for the raycast LLVolumeFace face; face.mPositions = mPositions.data(); face.mTexCoords = mTexCoords.data(); face.mNormals = mNormals.data(); face.mTangents = mTangents.data(); face.mIndices = nullptr; // unreferenced face.mNumIndices = mIndexArray.size(); face.mNumVertices = mPositions.size(); LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, tangent_out); intersect.traverse(mOctree); // null out proxy data so it doesn't get freed face.mPositions = face.mNormals = face.mTangents = nullptr; face.mIndices = nullptr; face.mTexCoords = nullptr; return intersect.mHitTriangle; } Primitive::~Primitive() { mOctree = nullptr; } const Primitive& Primitive::operator=(const tinygltf::Primitive& src) { // load material mMaterial = src.material; // load mode mMode = src.mode; // load indices mIndices = src.indices; // load attributes for (auto& it : src.attributes) { mAttributes[it.first] = it.second; } switch (mMode) { case TINYGLTF_MODE_POINTS: mGLMode = LLRender::POINTS; break; case TINYGLTF_MODE_LINE: mGLMode = LLRender::LINES; break; case TINYGLTF_MODE_LINE_LOOP: mGLMode = LLRender::LINE_LOOP; break; case TINYGLTF_MODE_LINE_STRIP: mGLMode = LLRender::LINE_STRIP; break; case TINYGLTF_MODE_TRIANGLES: mGLMode = LLRender::TRIANGLES; break; case TINYGLTF_MODE_TRIANGLE_STRIP: mGLMode = LLRender::TRIANGLE_STRIP; break; case TINYGLTF_MODE_TRIANGLE_FAN: mGLMode = LLRender::TRIANGLE_FAN; break; default: mGLMode = GL_TRIANGLES; } return *this; }