/** * @file waterF.glsl * * $LicenseInfo:firstyear=2022&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2022, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ // class3/environment/waterF.glsl out vec4 frag_color; #ifdef HAS_SUN_SHADOW float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen); #endif vec3 scaleSoftClipFragLinear(vec3 l); void calcAtmosphericVarsLinear(vec3 inPositionEye, vec3 norm, vec3 light_dir, out vec3 sunlit, out vec3 amblit, out vec3 atten, out vec3 additive); vec4 applyWaterFogViewLinear(vec3 pos, vec4 color); void mirrorClip(vec3 pos); // PBR interface vec2 BRDF(float NoV, float roughness); void calcDiffuseSpecular(vec3 baseColor, float metallic, inout vec3 diffuseColor, inout vec3 specularColor); vec3 pbrIbl(vec3 diffuseColor, vec3 specularColor, vec3 radiance, // radiance map sample vec3 irradiance, // irradiance map sample float ao, // ambient occlusion factor float nv, // normal dot view vector float perceptualRoughness); vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor, float perceptualRoughness, float metallic, vec3 n, // normal vec3 v, // surface point to camera vec3 l); //surface point to light vec3 pbrBaseLight(vec3 diffuseColor, vec3 specularColor, float metallic, vec3 pos, vec3 norm, float perceptualRoughness, vec3 light_dir, vec3 sunlit, float scol, vec3 radiance, vec3 irradiance, vec3 colorEmissive, float ao, vec3 additive, vec3 atten); uniform sampler2D bumpMap; uniform sampler2D bumpMap2; uniform float blend_factor; #ifdef TRANSPARENT_WATER uniform sampler2D screenTex; uniform sampler2D depthMap; #endif uniform sampler2D refTex; uniform float sunAngle; uniform float sunAngle2; uniform vec3 lightDir; uniform vec3 specular; uniform float lightExp; uniform float refScale; uniform float kd; uniform vec2 screenRes; uniform vec3 normScale; uniform float fresnelScale; uniform float fresnelOffset; uniform float blurMultiplier; uniform vec4 waterFogColor; uniform vec3 waterFogColorLinear; //bigWave is (refCoord.w, view.w); in vec4 refCoord; in vec4 littleWave; in vec4 view; in vec3 vary_position; in vec3 vary_normal; in vec3 vary_tangent; in vec3 vary_light_dir; vec3 BlendNormal(vec3 bump1, vec3 bump2) { vec3 n = mix(bump1, bump2, blend_factor); return n; } vec3 srgb_to_linear(vec3 col); vec3 linear_to_srgb(vec3 col); vec3 vN, vT, vB; vec3 transform_normal(vec3 vNt) { return normalize(vNt.x * vT + vNt.y * vB + vNt.z * vN); } void sampleReflectionProbesWater(inout vec3 ambenv, inout vec3 glossenv, vec2 tc, vec3 pos, vec3 norm, float glossiness, vec3 amblit_linear); vec3 getPositionWithNDC(vec3 ndc); void main() { mirrorClip(vary_position); vN = vary_normal; vT = vary_tangent; vB = cross(vN, vT); vec3 pos = vary_position.xyz; float dist = length(pos.xyz); //normalize view vector vec3 viewVec = normalize(pos.xyz); //get wave normals vec2 bigwave = vec2(refCoord.w, view.w); vec3 wave1_a = texture(bumpMap, bigwave, -2.0 ).xyz*2.0-1.0; vec3 wave2_a = texture(bumpMap, littleWave.xy).xyz*2.0-1.0; vec3 wave3_a = texture(bumpMap, littleWave.zw).xyz*2.0-1.0; vec3 wave1_b = texture(bumpMap2, bigwave ).xyz*2.0-1.0; vec3 wave2_b = texture(bumpMap2, littleWave.xy).xyz*2.0-1.0; vec3 wave3_b = texture(bumpMap2, littleWave.zw).xyz*2.0-1.0; //wave1_a = wave2_a = wave3_a = wave1_b = wave2_b = wave3_b = vec3(0,0,1); vec3 wave1 = BlendNormal(wave1_a, wave1_b); vec3 wave2 = BlendNormal(wave2_a, wave2_b); vec3 wave3 = BlendNormal(wave3_a, wave3_b); vec2 distort = (refCoord.xy/refCoord.z) * 0.5 + 0.5; //wave1 = transform_normal(wave1); //wave2 = transform_normal(wave2); //wave3 = transform_normal(wave3); vec3 wavef = (wave1 + wave2 * 0.4 + wave3 * 0.6) * 0.5; vec3 waver = wavef*3.0; vec3 up = transform_normal(vec3(0,0,1)); float vdu = -dot(viewVec, up)*2.0; vec3 wave_ibl = wavef; wave_ibl.z *= 2.0; wave_ibl = transform_normal(normalize(wave_ibl)); vec3 norm = transform_normal(normalize(wavef)); vdu = clamp(vdu, 0.0, 1.0); wavef.z *= max(vdu*vdu*vdu, 0.1); wavef = normalize(wavef); //wavef = vec3(0, 0, 1); wavef = transform_normal(wavef); float dist2 = dist; dist = max(dist, 5.0); float dmod = sqrt(dist); //figure out distortion vector (ripply) vec2 distort2 = distort + waver.xy * refScale / max(dmod, 1.0); distort2 = clamp(distort2, vec2(0), vec2(0.999)); vec3 sunlit; vec3 amblit; vec3 additive; vec3 atten; float shadow = 1.0f; #ifdef HAS_SUN_SHADOW shadow = sampleDirectionalShadow(pos.xyz, norm.xyz, distort); #endif calcAtmosphericVarsLinear(pos.xyz, wavef, vary_light_dir, sunlit, amblit, additive, atten); vec3 sunlit_linear = srgb_to_linear(sunlit); #ifdef TRANSPARENT_WATER vec4 fb = texture(screenTex, distort2); float depth = texture(depthMap, distort2).r; vec3 refPos = getPositionWithNDC(vec3(distort2*2.0-vec2(1.0), depth*2.0-1.0)); if (refPos.z > pos.z-0.05) { //we sampled an above water sample, don't distort distort2 = distort; fb = texture(screenTex, distort2); depth = texture(depthMap, distort2).r; refPos = getPositionWithNDC(vec3(distort2 * 2.0 - vec2(1.0), depth * 2.0 - 1.0)); } #else vec4 fb = applyWaterFogViewLinear(viewVec*2048.0, vec4(1.0)); #endif // fudge sample on other side of water to be a tad darker fb.rgb *= 0.75; float metallic = 0.0; float perceptualRoughness = 0.05; float gloss = 1.0 - perceptualRoughness; vec3 irradiance = vec3(0); vec3 radiance = vec3(0); sampleReflectionProbesWater(irradiance, radiance, distort2, pos.xyz, wave_ibl.xyz, gloss, amblit); irradiance = vec3(0); vec3 diffuseColor = vec3(0); vec3 specularColor = vec3(0); calcDiffuseSpecular(vec3(1), metallic, diffuseColor, specularColor); vec3 v = -normalize(pos.xyz); vec3 colorEmissive = vec3(0); float ao = 1.0; vec3 light_dir = transform_normal(lightDir); perceptualRoughness = 0.0; metallic = 1.0; float NdotV = clamp(abs(dot(norm, v)), 0.001, 1.0); vec3 punctual = pbrPunctual(vec3(0), specularColor, 0.1, metallic, normalize(wavef+up*max(dist, 32.0)/32.0*(1.0-vdu)), v, normalize(light_dir)); vec3 color = punctual * sunlit_linear * 2.75 * shadow; vec3 ibl = pbrIbl(vec3(0), vec3(1), radiance, vec3(0), ao, NdotV, 0.0); color += ibl; float nv = clamp(abs(dot(norm.xyz, v)), 0.001, 1.0); vec2 brdf = BRDF(clamp(nv, 0.0, 1.0), 1.0); float f = 1.0-brdf.y; //1.0 - (brdf.x+brdf.y); f *= 0.9; f *= f; // incoming scale is [0, 1] with 0.5 being default // shift to 0.5 to 1.5 f *= (fresnelScale - 0.5)+1.0; // incoming offset is [0, 1] with 0.5 being default // shift from -1 to 1 f += (fresnelOffset - 0.5) * 2.0; f = clamp(f, 0.0, 1.0); color = ((1.0 - f) * color) + fb.rgb; float spec = min(max(max(punctual.r, punctual.g), punctual.b), 0.05); frag_color = max(vec4(color, spec), vec4(0)); }