/** * @file asset.cpp * @brief LL GLTF Implementation * * $LicenseInfo:firstyear=2024&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2024, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "../llviewerprecompiledheaders.h" #include "asset.h" #include "llvolumeoctree.h" #include "../llviewershadermgr.h" #include "../llviewercontrol.h" using namespace LL::GLTF; void Scene::updateTransforms(Asset& asset) { LLMatrix4a identity; identity.setIdentity(); for (auto& nodeIndex : mNodes) { Node& node = asset.mNodes[nodeIndex]; node.updateTransforms(asset, identity); } } void Scene::updateRenderTransforms(Asset& asset, const LLMatrix4a& modelview) { for (auto& nodeIndex : mNodes) { Node& node = asset.mNodes[nodeIndex]; node.updateRenderTransforms(asset, modelview); } } void Node::updateRenderTransforms(Asset& asset, const LLMatrix4a& modelview) { matMul(mMatrix, modelview, mRenderMatrix); for (auto& childIndex : mChildren) { Node& child = asset.mNodes[childIndex]; child.updateRenderTransforms(asset, mRenderMatrix); } } LLMatrix4a inverse(const LLMatrix4a& mat); void Node::updateTransforms(Asset& asset, const LLMatrix4a& parentMatrix) { makeMatrixValid(); matMul(mMatrix, parentMatrix, mAssetMatrix); mAssetMatrixInv = inverse(mAssetMatrix); S32 my_index = this - &asset.mNodes[0]; for (auto& childIndex : mChildren) { Node& child = asset.mNodes[childIndex]; child.mParent = my_index; child.updateTransforms(asset, mAssetMatrix); } } void Asset::updateTransforms() { for (auto& scene : mScenes) { scene.updateTransforms(*this); } } void Asset::updateRenderTransforms(const LLMatrix4a& modelview) { #if 0 // traverse hierarchy and update render transforms from scratch for (auto& scene : mScenes) { scene.updateRenderTransforms(*this, modelview); } #else // use mAssetMatrix to update render transforms from node list for (auto& node : mNodes) { //if (node.mMesh != INVALID_INDEX) { matMul(node.mAssetMatrix, modelview, node.mRenderMatrix); } } #endif } S32 Asset::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, LLVector4a* intersection, // return the intersection point LLVector2* tex_coord, // return the texture coordinates of the intersection point LLVector4a* normal, // return the surface normal at the intersection point LLVector4a* tangent, // return the surface tangent at the intersection point S32* primitive_hitp ) { S32 node_hit = -1; S32 primitive_hit = -1; LLVector4a local_start; LLVector4a asset_end = end; LLVector4a local_end; LLVector4a p; for (auto& node : mNodes) { if (node.mMesh != INVALID_INDEX) { bool newHit = false; // transform start and end to this node's local space node.mAssetMatrixInv.affineTransform(start, local_start); node.mAssetMatrixInv.affineTransform(asset_end, local_end); Mesh& mesh = mMeshes[node.mMesh]; for (auto& primitive : mesh.mPrimitives) { const LLVolumeTriangle* tri = primitive.lineSegmentIntersect(local_start, local_end, &p, tex_coord, normal, tangent); if (tri) { newHit = true; local_end = p; // pointer math to get the node index node_hit = &node - &mNodes[0]; llassert(&mNodes[node_hit] == &node); //pointer math to get the primitive index primitive_hit = &primitive - &mesh.mPrimitives[0]; llassert(&mesh.mPrimitives[primitive_hit] == &primitive); } } if (newHit) { // shorten line segment on hit node.mAssetMatrix.affineTransform(p, asset_end); // transform results back to asset space if (intersection) { *intersection = asset_end; } if (normal || tangent) { LLMatrix4 normalMatrix(node.mAssetMatrixInv.getF32ptr()); normalMatrix.transpose(); LLMatrix4a norm_mat; norm_mat.loadu((F32*)normalMatrix.mMatrix); if (normal) { LLVector4a n = *normal; F32 w = n.getF32ptr()[3]; n.getF32ptr()[3] = 0.0f; norm_mat.affineTransform(n, *normal); normal->getF32ptr()[3] = w; } if (tangent) { LLVector4a t = *tangent; F32 w = t.getF32ptr()[3]; t.getF32ptr()[3] = 0.0f; norm_mat.affineTransform(t, *tangent); tangent->getF32ptr()[3] = w; } } } } } if (node_hit != -1) { if (primitive_hitp) { *primitive_hitp = primitive_hit; } } return node_hit; } void Node::makeMatrixValid() { if (!mMatrixValid && mTRSValid) { glh::matrix4f rot; mRotation.get_value(rot); glh::matrix4f trans; trans.set_translate(mTranslation); glh::matrix4f sc; sc.set_scale(mScale); glh::matrix4f t; //t = sc * rot * trans; //t = trans * rot * sc; // best so far, still wrong on negative scale //t = sc * trans * rot; t = trans * sc * rot; mMatrix.loadu(t.m); mMatrixValid = true; } } void Node::makeTRSValid() { if (!mTRSValid && mMatrixValid) { glh::matrix4f t(mMatrix.getF32ptr()); glh::vec4f p = t.get_column(3); mTranslation.set_value(p.v[0], p.v[1], p.v[2]); mScale.set_value(t.get_column(0).length(), t.get_column(1).length(), t.get_column(2).length()); mRotation.set_value(t); mTRSValid = true; } } void Node::setRotation(const glh::quaternionf& q) { makeTRSValid(); mRotation = q; mMatrixValid = false; } void Node::setTranslation(const glh::vec3f& t) { makeTRSValid(); mTranslation = t; mMatrixValid = false; } void Node::setScale(const glh::vec3f& s) { makeTRSValid(); mScale = s; mMatrixValid = false; } const Node& Node::operator=(const tinygltf::Node& src) { F32* dstMatrix = mMatrix.getF32ptr(); if (src.matrix.size() == 16) { // Node has a transformation matrix, just copy it for (U32 i = 0; i < 16; ++i) { dstMatrix[i] = (F32)src.matrix[i]; } mMatrixValid = true; } else if (!src.rotation.empty() || !src.translation.empty() || !src.scale.empty()) { // node has rotation/translation/scale, convert to matrix if (src.rotation.size() == 4) { mRotation = glh::quaternionf((F32)src.rotation[0], (F32)src.rotation[1], (F32)src.rotation[2], (F32)src.rotation[3]); } if (src.translation.size() == 3) { mTranslation = glh::vec3f((F32)src.translation[0], (F32)src.translation[1], (F32)src.translation[2]); } glh::vec3f scale; if (src.scale.size() == 3) { mScale = glh::vec3f((F32)src.scale[0], (F32)src.scale[1], (F32)src.scale[2]); } else { mScale.set_value(1.f, 1.f, 1.f); } mTRSValid = true; } else { // node specifies no transformation, set to identity mMatrix.setIdentity(); } mChildren = src.children; mMesh = src.mesh; mSkin = src.skin; mName = src.name; return *this; } void Asset::render(bool opaque, bool rigged) { if (rigged) { gGL.loadIdentity(); } for (auto& node : mNodes) { if (node.mSkin != INVALID_INDEX) { if (rigged) { Skin& skin = mSkins[node.mSkin]; skin.uploadMatrixPalette(*this, node); } else { //skip static nodes if we're rendering rigged continue; } } else if (rigged) { // skip rigged nodes if we're not rendering rigged continue; } if (node.mMesh != INVALID_INDEX) { Mesh& mesh = mMeshes[node.mMesh]; for (auto& primitive : mesh.mPrimitives) { if (!rigged) { gGL.loadMatrix((F32*)node.mRenderMatrix.mMatrix); } bool cull = true; if (primitive.mMaterial != INVALID_INDEX) { Material& material = mMaterials[primitive.mMaterial]; if ((material.mMaterial->mAlphaMode == LLGLTFMaterial::ALPHA_MODE_BLEND) == opaque) { continue; } material.mMaterial->bind(); cull = !material.mMaterial->mDoubleSided; } else { if (!opaque) { continue; } LLFetchedGLTFMaterial::sDefault.bind(); } LLGLDisable cull_face(!cull ? GL_CULL_FACE : 0); primitive.mVertexBuffer->setBuffer(); if (primitive.mVertexBuffer->getNumIndices() > 0) { primitive.mVertexBuffer->draw(primitive.mGLMode, primitive.mVertexBuffer->getNumIndices(), 0); } else { primitive.mVertexBuffer->drawArrays(primitive.mGLMode, 0, primitive.mVertexBuffer->getNumVerts()); } } } } } void Asset::renderOpaque() { render(true); } void Asset::renderTransparent() { render(false); } void Asset::update() { F32 dt = gFrameTimeSeconds - mLastUpdateTime; if (dt > 0.f) { mLastUpdateTime = gFrameTimeSeconds; if (mAnimations.size() > 0) { static LLCachedControl anim_idx(gSavedSettings, "GLTFAnimationIndex", 0); static LLCachedControl anim_speed(gSavedSettings, "GLTFAnimationSpeed", 1.f); U32 idx = llclamp(anim_idx(), 0U, mAnimations.size() - 1); mAnimations[idx].update(*this, dt*anim_speed); } updateTransforms(); } } void Asset::allocateGLResources(const std::string& filename, const tinygltf::Model& model) { // do images first as materials may depend on images for (auto& image : mImages) { image.allocateGLResources(); } // do materials before meshes as meshes may depend on materials for (U32 i = 0; i < mMaterials.size(); ++i) { mMaterials[i].allocateGLResources(*this); LLTinyGLTFHelper::getMaterialFromModel(filename, model, i, mMaterials[i].mMaterial, mMaterials[i].mName, true); } for (auto& mesh : mMeshes) { mesh.allocateGLResources(*this); } for (auto& animation : mAnimations) { animation.allocateGLResources(*this); } for (auto& skin : mSkins) { skin.allocateGLResources(*this); } } const Asset& Asset::operator=(const tinygltf::Model& src) { mScenes.resize(src.scenes.size()); for (U32 i = 0; i < src.scenes.size(); ++i) { mScenes[i] = src.scenes[i]; } mNodes.resize(src.nodes.size()); for (U32 i = 0; i < src.nodes.size(); ++i) { mNodes[i] = src.nodes[i]; } mMeshes.resize(src.meshes.size()); for (U32 i = 0; i < src.meshes.size(); ++i) { mMeshes[i] = src.meshes[i]; } mMaterials.resize(src.materials.size()); for (U32 i = 0; i < src.materials.size(); ++i) { mMaterials[i] = src.materials[i]; } mBuffers.resize(src.buffers.size()); for (U32 i = 0; i < src.buffers.size(); ++i) { mBuffers[i] = src.buffers[i]; } mBufferViews.resize(src.bufferViews.size()); for (U32 i = 0; i < src.bufferViews.size(); ++i) { mBufferViews[i] = src.bufferViews[i]; } mTextures.resize(src.textures.size()); for (U32 i = 0; i < src.textures.size(); ++i) { mTextures[i] = src.textures[i]; } mSamplers.resize(src.samplers.size()); for (U32 i = 0; i < src.samplers.size(); ++i) { mSamplers[i] = src.samplers[i]; } mImages.resize(src.images.size()); for (U32 i = 0; i < src.images.size(); ++i) { mImages[i] = src.images[i]; } mAccessors.resize(src.accessors.size()); for (U32 i = 0; i < src.accessors.size(); ++i) { mAccessors[i] = src.accessors[i]; } mAnimations.resize(src.animations.size()); for (U32 i = 0; i < src.animations.size(); ++i) { mAnimations[i] = src.animations[i]; } mSkins.resize(src.skins.size()); for (U32 i = 0; i < src.skins.size(); ++i) { mSkins[i] = src.skins[i]; } return *this; } const Material& Material::operator=(const tinygltf::Material& src) { mName = src.name; return *this; } void Material::allocateGLResources(Asset& asset) { // allocate material mMaterial = new LLFetchedGLTFMaterial(); } const Mesh& Mesh::operator=(const tinygltf::Mesh& src) { mPrimitives.resize(src.primitives.size()); for (U32 i = 0; i < src.primitives.size(); ++i) { mPrimitives[i] = src.primitives[i]; } mWeights = src.weights; mName = src.name; return *this; } void Mesh::allocateGLResources(Asset& asset) { for (auto& primitive : mPrimitives) { primitive.allocateGLResources(asset); } } const Scene& Scene::operator=(const tinygltf::Scene& src) { mNodes = src.nodes; mName = src.name; return *this; } const Texture& Texture::operator=(const tinygltf::Texture& src) { mSampler = src.sampler; mSource = src.source; mName = src.name; return *this; } const Sampler& Sampler::operator=(const tinygltf::Sampler& src) { mMagFilter = src.magFilter; mMinFilter = src.minFilter; mWrapS = src.wrapS; mWrapT = src.wrapT; mName = src.name; return *this; } void Skin::uploadMatrixPalette(Asset& asset, Node& node) { // prepare matrix palette // modelview will be applied by the shader, so assume matrix palette is in asset space std::vector t_mp; t_mp.resize(mJoints.size()); for (U32 i = 0; i < mJoints.size(); ++i) { Node& joint = asset.mNodes[mJoints[i]]; //t_mp[i].set_value(joint.mRenderMatrix.getF32ptr()); //t_mp[i] = t_mp[i] * mInverseBindMatricesData[i]; //t_mp[i].set_value(joint.mRenderMatrix.getF32ptr()); //t_mp[i] = mInverseBindMatricesData[i] * t_mp[i]; t_mp[i].set_value(joint.mRenderMatrix.getF32ptr()); t_mp[i] = t_mp[i] * mInverseBindMatricesData[i]; } std::vector glmp; glmp.resize(mJoints.size() * 12); F32* mp = glmp.data(); for (U32 i = 0; i < mJoints.size(); ++i) { F32* m = (F32*)t_mp[i].m; U32 idx = i * 12; mp[idx + 0] = m[0]; mp[idx + 1] = m[1]; mp[idx + 2] = m[2]; mp[idx + 3] = m[12]; mp[idx + 4] = m[4]; mp[idx + 5] = m[5]; mp[idx + 6] = m[6]; mp[idx + 7] = m[13]; mp[idx + 8] = m[8]; mp[idx + 9] = m[9]; mp[idx + 10] = m[10]; mp[idx + 11] = m[14]; } LLGLSLShader::sCurBoundShaderPtr->uniformMatrix3x4fv(LLViewerShaderMgr::AVATAR_MATRIX, mJoints.size(), FALSE, (GLfloat*)glmp.data()); }